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Abstract. Let φ be an automorphism of a free group F2 of rank
2 and let Mφ = F2 oφ Z be the corresponding mapping torus of φ.
We prove that the group Out(Mφ) is usually virtually cyclic. More-
over, we classify the cases when this group is finite depending on the
conjugacy class of the image of φ in GL2(Z).

1. Introduction

Let Fn be the free group of rank n freely generated by x1, . . . , xn, and
let us denote automorphisms φ ∈ Aut(Fn) as acting on the right, x 7→ xφ.
In this paper we consider extensions of finitely generated free groups by the
infinite cyclic group ([f.g. free]-by-Z groups, for short). More precisely, for
any given φ ∈ Aut(Fn), we consider the mapping torus, Mφ = F oφ Z, of φ
i.e. the extension of Fn presented by

Mφ = 〈x1, . . . , xn, t | t−1xit = xiφ〉.
The aim of the paper is to study the automorphism group of such groups,
Aut(Mφ). We shall give partial results for arbitrary rank n, and a complete
description for the cases n = 1, 2.

To help avoiding possible confusions, we will use greek letters (such as
φ or ψ) to denote automorphisms of Fn, and capital greek letters (such
as Φ or Ψ) to denote automorphisms of Mφ. Accordingly, for every word
w ∈ Fn, we shall write γw to denote the inner automorphism of Fn given
by right conjugation by w, xγw = w−1xw. And, for every element g ∈ Mφ,
we shall write Γg to denote the inner automorphism of Mφ given by right
conjugation by g, xΓg = g−1xg. As usual, Inn(G) denotes the group of
inner automorphisms of a group G, and Out(G) = Aut(G)/Inn(G).

Although [f.g. free]-by-Z groups have received a great deal of attention
in recent years, there has been no real systematic study of their automor-
phisms. In fact, it still seems to be an open question whether or not they
have finitely generated or finitely presented automorphism groups. Having
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said that, there are certain cases in which the automorphism group is under-
stood. For instance, when Mφ is word hyperbolic, it is known to have finite
outer automorphism group (this can be deduced from papers [1, 3]). How-
ever, note that in the rank 2 case, the group Mφ can never be hyperbolic.
In fact, by a result of Nielsen (see Proposition 5.1 in [4]), ([x1, x2])φ and so
t−1[x1, x2]t, must be conjugate to [x1, x2]±1 in F2. Hence, Mφ contains a
free abelian subgroup of rank 2 implying that Mφ is not hyperbolic.

It is straightforward to verify (see Lemma 2.1 below) that the isomor-
phism type of Mφ depends only on the conjugacy class of the outer auto-
morphism [φ]±1 ∈ Out(Fn) = Aut(Fn)/Inn(Fn) determined by φ±1. While
this characterises the isomorphism class of Mφ when n = 2, it seems also
possible, for n > 2, that two [f.g. free]-by-Z groups are isomorphic even if
they do not arise from conjugate or conjugate-inverse outer automorphisms.

In Section 2, we analyse Aut(Mφ) for arbitrary n but under certain tech-
nical restrictions for φ (see Theorems 2.4 and 2.5). After dedicating Sec-
tion 3 to recall a standard classification of 2 × 2 matrices, the main result
comes in Section 4, where we analyse Aut(Mφ) in the case when the under-
lying free group has rank n = 2, and without conditions on φ. The rank 2
case is doubtless the easiest to deal with, but we believe that some of our
methods may be of general interest. For instance, our detailed look at the
parabolic case is certain to be of use in the more general UPG case (the
definition of UPG automorphisms can be found in [2]). The information
obtained there is summarised in the following theorem, which is the main
result of the paper.

Theorem 1.1. Let F2 = 〈a, b〉 be a free group of rank 2, let φ ∈ Aut(F2),
and consider the mapping torus Mφ = F2 oφ Z. Let φ ab ∈ GL2(Z) be the
map induced by φ on F ab

2
∼= Z2 (written in row form with respect to {a, b}).

i) If φ ab = I2, then Out(Mφ) ∼= (Z2 oC2)oGL2(Z), where C2 is the
cyclic group of order 2 acting on Z2 by sending u to −u, u ∈ Z2,
and where GL2(Z) acts trivially on C2 and naturally on Z2 (thinking
vectors as columns there).

ii) If φ ab = −I2, then Out(Mφ) ∼= PGL2(Z)× C2.
iii) If φ ab 6= −I2 and does not have 1 as an eigenvalue then Out(Mφ)

is finite.
iv) If φ ab is conjugate to

(
1 k
0 −1

)
for some integer k, then Out(Mφ) has

an infinite cyclic subgroup of finite index.
v) If φ ab is conjugate to ( 1 k

0 1 ) for some k 6= 0, then Out(Mφ) has an
infinite cyclic subgroup of finite index.

