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Abstract. We consider linear stochastic differential-algebraic equa-
tions with constant coefficients and additive white noise. Due to the
nature of this class of equations, the solution must be defined as a gen-
eralised process (in the sense of Dawson and Fernique). We provide
sufficient conditions for the law of the variables of the solution process
to be absolutely continuous with respect to Lebesgue measure.

1. Introduction

A Differential-Algebraic Equation (DAE) is, essentially, an Ordinary Dif-
ferential Equation (ODE) F (x, ẋ) = 0 that cannot be solved for the deriva-
tive ẋ. The name comes from the fact that in some cases they can be reduced
to a two-part system: A usual differential system plus a “nondifferential”
one (hence “algebraic”, with some abuse of language), that is{

ẋ = f(x, y)
0 = g(y, z)

for some partitioning of x into variables x, y, z. In general, however, such a
splitting need not exist.

In comparison with ODE’s, these equations present at least two major
difficulties: the first lies in the fact that it is not possible to establish gen-
eral existence and uniqueness results, due to their more complicate struc-
ture; the second one is that DAE’s do not regularise the input (quite the
contrary), since solving them typically involves differentiation in place of
integration. At the same time, DAE’s are very important objects, arising in
many application fields; among them we mention the simulation of electri-
cal circuits, the modelling of multibody mechanisms, the approximation of
singular perturbation problems arising e.g. in fluid dynamics, the discreti-
sation of partial differential equations, the analysis of chemical processes,
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and the problem of protein folding. We refer to Rabier and Rheinboldt [9]
for a survey of applications.

The class of DAE’s most treated in the literature is, not surprisingly,
that of linear equations, which have the form

A(t)ẋ(t) + B(t)x(t) = f(t) ,

with x, f : R+ → Rn and A,B : R+ → Rn×n. When A and B are constant
matrices the equation is said to have constant coefficients.

Recently, there has been some incipient work (Schein and Denk [11] and
Winkler [12]) on Stochastic Differential-Algebraic Equations (SDAE). In
view to incorporate to the model a random external perturbation, an addi-
tional term is attached to the differential-algebraic equation, in the form of
an additive noise (white or coloured). The solution will then be a stochastic
process instead of a single function.

Since the focus in [11] and [12] is on numerical solving and the particular
applications, some interesting theoretical questions have been left aside in
these papers. Our long-term purpose is to put SDAE into the mainstream of
stochastic calculus, developing as far as possible a theory similar to that of
stochastic differential equations. In this first paper our aim is to investigate
the solution of linear SDAE with constant coefficients and an additive white
noise, that means

Aẋ(t) + Bx(t) = f(t) + Λξ(t) ,

where ξ is a white noise and A,B, Λ are constant matrices of appropriate
dimensions. We shall first reduce the equation to the so-called Kronecker
Canonical Form (KCF), which is easy to analyse, and from whose solution
one can recover easily the solution to the original problem. Unfortunately, it
is not possible to extend this approach to the case of linear SDAE with vary-
ing coefficients, just as happens in the deterministic case, where a bunch of
different approaches have been proposed. Among these, the most promising
in our opinion is that of Rabier and Rheinboldt [8].

Due to the simple structure of the equations considered here, it is not a
hard task to establish the existence of a unique solution in the appropriate
sense. However, as mentioned before, a DAE does not regularise the input
f(t) in general. If white noise, or a similarly irregular noise is used as input,
then the solution process to a SDAE will not be a usual stochastic process,
defined as a random vector at every time t, but instead a “generalised
process”, the stochastic analogous of a Schwartz generalised function.

The paper is organised as follows: in the next section we shall provide
a short introduction to linear DAE’s and to generalised processes. In the
third section we shall define what we mean by a solution to a linear SDAE
and in Section 4 we shall provide a sufficient condition for the existence of
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a density of the law of the solution. In the final Section 5 we shall discuss
a simple example arising in the modelling of electrical circuits.

Superscripts in parentheses mean order of derivation. All function and
vector norms throughout the paper will be L2 norms.

2. Preliminaries on DAE and generalised processes

In this section we briefly introduce two topics: the (deterministic)
differential-algebraic equations and the generalised processes. An exhaus-
tive introduction on the first topic can be found in Rabier and Rheinboldt
[9], while the basic theory of generalised processes can be found in Dawson
[1], Fernique [2], or Chapter 3 in Gel’fand and Vilenkin [3].