Furthermore, for every φ ∈ Aut(F2), φ ab fits into exactly one of the above
cases.
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Note that for n = 2, Mφ is always the fundamental group of a 3-manifold,
namely the corresponding mapping torus of a once punctured torus, say M .
When φ ab is hyperbolic, M is a hyperbolic manifold and it is known that,
in this case, Out(π1M) = Out(Mφ) is finite. This fact is contained in the
statement of (iii), which will be proven later using algebraic methods.

Finally, we remark that the case of rank 1 is straightforward to analyse.

Proposition 1.2. Let F1 = 〈a〉 be a free group of rank 1, let φ ∈ Aut(F1),
and consider the mapping torus Mφ = F1 oφ Z.

i) If φ = Id then Out(Mφ) = GL2(Z).
ii) If φ is the inversion then Out(Mφ) is finite. ¤

2. Results for general rank

Using the defining relations of Mφ under the form wt = t(wφ) and wt−1 =
t−1(wφ−1), w ∈ Fn, it is clear that in any element of Mφ we can push all
the t letters to one side. That is, we have a normal form in Mφ whereby
we can write elements uniquely in the form tkw, where k is an integer and
w ∈ Fn.

Our first observation is that the isomorphism type of Mφ depends only on
the outer automorphism determined by φ±1, up to conjugacy in Out(Fn).

Lemma 2.1. Let Fn be a free group of rank n, let φ, ψ ∈ Aut(Fn) and
consider

Mφ = 〈x1, . . . , xn, t | t−1xit = xiφ〉
and

Mψ = 〈x1, . . . , xn, s | s−1xis = xiψ〉.
If the automorphisms φ and ψ are conjugate or conjugate-inverse to each
other in Out(Fn), then Mφ and Mψ are isomorphic. More precisely, if
χ ∈ Aut(Fn) is such that χ−1φχ = ψεγw, for some ε = ±1 and w ∈ Fn,
then the map Ω: Mφ → Mψ, xi 7→ xiχ, t 7→ sεw extends to an isomorphism.

Proof. The map Ω is extended multiplicatively and one needs to show
that it is well defined. In order to do this, it is enough to show that the
relators in Mφ are all sent to the trivial element in Mψ:

t−1xit(xiφ)−1 7→ w−1s−ε(xiχ)sεw(xiφχ)−1

= w−1(xiχψε)w(xiφχ)−1

= (xiχψεγw)(xiφχ)−1

= (xiφχ)(xiφχ)−1

= 1 ∈ Mψ.

Thus, we have a well defined homomorphism Ω: Mφ → Mψ, which is surjec-
tive by inspection. Moreover, if an element tkx ∈ Mφ is in the kernel of Ω,
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we immediately deduce that k = 0 and xχ = 1. Since χ is an automorphism
of Fn, we have x = 1 and Ω has trivial kernel. 2

We continue with some basic facts about the automorphism group of Mφ.

Lemma 2.2. Let Fn be a free group of rank n, and let φ ∈ Aut(Fn). The
group Mφ = Fnoφ Z has non-trivial centre if and only if φk = γw for some
k 6= 0 and some w ∈ Fn. If this equation holds and n > 2, then wφ = w.

Proof. The result is clear for n = 0, 1. So, we may assume that n > 2.
A straightforward calculation shows that the element tkw−1 ∈ Mφ com-

mutes with every x ∈ Fn if and only if φk = γw. Similarly, tkw−1 commutes
with t if and only if wφ = w. So, tkw−1 is central in Mφ if and only if
φk = γw and wφ = w. Hence, Mφ has non-trivial centre if and only if
φk = γw and wφ = w for some integer k and some w ∈ Fn such that
(k, w) 6= (0, 1).

Now, using the fact n > 2, we can simplify this. Assume the equation
φk = γw holds. Since, γw = φ−1γwφ = γwφ we have wφ = w. Also, note
that k = 0 implies w = 1 (because Fn has trivial centre for n > 2). Thus,
Mφ has non-trivial centre if and only if φk = γw for some integer k 6= 0 and
some w ∈ Fn. ¤

Let Ψ ∈ Aut(Mφ) and suppose it leaves Fn invariant. In this situation,
its restriction to Fn, ψ = Ψ|Fn , is an endomorphism of Fn that will be
seen in the next proposition to be always an automorphism. On the other
hand, factorising by the normal and Ψ-invariant subgroup Fn, we get an
automorphism Ψ of Mφ/Fn

∼= Z. If Ψ = Id we shall say that Ψ is a positive
automorphism of Mφ. Otherwise, Ψ is the inversion of Z and we say that
Ψ is negative. In any case, tΨ = tεw for some w ∈ F , where ε = ±1 is the
signum of Ψ.