2.1. Differential-Algebraic Equations. Consider an implicit autono-
mous ODE,

(2.1) F (x, ẋ) = 0 ,

where F := F (x, p) : Rn×n → Rn is a sufficiently smooth function. If the
partial differential DpF (x, p) is invertible at every point (x0, p0), one can
easily prove that the implicit ODE is locally reducible to an explicit ODE.
If DpF (x0, p0) is not invertible, two cases are possible: either the total
derivative DF (x0, p0) is onto Rn or it is not. In the first case, and assuming
that the rank of DpF (x, p) is constant in a neighbourhood of (x0, p0), (2.1)
is called a differential-algebraic equation, while in the remaining cases one
speaks of an ODE with a singularity at (x0, p0).

A linear DAE is a system of the form

(2.2) A(t)ẋ + B(t)x = f(t) , t ≥ 0 ,

where A(t), B(t) ∈ Rn×n and f(t) ∈ Rn. The matrix function A(t) is
assumed to have a constant (non-full) rank for any t in the interval of
interest. (Clearly, if A(t) has full rank for all t in an interval, then the
DAE reduces locally to an ODE.) In the simplest case, when A and B do
not depend on t, we have a linear DAE with constant coefficients, and an
extensive study of these problems has been developed. The theory starts
with the definition of a regular matrix pencil:

Definition 2.1. Given two matrices A,B ∈ Rn×n, the matrix pencil (A,B)
is the function λ 7→ λA + B, for λ ∈ R. It is called a regular matrix pencil
if det(λA + B) 6= 0 for some λ.

A classical result, due to Weierstrass and Kronecker, states that the
matrices of a regular matrix pencil can be simultaneously transformed into
a convenient canonical form, as stated in the following proposition (see e.g.
Gripentrog and März [4] for the proof):
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Proposition 2.2. Given a regular matrix pencil (A,B), there exist non-
singular matrices P and Q and integers 0 ≤ d, q ≤ n, with d + q = n, such
that

PAQ =
(

Id 0
0 N

)
and PBQ =

(
J 0
0 Iq

)

where Id, Iq are identities of dimensions d and q, N =blockdiag(N1, . . . , Nr),
with Ni the qi × qi matrix

Ni =




0 1 0 . . . 0
0 0 1 · · · 0
...

. . . . . .
...

...
. . . 1

0 · · · · · · · · · 0




,

and J is in Jordan canonical form.

In what follows, we shall always assume that

(H.1) (A,B) is a regular matrix pencil

so that the proposition above applies.
Notice that the matrix N is nilpotent, with nilpotency index given by

the dimension of its largest block. This nilpotency index of the matrix N
in this canonical form is a characteristic of the matrix pencil and we shall
call it the index of the equation (2.2).

From a given DAE with constant coefficients A and B that satisfy (H.1),
multiplying from the left by P and defining the new variables y = Q−1x,
we get a new linear DAE with matrices PAQ and PBQ in place of A and
B, which can be easily solved (see Section 3). The regularity of the solution
depends directly on the index of the equation.

Remark 2.3. Without hypothesis (H.1), a linear DAE may possess an
infinity of solutions or no solution at all, depending on the right-hand side.
Consider for instance,(

0 0
1 1

)
ẋ(t) +

(
1 1
0 0

)
x(t) =

(
f1(t)
f2(t)

)

with any fixed initial condition.

2.2. Generalised processes. Let D′ be the space of distributions (gener-
alised functions) on some open set U ⊂ R, that is, the dual of the space
D = C∞c (U) of smooth functions with compact support defined on U . A
random distribution on U , defined on the probability space (Ω,F , P ), is
a measurable mapping X : (Ω,F) → (D′,B(D′)), where B(D′) denotes the
Borel σ-field, relative to the strong dual topology (equivalently, the weak-?
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topology). Denoting by 〈X(ω), φ〉 the action of the distribution X(ω) ∈ D′
on the test function φ ∈ D, it holds that the mapping ω 7→ 〈X(ω), φ〉 is mea-
surable from (Ω,F) into (R,B(R)), hence a real random variable 〈X,φ〉 on
(Ω,F , P ). The law of X is determined by the law of the finite-dimensional
vectors (〈X, φ1〉, . . . , 〈X,φd〉), φi ∈ D, d ∈ N.