Proposition 2.3. Let Fn be a free group of rank n, let φ ∈ Aut(Fn) and
consider Mφ = Fn oφ Z. Let Ψ ∈ Aut(Mφ) be such that FnΨ 6 Fn, and
denote by ψ : Fn → Fn its restriction to Fn. Then,

i) ψ is an automorphism of Fn,
ii) there exists w ∈ Fn such that φψ = ψφεγw, where ε is the signum

of Ψ. Furthermore, if n > 2 then the word w is unique and satisfies
the equation tΨ = tεw.

Proof. Since FnΨ 6 Fn, we must have that tΨ = t±1w for some w ∈ Fn

(otherwise, t would not be in the image of Ψ). Now, clearly, FnΨ is a normal
subgroup of Mφ = MφΨ = 〈Fnψ, t±1w〉. Hence any element g ∈ Mφ can
be written in the form g = (vψ)(t±1w)k for some v ∈ Fn and k ∈ Z. And
here g ∈ Fn if and only if k = 0. Thus, FnΨ = Fn and Ψ induces an
automorphism on Fn. This proves (i).
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Let ε = ±1 be the signum of Ψ, that is, tΨ = tεw for some w ∈ Fn.
Applying Ψ to both sides of the equality xφ = t−1xt we get

xφψ = w−1t−ε(xψ)tεw = xψφεγw,

for all x ∈ Fn. Hence, φψ = ψφεγw. Furthermore, if n > 2, this last
equation can only happen for a unique w ∈ Fn. This proves (ii). 2

In the following result, we impose certain hypothesis on φ to ensure
that every automorphism of Mφ leaves the free part invariant. Under these
circumstances, computing Out(Mφ) is fairly straightforward.

Theorem 2.4. Let Fn be a free group of rank n, let φ ∈ Aut(Fn) and
consider Mφ = Fn oφ Z. Let M ab

φ denote the abelianisation of Mφ, and
F ab

n
∼= Zn the abelianisation of Fn (which is not in general the image of

Fn 6 Mφ in M ab
φ ). Let φ ab ∈ GLn(Z) be the map induced by φ on F ab

n ,
and [φ] be the class of φ in Out(Fn). The following are equivalent:

a) M ab
φ is the direct sum of an infinite cyclic group and a finite abelian

group,
b) the matrix φ ab has no eigenvalue 1.

Furthermore, if these conditions hold then every automorphism of Mφ

leaves Fn invariant,

Aut+(Mφ) = {Ψ ∈ Aut(Mφ) | Ψ is positive}
is a normal subgroup of Aut(Mφ) of index at most 2 and moreover, if n > 2,
its image Out+(Mφ) in Out(Mφ) is also normal, of index at most two, and
isomorphic to C([φ])/〈[φ]〉, where C([φ]) denotes the centraliser of [φ] in
Out(Fn).

Proof. To prove the equivalence of (a) and (b), note that M ab
φ

∼= 〈t |
〉 ⊕ F ab

n /Im(φ ab − Id). Then, F ab
n /Im(φ ab − Id) is finite if and only if

rankZ(Im(φ ab − Id)) = rankZ(F
ab

n ) = n. And this happens if and only if
rankZ(Ker(φ ab − Id)) = 0, which is the same as saying that φ ab has no
eigenvalue 1.

We shall now prove the remaining assertions under the assumption that
these conditions hold. Consider the abelianisation map Mφ → M ab

φ . Since
F ab

n /Im(φ ab − Id) is the torsion subgroup of M ab
φ , its full pre-image Fn is

characteristic in Mφ. Hence, every automorphism of Mφ leaves Fn invariant.
At this point, it is clear that Aut+(Mφ) is a normal subgroup of Aut(Mφ)
of index at most 2, and so is Out+(Mφ) in Out(Mφ).

Assuming n > 2, it remains to prove that Out+(Mφ) ∼= C([φ])/〈[φ]〉.
Define the map

f : Aut+(Mφ) → C([φ])/〈[φ]〉
Ψ 7→ [Ψ|Fn ]〈[φ]〉.
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Note that by Proposition 2.3, the image of this map lies in C([φ])/〈[φ]〉.
Clearly, f is a homomorphism.

First, we will prove that Im f = C([φ])/〈[φ]〉. Let ψ ∈ Aut(Fn) be such
that [ψ] ∈ C([φ]). Then, φψ = ψφγw for some w ∈ Fn. In this situation, it
is straightforward to verify that ψ extends to a well defined automorphism
Ψ of Mφ by just sending t to tw. Clearly, Ψ ∈ Aut+(Mφ) and its f -image
is [ψ]〈[φ]〉.