The sum of random distributions X and Y on (Ω,F , P ), defined in the
obvious manner, is again a random distribution. The product of a real ran-
dom variable α and a random distribution, defined by 〈αX, φ〉 := α〈X,φ〉, is
also a random distribution. The derivative of a random distribution, defined
by 〈X ′, φ〉 := −〈X, φ′〉, is again a random distribution.

Given a random distribution X, the mapping X : D → L0(Ω) defined
by φ 7→ 〈X, φ〉 is called a generalised stochastic process. This mapping is
linear and continuous with the usual topologies in D and in the space of all
random variables L0(Ω). Notice that we can safely overload the meaning of
the symbol X.

The mean functional and the correlation functional of a random distrib-
ution are the deterministic distribution φ 7→ E[〈X, φ〉] and the bilinear form
(φ, ψ) 7→ E[〈X, φ〉〈X, ψ〉], respectively, provided they exist.

A simple example of random distribution is white noise ξ, characterised
by the fact that 〈ξ, φ〉 is centred Gaussian, with correlation functional
E[〈ξ, φ〉〈ξ, ψ〉] =

∫
R φ(s)ψ(s) ds. In particular, 〈ξ, φ〉 and 〈ξ, ψ〉 are indepen-

dent if the supports of φ and ψ are disjoint. Whenever this property holds
true for a process, we will say that it takes independent values on disjoint
sets. In this paper we will use as the base set the half-line U =]0, +∞[.
White noise on U coincides with the Wiener integral with respect to a
Brownian motion W : Indeed, if φ is a test function, then

(2.3) 〈ξ, φ〉 =
∫ ∞

0

φ(s) dWs

in the sense of equality in law. More precisely, the Wiener integral is defined
as the extension to L2(R+) of white noise (see Kuo [6] for a construction of
the Wiener integral as extension of white noise). Now, integrating by parts
in (2.3), we can write

〈ξ, φ〉 = −
∫ ∞

0

W (s)φ̇(s) ds = −〈W, φ̇〉 ,

so that ξ is the derivative of the Brownian motion W as random distrib-
utions. A random distribution is Gaussian if every finite-dimensional pro-
jection is a Gaussian random vector. This is the case of white noise and
Brownian motion.

Further results on random distributions and generalised stochastic proces-
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ses can be found for instance in the classical papers by Dawson [1] and
Fernique [2].

3. The generalised process solution

Consider the equation

(3.1) Aẋ + Bx = f + Λξ ,

where A and B are n×n real matrices, f : R+ → R is continuous, Λ is a n×m
constant matrix, and ξ is a m-dimensional white noise: ξ = (ξ1, . . . , ξm),
with ξi independent one-dimensional white noises.

We first reduce the equation to Kronecker Canonical Form (KCF), see
Proposition 2.2: There exist regular matrices P and Q and integers 0 ≤
d, q ≤ n, with d + q = n, such that

PAQ =
(

Id 0
0 N

)
and PBQ =

(
J 0
0 Iq

)

where Id, Iq are identities of dimensions d and q, N = blockdiag(N1, . . . , Nr),
with Ni the qi × qi matrix

Ni =




0 1 0 . . . 0
0 0 1 · · · 0
...

. . . . . .
...

...
. . . 1

0 · · · · · · · · · 0




and J is in Jordan canonical form. We can assume that the blocks of J
corresponding to the eigenvalue 0, if any, are located in the lower rows of J .

Multiplying equation (3.1) by P from the left, and defining the new
variables y = Q−1x, we get

(3.2)
(

Id 0
0 N

)
ẏ +

(
J 0
0 Iq

)
y = f + Λξ ,

where for simplicity we use again f and Λ to denote the function Pf and
the new “diffusion” matrix PΛ.