Now we will prove that Ker f = Inn(Mφ). For every element g = tkw ∈
Mφ, we have that Γg|Fn

= φkγw and so, Γg maps under f to the identity
element of C([φ])/〈[φ]〉. This means that Ker f > Inn(Mφ). Conversely,
let Ψ ∈ Ker f . Then, Ψ|Fn

= φkγw = Γtkw|Fn
for some integer k and some

w ∈ Fn. Also, applying Ψ to both sides of the equation t−1xt = xφ and
using the positivity of Ψ and the fact n > 2, it is straightforward to check
that tΨ = t(wφ)−1w = tΓtkw. Thus, Ψ = Γtkw. This completes the prove
that Ker f = Inn(Mφ) and so, Out+(Mφ) ∼= C([φ])/〈[φ]〉. 2

The extreme opposite case to the one considered above is when φ is
the identity automorphism (or, in fact, an inner automorphism). We also
calculate the automorphism group in this case.

Theorem 2.5. Let Fn = 〈x1, . . . , xn〉 be a free group of rank n > 2, and let
M = MId = Fn×Z. Consider the group ZnoC2 where C2 is the cyclic group
of order 2 which acts by sending u to −u for all u ∈ Zn (think u as a column
vector); also, consider the action of Aut(Fn) (and also Out(Fn)) on it given
by the trivial action on C2, and the natural action after abelianisation on Zn.
Then, Aut(M) ∼= (ZnoC2)oAut(Fn) and Out(M) ∼= (ZnoC2)oOut(Fn).

Proof. Clearly, distinct automorphisms of Fn extend to distinct positive
automorphisms of M by sending t to t. In this sense, we shall think Aut(Fn)
as a subgroup of Aut(M). On the other hand, consider ZnoC2 = Zno 〈v〉
so that v−1uv = −u for all u ∈ Zn. It is straightforward to verify that
this group acts faithfully on M = Fn × Z, whereby an element (vε, u),
u = (u1, . . . , un)T , sends xi to tuixi and t to t1−2ε, where ε = 0, 1. So, we
shall think Zn o C2 6 Aut(M).

Note that Aut(Fn) and ZnoC2 have trivial intersection as subgroups of
Aut(M). We shall now show that they generate Aut(M). Let Ψ ∈ Aut(M).
It will be sufficient to show that we can multiply Ψ by elements in Aut(Fn)
and Zn o C2 until we get the identity. Note that, since the centre of M is
its infinite cyclic subgroup generated by t (use n > 2 and see Lemma 2.2),
〈t〉 is characteristic in M and so, tΨ = t±1. Thus, after possibly composing
with v ∈ Zn o C2, we can assume that tΨ = t. Then, write xiΨ = tuiwi

for i = 1, . . . , n, and u = (u1, . . . , un)T . Since Ψ is an automorphism,
{w1, . . . , wn} must generate (and so form a basis of) Fn. Composing Ψ
with the automorphism which fixes t and sends wi back to xi, i = 1, . . . , n,
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we obtain the element (v0, u) ∈ ZnoC2. This proves that Aut(Fn) together
with Zn o C2 generate Aut(M).

Consider now elements of Aut(M), Θ ∈ Aut(Fn) and (vε, u) ∈ Zn o C2,
u = (u1, . . . , un)T . We shall calculate the conjugate Θ(vε, u)Θ−1 as an
element of Aut(M). Let θ = Θ|Fn

∈ Aut(Fn) and let θ ab = (bi,j) ∈ GLn(Z)
be its abelianisation (an n× n integral matrix whose i-th row describes the
total exponent sums of xiθ). Bearing this in mind, Θ(vε, u)Θ−1 acts as

xi 7→ xiΘ 7→ tci(xiΘ) 7→ tcixi

t 7→ t 7→ t1−2ε 7→ t1−2ε,

where ci =
∑n

j=1 bi,juj is the i-th entry of the column vector θ abu. In other
words,

Θ(vε, u)Θ−1 = (vε, θ abu)
for every u = (u1, . . . , un)T ∈ Zn. This immediately shows that Zn o C2 is
normal in Aut(M). Hence, Aut(Fn×Z) ∼= (ZnoC2)oAut(Fn), where the
action of Aut(Fn) in this last semi-direct product is the trivial one over the
C2 part, and the natural one after abelianisation over the Zn part.

Lastly, to prove the final statement note that, since 〈t〉 is central, inner
automorphisms of Fn × Z are just inner automorphisms by elements of
Fn, and all of them fix t. Thus, Inn(M) = Inn(Fn) 6 Aut(Fn) and so
Out(M) ∼= (Zn oC2)oOut(Fn), where the actions are just like before but
factorised by Inn(Fn). 2

3. Aut(F2) and GL2(Z)

For the rest of the paper we will be considering only the case n = 2.
Hence, we shall avoid unnecessary subscripts by using the letters {a, b} as
free generators of F2 = 〈a, b〉.

In this section we will briefly review some well known facts about Aut(F2),
Out(F2) and GL2(Z). The abelianisation map F2 → F ab

2 induces naturally
a surjective map Aut(F2) ³ GL2(Z) for which, abusing notation, we shall
write φ 7→ φ ab. More precisely, φ ab is the 2× 2 integral matrix whose first
(second) row counts the total a- and b-exponent sums of aφ (of bφ). Clearly,
this is well defined for any rank, but in rank 2 it has some special properties
which make this case easier to study. The main specificity of the rank 2
case is the following well known result.