System (3.2) can be split into two parts. The first one is a classical sto-
chastic differential system of dimension d, and the second one is an “alge-
braic stochastic system” of dimension q. Denoting by u and v the variables
in the first and the second part respectively, by b and c the related parti-
tioning of the vector function f , and by (Σ, R) the corresponding splitting
of Λ into matrices of dimensions d × m and q × m, we can write the two
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systems as follows:

(3.3)




u̇1

...
u̇d


 + J




u1

...
ud


 =




b1

...
bd


 + Σ




ξ1

...
ξm


 ,

(3.4) N




v̇1

...
v̇q


 +




v1

...
vq


 =




c1

...
cq


 + R




ξ1

...
ξm


 .

We refer to u as the differential variables and to v as the algebraic variables.
For any initial vector u(t0) = u0 ∈ Rd, and t0 > 0, the solution to (3.3)

can be written, in the sense of equality in law, as

u(t) = e−J(t−t0)

[
u0+

∫ t

t0

eJ(s−t0)b(s) ds+
∫ t

t0

eJ(s−t0)Σ dW (s)
]

, t ∈]0,∞[ ,

where W (t) is a m-dimensional standard Wiener process. It can also be
expressed, if desired, as a generalised process:

For φ ∈ C∞c (]0,∞[),

〈u, φ〉 =
∫ ∞

0

e−J(t−t0)
(
u0 +

∫ t

t0

eJ(s−t0)b(s) ds
)
φ(t)dt(3.5)

+
∫ ∞

0

[∫ t

t0

e−J(t−s)Σ dW (s)
]

φ(t)dt .

On the other hand, system (3.4) consists of a number of decoupled blocks,
which are easily solved by backward substitution. For instance, for the first
block,

(3.6) N1




v̇1

...
v̇q1


 +




v1

...
vq1


 =




c1

...
cq1


 + R1




ξ1

...
ξm


 ,

R1 representing the sub-matrix of R consisting of the first q1 rows, and
c = (c1, . . . , cq1) the corresponding part of vector c, a recursive calculation
gives the following generalised process solution, for a given φ ∈ C∞c (]0,+∞[):

(3.7) 〈vj , φ〉 =
q1∑

k=j

〈
ck +

m∑

`=1

(R1)k,`ξ`, φ
(k−j)

〉
, j = 1, . . . q1 ,

which can be expressed with the help of a standard Wiener process W as
(3.8)

〈vj , φ〉=
q1∑

k=j

[∫ ∞

0

ck(t)φ(k−j)(t) dt+
m∑

`=1

(R1)k,`

∫ ∞

0

φ(k−j) dW`(t)
]
, j = 1, . . . q1.
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The remaining blocks are treated in the same way to get the whole vector
y solving the KCF system (3.2).
We can thus state the following result:

Proposition 3.1. Under assumption (H.1) of Section 2, equation (3.1)
admits a unique generalised process solution x = Qy, where Q is the matrix
determined by the Kronecker canonical form and y = (u, v), with u the
solution to system (3.3), given by expression (3.5), and v the solution to
system (3.4).

4. The law of the solution

In the previous section we have seen that the solution to a linear SDAE
with regular pencil and additive white noise can be explicitly given as a
functional of the input noise. From the modelling viewpoint, the law of
the solution is the important output of the model. Using the explicit form
above, one can try to investigate the features of the law in which one might
be interested.

To illustrate this point, we shall write down the joint law of the solution
vector evaluated at a fixed arbitrary test function φ and we shall investi-
gate some absolute continuity properties we do not aim at a very general
statement, but instead we want to show the sort of arguments that can be
used in each particular instance). For notational simplicity, let us assume
that the differential system has dimension d = 2 and that the algebraic part
consists of a unique block of nilpotency index 2. We will also assume b = 0
and c = 0 in (3.3) and (3.4); the general case can be studied similarly. Thus,
we are dealing with the following system (4.1)-(4.2):

(
u̇1

u̇2

)
+ J

(
u1

u2

)
=

(
σ11 . . . σ1m

σ21 . . . σ2m

)



ξ1

...
ξm


 ,(4.1)

(
0 1
0 0

)(
v̇1

v̇2

)
+

(
v1

v2

)
=

(
ρ11 . . . ρ1m

ρ21 . . . ρ2m

)



ξ1

...
ξm


 .(4.2)

Given a test function φ ∈ C∞c (]0, +∞[), the solution to the differential
part (4.1), with initial condition u0 = (u0

1, u
0
2) at time t0 > 0, is

〈ui, φ〉 =
∫ ∞

0

(e−J(t−t0))iku0
kφ(t)dt+

∫ ∞

0

[∫ t

t0

(e−J(t−s))ikσk`dW `(s)
]

φ(t)dt
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for i = 1, 2, (see (3.5)), whereas the solution to the algebraic part (4.2) is
given by

〈v1, φ〉 =
∫ ∞

0

(ρ1`φ(t) + ρ2`φ̇(t)) dW `(t)(4.3)

〈v2, φ〉 =
∫ ∞

0

ρ2`φ(t) dW `(t) ,(4.4)

(see (3.7)), with the convention of summation over repeated indices, that
we will keep applying in the sequel without explicit mention.

By standard computations, for any given test function φ, the random
vector 〈(u1, u2, v1, v2), φ〉 has a Gaussian distribution, with expectations

E[〈ui, φ〉] =
∫ ∞

0

(e−J(t−t0))iku0
kφ(t)dt , i = 1, 2

E[〈v1, φ〉] = E[〈v2, φ〉] = 0

and covariances

Cov[〈ui, φ〉, 〈uj , φ〉] =
m∑

`=1

∫ ∞

0

[ ∫ ∞

s

φ(t)
2∑

k=1

(e−J(t−s))ikσk` dt
]

(4.5)

×
[ ∫ ∞

s

φ(t)
2∑

k=1

(e−J(t−s))jkσk` dt
]
ds , i, j = 1, 2
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Cov[〈v1, φ〉, 〈v1, φ〉] =
m∑

`=1

∫ ∞

0

(
(ρ1`)2φ(t)2 + (ρ2`)2φ̇(t)2

)
dt

(4.6)

Cov[〈v2, φ〉, 〈v2, φ〉] =
m∑

`=1

∫ ∞

0

(ρ2`)2φ(t)2 dt

(4.7)

Cov[〈v1, φ〉, 〈v2, φ〉] =
m∑

`=1

∫ ∞

0

ρ1`ρ2`φ(t)2 dt

(4.8)

Cov[〈ui, φ〉, 〈v1, φ〉] =
(4.9)

=
m∑

`=1

∫ ∞

0

[ ∫ ∞

s

φ(t)
2∑

k=1

(e−J(t−s))ikσk` dt
][

ρ1`φ(s) + ρ2`φ̇(s)
]
ds

Cov[〈ui, φ〉, 〈v2, φ〉] =
m∑

`=1

∫ ∞

0

∫ ∞

s

[
φ(t)

2∑

k=1

(e−J(t−s))ikσk` dt
]
ρ2`φ(s) ds .

(4.10)

Consider first the algebraic variables alone. Let us write (4.3) in terms
of the white noises ξ:

〈v1, φ〉 = 〈ρ1`ξ`, φ〉+ 〈ρ2`ξ`, φ̇〉
〈v2, φ〉 = 〈ρ2`ξ`, φ〉 .

Denoting ρs := (ρs1, . . . , ρsm), and 〈ξ, φ〉 := 〈(ξ1, . . . ξm), φ〉 (as row vec-
tors), we have in matrix form

(〈v1, φ〉
〈v2, φ〉

)
=

(
ρ1 ρ2

ρ2 0

)(〈ξ, φ〉⊥
〈ξ, φ̇〉⊥

)
,

and therefore

Cov
[
〈v1, φ〉, 〈v2, φ〉

]
=

(
ρ1 ρ2

ρ2 0

)
Cov

[
〈ξ, φ〉, 〈ξ, φ̇〉

](
ρ1 ρ2

ρ2 0

)⊥
.

It is easily checked that for all i = 1, . . . , m,

(4.11) Cov
[
〈ξi, φ〉, 〈ξi, φ̇〉

]
=

(‖φ‖2 0
0 ‖φ̇‖2

)
,

which is a nonsingular matrix for every φ 6≡ 0. Taking into account that ξi

are centred and independent of each other, we find that Cov
[
〈ξ, φ〉, 〈ξ, φ̇〉

]

is nonsingular for every φ 6≡ 0.
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Hence, we see that if ρ2 is not the zero vector, the joint law of 〈v1, φ〉 and
〈v2, φ〉 is absolutely continuous with respect to Lebesgue measure in R2; if
‖ρ2‖ = 0 and ‖ρ1‖ 6= 0, then 〈v2, φ〉 is degenerate and 〈v1, φ〉 is absolutely
continuous; and if ‖ρ2‖ = ‖ρ1‖ = 0, then the joint law degenerates to a
point.