Theorem 3.1 (Nielsen, Prop. 4.5 in [4]). The kernel of the map from
Aut(F2) to GL2(Z) consists of precisely the inner automorphisms of F2.
That is, Out(F2) ∼= GL2(Z).

This means that, for every automorphism φ ∈ Aut(F2), the 2×2 integral
matrix φ ab is enough to recover the automorphism φ up to conjugation.
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Since the isomorphism type of Mφ (and so that of Aut(Mφ)) only depends
on φ up to conjugation, φ ab contains all the algebraic information we may
want about Mφ and Aut(Mφ).

Matrices in GL2(Z) can be classified according to their eigenvalues and
dynamics, often leading to useful information for Aut(F2). This is often
done in the following way.

Definition 3.2. Let A be a 2× 2 integral invertible matrix, A ∈ GL2(Z).
If A2 is the identity matrix, A2 = I2, we say that A is elliptic. Otherwise,
A is called hyperbolic if |trace(A2)| > 2, parabolic if |trace(A2)| = 2, and
elliptic if |trace(A2)| < 2.

Suppose A ∈ GL2(Z) is a hyperbolic matrix. Then, A2 6= I2 has two real
eigenvalues, α, 1/α, such that |α| > 1. Since A preserves the one dimensional
eigenspaces of A2, A must also have two real eigenvalues, β,±1/β, such that
|β| > 1. In particular, A does not have 1 as an eigenvalue.

Suppose A ∈ GL2(Z) is a parabolic matrix. Then, A2 6= I2 has char-
acteristic polynomial equal to (x ± 1)2. This implies that A2 is conjugate,
in GL2(Z), to ± (

1 k′
0 1

)
for some 0 6= k′ ∈ Z (take a rational eigenvector of

eigenvalue ±1, multiply it by a scalar to obtain an integral vector v with
coprime entries, and then extend to a basis {u, v} of Z2). A simple calcu-
lation shows now that A must then be conjugate to one of the following
matrices (

1 k
0 1

) ( −1 k
0 −1

)
,

for some integer k 6= 0. These are infinite order matrices and the first of
these will turn out to be the most challenging case to consider.

Finally, suppose A ∈ GL2(Z) is an elliptic matrix. Then, either A2 = I2

or the characteristic polynomial of A2 is equal to x2 + 1, x2 + x + 1 or
x2 − x + 1. In the first case, A is either ±I2 or is conjugate, in GL2(Z),
to

(
1 k
0 −1

)
for some k ∈ Z (by a similar reasoning as above). Otherwise, A

have complex conjugate roots and, in particular, it does not have 1 as an
eigenvalue.

4. The rank 2 case: proof of Theorem 1.1

Given φ ∈ Aut(F2), we shall analyse Aut(Mφ) and prove Theorem 1.1
by following the classification of matrices in the previous section for φ ab.

First, we state the following two lemmas for later use.

Lemma 4.1. Every non-central element in GL2(Z) generates a finite index
subgroup of its own centraliser. The centre consists precisely of the matrices
±I2.
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Proof. The first statement of the lemma follows easily from the presen-
tation of GL2(Z) as an amalgamated product, GL2(Z) ∼= D4 ∗D2 D6, where
Dn is the dihedral group of order 2n. The statement about central elements
is elementary. 2

Lemma 4.2. Consider the automorphism φ of F2 = 〈a, b〉 given by aφ = abk

and bφ = b, where k 6= 0. Then, for every integer r 6= 0 and every w ∈ F2,

i) Fixφ = Fix φr = 〈aba−1, b〉,
ii) if wφr is conjugate to w, then w is conjugate to an element fixed by

φ.

Proof. Given an arbitrary reduced word w ∈ F2, let us split it into pieces
each of the form bm, abm, bma−1 or abma−1, where m is some integer. There
can be many variants of such a splitting, but we shall use the special one
defined by putting breaking points precisely before each occurrence of a
and after each occurrence of a−1. One can easily see that this splitting is
invariant under the action of φ, and that the pieces do not interact under
iterates of φ. Hence, if wφr = w then the corresponding pieces in the
splitting of w must also be fixed by φr, which rules out the possibilities abm

and bma−1 (because rk 6= 0). This proves that Fixφr 6 〈aba−1, b〉. The
inclusions 〈aba−1, b〉 6 Fix φ 6 Fix φr are obvious. This proves (i).