This sort of elementary analysis, with validity for any test function φ,
can be carried out for algebraic blocks of nilpotency index up to 4. We can
thus summarise these arguments in the following proposition:

Proposition 4.1. Let y be the generalised process solution to the linear
SDAE in Kronecker Canonical Form (3.2). Let (v1, . . . , vq1) be the gener-
alised process solution to the algebraic subsystem

(4.12) N1




v̇1

...
v̇q1


 +




v1

...
vq1


 =




ρ11 · · · ρ1m

...
...

ρq11 · · · ρq1m







ξ1

...
ξm


 ,

with q1 ≤ 4, and let r be the greatest row index such that ‖ρr‖ 6= 0.
Then, for every test function φ ∈ C∞c (]0,∞[), 〈(v1, . . . , vr), φ〉 is a Gaussian
absolutely continuous random vector, and 〈(vr+1, . . . , vq1), φ〉 degenerates to
a point.

For blocks of higher index, the support of the joint law can of course
be determined without special difficulty for any specific test function φ.
In general, the entries of the covariance matrix of the white noise and its
derivatives up to order k, evaluated at a test function φ, can be written in
a compact form as

(4.13) Cov(〈ξ, φ〉, . . . , 〈ξ(k), φ〉)ij = Re
[
(−1)

|i−j|
2

]
‖φ((i+j)/2)‖2 ,

where Re means the real part. In case this covariance matrix is nonsingular,
the absolute continuity result of Proposition 4.1 is valid for that fixed φ, as
stated in the next proposition.

Proposition 4.2. Let (v1, . . . , vq1) be the generalised process solution to
the algebraic subsystem (4.12), without any restriction on its dimension q1,
and let φ ∈ C∞c (]0,∞[) be a test function such that the covariance matrix
Cov(〈ξ, φ〉, . . . , 〈ξ(q1−1), φ)〉, given in (4.13), is nonsingular. Let r be the
greatest row index such that ‖ρr‖ 6= 0.
Then 〈(v1, . . . , vr), φ〉 is a Gaussian absolutely continuous random vector,
and 〈(vr+1, . . . , vq1), φ〉 degenerates to a point.

For the differential variables alone, there are well known conditions for the
their joint absolute continuity (e.g. Hörmander conditions, see for instance
Nualart [7], Theorem 2.3.2). These conditions put into play the matrix J
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together with the matrix Σ and allows absolute continuity of the law of a
subset ui1 , . . . , uik

of differential variables even in the case when the matrix
Σ does not have full rank.

Let us now consider the joint law of an algebraic and a differential vari-
able. We will not attempt here to arrive at a general criterion similar to
Hörmander conditions; we just find a sufficient condition for absolute con-
tinuity involving only the entries of Λ.

We simplify notation by assuming that m = 4 (the case m > 4 can be
derived with simple changes), and that

rank
(

ρ11 . . . ρ14

ρ21 . . . ρ24

)
= 2 .

Let us start by considering the joint law of the five variables
〈(u1, u2, v1, v2, v̇2), φ〉. It is immediate to prove that the joint law of
〈(v1, v2, v̇2), φ〉 is absolutely continuous with respect to Lebesgue measure,
using (4.11). From this, in order to obtain the joint absolute continuity of
the five variables (and therefore of the solution to (4.1)-(4.2)), it will be suffi-
cient to prove that the conditional law of 〈(u1, u2), φ〉, given 〈(v1, v2, v̇2), φ〉,
is absolutely continuous for any given test function φ.

Let us assume, without loss of generality, that the 2× 2 minor

Θ =
(

ρ1,1 ρ1,2

ρ2,1 ρ2,2

)

is non-degenerate. Multiplying equation (4.2) by Θ−1, we get

Θ−1

(
0 1
0 0

)(
v̇1

v̇2

)
+ Θ−1

(
1 0
0 1

)(
v1

v2

)
= Θ−1

(
ρ1,1 . . . ρ1,4

ρ2,1 . . . ρ2,4

)



ξ1

...
ξ4




=
(

ξ1

ξ2

)
+Θ−1

(
ρ1,3 ρ1,4

ρ2,3 ρ2,4

)(
ξ3

ξ4

)
.