In order to prove (ii), note that we can assume w is cyclically reduced. If
w is a power of b there is nothing to prove. So, we may also assume that w
contains a±1. Moreover, by inverting and cyclically permuting if necessary,
we may assume that w begins with a. So, in this particular situation, assume
that wφr is conjugate to w. The splitting of w must begin with a piece of
the form abm or abma−1, and must end with a piece of the form bm or abm.
But this splitting is stable under iterates of φ hence, the first and last pieces
in wφr will be of the corresponding same types. In particular, wφr is still
cyclically reduced. Thus, wφr must be a cyclic permutation of w. Then,
for a suitable s, wφrs = w which, by (i), means that w is fixed by φ. This
completes the proof. ¤

Proof of Theorem 1.1. All along the prove, let us fix the following nota-
tion. Let F2 = 〈a, b〉 be a free group of rank n = 2, let φ ∈ Aut(F2) and let
Mφ = F2 oφ Z be the mapping torus of φ. Let φ ab ∈ GL2(Z) be the map
induced by φ on F ab

2
∼= Z2, i.e. the 2× 2 integral matrix whose rows count

the total a- and b-exponent sums of {aφ, bφ}.
First of all, note that the discussions in the previous section show that

a generic matrix φ ab ∈ GL2(Z) fits into one of the cases distinguished in
Theorem 1.1. Namely, if A is hyperbolic then it satisfies (iii), if it is parabolic
it satisfies either (iii) or (v), and if it is elliptic then it fits into either (i),
(ii) or (iv). Uniqueness is a straightforward exercise in linear algebra.
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Suppose φ ab = I2. Then, φ = γw for some w ∈ F2. Hence, using
Lemma 2.1, Mφ

∼= MId = F2 × Z. Now, using Theorem 2.5, we have

Out(Mφ) ∼= Out(MId) ∼= (Z2 o C2)oGL2(Z),

where the actions are the natural ones described above. This proves Theo-
rem 1.1 (i).

Suppose φ ab = −I2. Then it does not have 1 as an eigenvalue. Hence, by
Theorem 2.4, Out+(Mφ) is a normal subgroup of Out(Mφ) of index at most
two which is isomorphic to C(φ ab)/〈φ ab〉, where C(φ ab) is the centraliser
of φ ab in Out(F2) = GL2(Z). But φ ab = −I2, which is central in GL2(Z)
so,

Out+(Mφ) ∼= C(φ ab)/〈φ ab〉 = GL2(Z)/{±I2} = PGL2(Z).

On the other hand, a 7→ a, b 7→ b, t 7→ t−1 determines a (well-defined) nega-
tive automorphism Υ of Mφ and so, Aut+(Mφ) £2 Aut(Mφ). Furthermore,
note that Υ has order two and commutes with every Ψ ∈ Aut+(Mφ) (which
has the form a 7→ w1, b 7→ w2, t 7→ tw3 where w3 is a palindrome, wR

3 = w3).
Hence, Aut(Mφ) ∼= Aut+(Mφ)× C2. Finally, since Inn(Mφ) 6 Aut+(Mφ),
we have

Out(Mφ) ∼= Out+(Mφ)× C2
∼= PGL2(Z)× C2.

This proves Theorem 1.1 (ii).
Suppose that φ ab 6= −I2 does not have 1 as an eigenvalue. Then, applying

Theorem 2.4 and Lemma 4.1, we deduce that Out(Mφ) is finite. This proves
Theorem 1.1 (iii).

Now, suppose that φ ab is conjugate in GL2(Z) to
(

1 k
0 −1

)
for some k ∈ Z.

Then, Proposition 4.3 shows that Out(Mφ) has an infinite cyclic subgroup
of finite index. This completes Theorem 1.1 (iv).

Finally, suppose that φ ab is conjugate in GL2(Z) to ( 1 k
0 1 ) for some 0 6=

k ∈ Z. Then, Proposition 4.4 will complete the proof of Theorem 1.1 (v) by
showing that Out(Mφ) also has an infinite cyclic subgroup of finite index.

¤

Proposition 4.3. With the notation above, assume φ ab is conjugate in
GL2(Z) to

(
1 k
0 −1

)
, where k ∈ Z. Then Out(Mφ) has an infinite cyclic

subgroup of finite index.

Proof. Using Lemma 2.1, we can assume φ ab =
(

1 k
0 −1

)
. Furthermore,

composing φ by a suitable inner automorphism of F2, we can assume aφ =
abk and bφ = b−1. So,

Mφ = 〈a, b, t | t−1at = abk, t−1bt = b−1〉.
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It is straightforward to check that

a 7→ ta
b 7→ b
t 7→ t.

defines an automorphism Ψ of Mφ such that [Ψ] ∈ Out(Mφ) is an infinite
order outer automorphism (because inner automorphisms of Mφ leave F2

invariant). Let us prove now that the infinite cyclic subgroup 〈[Ψ]〉 has finite
index in Out(Mφ).

Clearly, φ2 = Id and so, t2 is in the centre of Mφ. Also, 〈a, b, t2〉 ∼= F2×Z
is an index 2 subgroup of Mφ. So, all those automorphisms of Mφ which
restrict to an automorphism of 〈a, b, t2〉 form a finite index subgroup of
Aut(Mφ) (since Mφ is finitely generated and so has finitely many index 2
subgroups). Moreover, the centre of 〈a, b, t2〉 is 〈t2〉 so, any such automor-
phism sends t2 to t±2. Hence, all those automorphisms of Mφ which restrict
to an automorphism of 〈a, b, t2〉 and fix t2 still form a finite index subgroup
of Aut(Mφ), containing Ψ2. Thus, we can confine our attention to the sub-
group G 6 Aut(Mφ) consisting on these automorphisms, and prove that
〈[Ψ2]〉 has finite index in [G] 6 Out(Mφ).

Let Θ ∈ G. Note that [a, t] = a−1t−1at = bk and [b, t] = b−1t−1bt = b−2

and hence M ′
φ = 〈b2〉F ′

2 if k is even, and M ′
φ = 〈b〉F ′

2 if k is odd. Also,
M ab

φ has torsion subgroup generated by b if k is even, and is torsion-free if
k is odd. In any case, the preimage in Mφ of the (possibly trivial) torsion
in M ab

φ is 〈b〉M ′
φ = 〈b〉F ′

2 . In particular, this subgroup is characteristic in
Mφ and so Θ acts on 〈a, b, t2〉 in the following way:

a 7→ tru
b 7→ v

t2 7→ t2,

where u ∈ F2, v ∈ 〈b〉F ′
2 , and r is even. Since 〈a, b, t2〉 = 〈tru, v, t2〉 =

〈u, v, t2〉 and t2 lies in the center of Mφ, it follows that 〈u, v〉 = 〈a, b〉. Then,
from this and the form of v, we deduce that u ∈ aε〈b〉F ′

2 for some ε = ±1.
Consider now the automorphism Λ = ΘΨ−εr which acts like

a 7→ tru 7→ tr(uΨ−εr) = x ∈ F2

b 7→ v 7→ vΨ−εr = y ∈ F2

t2 7→ t2 7→ t2

(note that u has a-exponent sum equal to ε and so, the t-exponent sum
of uΨ−εr is −r, showing that x ∈ F2; also, the a-exponent sum of v is 0
and so y ∈ F2 too). Writing tΛ = tsw and imposing t2 to be fixed, we
deduce tΛ = tz for some z ∈ F2. Thus, Λ is a positive automorphism of
Mφ and, by Proposition 2.3, (Λ|F2)

ab lies in the centraliser of φ ab. But
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a straightforward matrix calculation shows that C(φ ab) is finite and so,
(x, y) takes only finitely many values up to conjugacy in F2. Since, by
Proposition 2.3, z is uniquely determined by (x, y), Λ also takes only finitely
many values up to conjugacy, while Θ runs over all G. In other words, 〈[Ψ2]〉
has finite index in [G]. ¤
Proposition 4.4. With the notation above, assume φ ab is conjugate in
GL2(Z) to ( 1 k

0 1 ), where 0 6= k ∈ Z. Then Out(Mφ) has an infinite cyclic
subgroup of finite index.

Proof. Using Lemma 2.1, we can assume φ ab = ( 1 k
0 1 ) and, furthermore,

composing φ by a suitable inner automorphism of F2, we can assume aφ =
abk and bφ = b, k 6= 0. So, we have to understand the automorphism group
of the group

Mφ = 〈a, b, t | t−1at = abk, t−1bt = b〉.
Before going into the analysis of Aut(Mφ), note that both relators have a-
and t-exponent sums equal to zero. So, it makes sense to talk about a- and
t-exponent sums of elements in Mφ. Strictly speaking, the maps from Mφ to
Z killing b and t and sending a to the generator of Z (resp. killing a and b and
sending t to the generator of Z) are well defined surjective homomorphisms.
They count the total a- and t-exponent sums, respectively (note that the
notion of b-exponent sum makes no sense in Mφ).

It is straightforward to check that

a 7→ ta
b 7→ b
t 7→ t

defines an automorphism Ψ of Mφ such that [Ψ] ∈ Out(Mφ) is an infinite
order outer automorphism (because inner automorphisms of Mφ leave F2

invariant). Let us prove now that the infinite cyclic subgroup 〈[Ψ]〉 has finite
index in Out(Mφ).

Consider the three automorphisms of Mφ defined on the generators by

Ω
a 7→ a
b 7→ b−1

t 7→ t−1

∆
a 7→ a−1

b 7→ b−1

t 7→ tb−k

Ξ
a 7→ ab
b 7→ b
t 7→ t

(as above, checking that they are well-defined is a straightforward exercise).
Claim: for any given Θ ∈ Aut(Mφ), there exists an integer m and an
element g ∈ Mφ such that ΘΨmΓg is equal to one of Ξi, ΞiΩ, Ξi∆ or Ξi∆Ω,
for some 0 6 i 6 |k| − 1.