Solving for ξ1 and ξ2, we obtain

(4.14)
(

ξ1

ξ2

)
= Θ−1

(
v̇2 + v1

v2

)
−Θ−1

(
ρ1,3 ρ1.4

ρ2,3 ρ2,4

)(
ξ3

ξ4

)
.

For the remainder of the section, (u1, u2) ∈ Eq[θ] will mean that (u1, u2)
is the solution to (4.1), with the right hand side given by a generic two-
dimensional generalised process θ = (θ1, θ2). There is no difficulty in defin-
ing the solution of such an equation since it can be regarded, for each
random element ω ∈ Ω, as a deterministic linear differential equation with
distributional input, which is a well known object. Substituting (4.14) into
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equation (4.1), we get
(

u1

u2

)
∈ Eq

[(
σ1,1 σ1,2

σ2,1 σ2,2

)
Θ−1

(
v̇2 + v1

v2

)
+ Θ̃

(
ξ3

ξ4

)]

where

Θ̃ =
(

σ1,3 σ1,4

σ2,3 σ2,4

)
−

(
σ1,1 σ1,2

σ2,1 σ2,2

)
Θ−1

(
ρ1,3 ρ1,4

ρ2,3 ρ2,4

)
.

It follows that the law of 〈(u1, u2), φ〉 conditioned to 〈(v1, v2, v̇2), φ〉 coincides
with the law of 〈(ũ1, ũ2), φ〉, with

(
ũ1

ũ2

)
∈ Eq

[(
σ1,1 σ1,2

σ2,1 σ2,2

)
Θ−1w + Θ̃

(
η3

η4

)]

and where w is a constant vector and 〈(η3, η4), φ〉 is a Gaussian absolutely
continuous random vector, with some non-singular covariance matrix C. In
a more compact form, we can write

(4.15)
(

ũ1

ũ2

)
∈ Eq

[
a + Θ̃C

(
ξ3

ξ4

)]

with a constant vector a and the two-dimensional white noise (ξ3, ξ4))T :=
C−1(η3, η4))T .

It is immediate to see that Θ̃ is the Schur complement of the matrix Θ
in

(4.16) Λ =




σ1,1 σ1,2 σ1,3 σ1,4

σ2,1 σ2,2 σ2,3 σ2,4

ρ1,1 ρ1,2 ρ1,3 ρ1,4

ρ2,1 ρ2,2 ρ2,3 ρ2,4


 .

Therefore (see e.g. Horn and Johnson [5], page 21),

det(Θ̃) =
det(Λ)
det(Θ)

.

Thus, assuming that Λ in (4.16) is a non-degenerate matrix, we obtain
that the matrix Θ̃C in (4.15) is non-singular, and it is well known that the
solution (ũ1, ũ2) is a stochastic process with absolutely continuous law when
applied to any test function φ 6≡ 0. We conclude the absolute continuity of
〈(u1, u2, v1, v2), φ〉.

The case m > 4 can be obtained with similar computations and we can
state the following final result:
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Theorem 4.3. Under the assumption (H.1) of Section 2, if the rank of the
matrix

Λ =




σ1,1 . . . σ1,m

σ2,1 . . . σ2,m

ρ1,1 . . . ρ1,m

ρ2,1 . . . ρ2,m




is equal to 4, then the law of the unique solution to the SDAE (4.1)-(4.2)
at a test function φ 6≡ 0 is absolutely continuous with respect to Lebesgue
measure on R4.

5. Example: An electrical circuit

In this last section we shall present an example of linear SDAE’s arising
from a problem of electrical circuit simulation.

An electrical circuit is a set of devices connected by wires. Each device
has two or more connection ports. A wire connects two devices at specific
ports. Between any two ports of a device there is a flow (current) and a
tension (voltage drop). Flow and tension are supposed to be the same at
both ends of a wire; thus wires are just physical media for putting together
two ports and they play no other role.

The circuit topology can be conveniently represented by a network, i.e. a
set of nodes and a set of directed arcs between nodes, in the following way:
Each port is a node (taking into account that two ports connected by a wire
collapse to the same node), and any two ports of a device are joined by an
arc. Therefore, flow and tension will be two quantities circulating through
the arcs of the network.