This automatically will imply that 〈[Ψ]〉 has finite index in Out(Mφ). In
order to prove this claim note that, since Inn(Mφ) is a normal subgroup of
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Aut(Mφ), we may apply inner automorphisms at any point in the product
ΘΨm.

So, let Θ be an arbitrary automorphism of Mφ, and write normal forms
for the images of generators, aΘ = tpw1, bΘ = tlw ′

2, tΘ = tqw3, where
w1, w

′
2, w3 ∈ F2, and p, l, q ∈ Z. Write also w ′

2 = wr
2, where r > 1 and w2 is

either trivial or not a proper power. Applying Θ to the equality t−1at = abk

we get

w−1
3 t−qtpw1t

qw3 = tpw1(tlw ′
2)

k.

Comparing the t-exponent sums we immediately see that kl = 0 and hence
l = 0 and w2 6= 1. Now, applying Θ to t−1bt = b, we also get

w−1
3 (w2φ

q)rw3 = w−1
3 t−qw ′

2t
qw3 = w ′

2 = wr
2.

Thus, w2φ
q is conjugate to w2 in F2. By applying Lemma 4.2 (ii), we

obtain that w2 is conjugate to an element fixed by φ, say w2 = xv2x
−1,

where x ∈ F2 and 1 6= v2 = v2φ is not a proper power. Now, ΘΓx is an
automorphism of Mφ acting as

a 7→ tpw1 7→ x−1tpw1x = tpv1

b 7→ w ′
2 7→ x−1wr

2x = vr
2

t 7→ tqw3 7→ x−1tqw3x = tqv3,

where v1, v3 ∈ F2. Since b commutes with t, vr
2 must commute with tqv3.

But v2 commutes with t since it is fixed by φ. Therefore v2 commutes
with v3 and hence, v3 = vs

2 for some integer s. Finally, observe that
{tpv1, vr

2, tqvs
2} must generate Mφ. Thus, since the a-exponent sum of v2 is

zero (by Lemma 4.2 (i)), the a-exponent sum of v1 must be ±1. So, without
loss of generality, we may assume that Θ acts as

a 7→ tpv1

b 7→ vr
2

t 7→ tqvs
2,

where v1, v2 ∈ F2, p, q, r, s ∈ Z, v2 is fixed by φ and has a-exponent sum
equal to zero, and v1 has a-exponent sum equal to ε = ±1.

Now let m = −εp. It is straightforward to verify that ΘΨm acts in the
following form,

a 7→ tpv1 7→ tp(v1Ψm) = u1 ∈ F2

b 7→ vr
2 7→ u2 ∈ F2

t 7→ tqvs
2 7→ tqu3,

where u1, u2, u3 ∈ F2. By Proposition 2.3, it follows now that ΘΨm restricts
to an automorphism of F2 with signum q = ±1.



14 O. BOGOPOLSKI, A. MARTINO AND E. VENTURA

Consider now the automorphisms ΘΨm, ΘΨmΩ, ΘΨm∆ and ΘΨmΩ∆.
Each of these leaves F2 invariant and have signum q, −q, q and −q, re-
spectively. Also, the traces of the abelianisations of their restrictions to F2

are d, e, −d and −e, respectively, for some d, e ∈ Z. So, one of these four
automorphisms, say Υ, is positive and its restriction to F2 abelianises to a
matrix with non-negative trace.

We shall show that, up to an inner automorphism, Υ coincides with Ξi

for some 0 6 i 6 |k| − 1. This will prove the claim since both Ω and ∆
above have order two in Aut(Mφ).

Since Υ is a positive automorphism, Proposition 2.3 ensures us that the
matrices (Υ|F2)

ab and φ ab = ( 1 k
0 1 ) do commute. But the centraliser of

φ ab in GL2(Z) is the set of matrices of the form ( 1 ∗
0 1 ) or

(−1 ∗
0 −1

)
. So,

since (Υ|F2)
ab has non-negative trace, we deduce that, for some z ∈ F2,

(ΥΓz)|F2 acts as a 7→ abj , b 7→ b, for some integer j. Write j = i + λk with
0 6 i 6 |k| − 1, and notice that the inner automorphism Γt of Mφ acts as

a 7→ abk

b 7→ b
t 7→ t.

Hence ΥΓzΓ−λ
t agrees with Ξi on F2. And they both are positive so, by

Proposition 2.3 (ii), they must also agree on t. Hence, up to a conjugation,
Υ coincides with Ξi. This completes the proof. ¤
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Barcelona, Spain
E-mail : AMartino@crm.es

E. Ventura
Dept. Mat. Apl. III, Univ. Pol. Catalunya,
Barcelona, Spain,
and Centre de Recerca Matemàtica
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