It is well known that a network can be univocally described by an inci-
dence matrix A = (aij). If we have n nodes and m arcs, A is the m × n
matrix defined by

aij =





+1, if arc j has node i as origin
−1, if arc j has node i as destiny

0, in any other case.

At every node i, a quantity di (positive, negative or null) of flow may be
supplied from the outside. This quantity, added to the total flow through
the arcs leaving the node, must equal the total flow arriving to the node.
This conservation law leads to the system of equations Ax = d, where xj ,
j = 1, . . . , n, is the flow through arc j.

A second conservation law relates to tensions and the cycles formed by
the flows. A cycle is a set of arcs carrying nonzero flow when all external
supplies are set to zero. The cycle space is thus kerA ⊂ Rn. Let B be a
matrix whose columns form a basis of the cycle space, and let c ∈ Rn be
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the vector of externally supplied tensions to the cycles of the chosen basis.
Then we must impose the equalities B>u = c, where uj , j = 1, . . . , n, is the
tension through arc j.

Once we have the topology described by a network, we can put into play
the last element of the circuit modelling. Every device has a specific be-
haviour, which is described by an equation ϕ(x, u, ẋ, u̇) = 0 involving in
general flows, tensions, and their derivatives. The system Φ(x, u, ẋ, u̇) = 0
consisting of all of these equations is called the network characteristic. For
instance, typical simple two-port (linear) devices are the resistor, the in-
ductor and the capacitor, whose characteristic (noiseless) equations, which
involve only their own arc j, are uj = Rxj , uj = Lẋj , and xj = Cu̇j , respec-
tively, for some constants R, L,C. Also, the current source (xj constant)
and the voltage source (uj constant) are common devices.

Solving an electrical circuit therefore means finding the currents x and
voltage drops u determined by the system




Ax = d
B>u = c
Φ(x, u, ẋ, u̇) = 0

Example 5.1. Let us write down the equations corresponding to the circuit
called LL-cutset (see [10], pag. 60), formed by two inductors and one resis-
tor, which we assume submitted to random perturbations, independently for
each device. This situation can be modelled, following the standard procedure
described above, by the stochastic system

(5.1)





x1 = −x2 = x3

u1 − u2 + u3 = 0
u1 = L1ẋ1 + τ1ξ1

u2 = L2ẋ2 + τ2ξ2

u3 = Rx3 + τ3ξ3

where ξ1, ξ2, ξ3 are independent white noises, and τ1, τ2, τ3 are non-zero con-
stants which measure the magnitude of the perturbations. With a slight
obvious simplification, we obtain from (5.1) the following linear SDAE:

(5.2)




0 0 0 0
0 0 0 0
0 0 L1 0
0 0 0 L2







u̇1

u̇2

ẋ1

ẋ2


 +




R−1 −R−1 1 0
−R−1 R−1 0 1
−1 0 0 0
0 −1 0 0







u1

u2

x1

x2


 =




0 0 −τ3R
−1

0 0 τ3R
−1

−τ1 0 0
0 −τ2 0







ξ1

ξ2

ξ3


 ,
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Let us now reduce the equation to KCF. To simplify the exposition, we shall
fix to 1 the values of τi, R and Li. (A physically meaningful magnitude
for R and Li would be of order 10−6 for the first and of order 104 for
the latter. Nevertheless the structure of the problem does not change with
different constants.) The matrices P and Q, providing the desired reduction
(see Proposition 2.2), are

P =




1
2 − 1

2 1 −1
0 −1 1 1
1 1 0 0
−1 0 0 0


 , Q =




− 1
4 − 1

2 − 3
4 −1

1
4 − 1

2 − 1
4 0

1
2 0 1

2 0
− 1

2 0 1
2 0


 .

Indeed, multiplying (5.2) by P from the left and defining y = Q−1x, we
arrive to
(5.3)


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 ẏ(t) +




1
2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 y(t) =




−τ1 τ2 −τ3

−τ1 −τ2 −τ3

0 0 0
0 0 τ3







ξ1

ξ2

ξ3


 ,

We see that the matrix N of Section 3 has here two blocks: A single zero
in the last position (ẏ4) and a 2-nilpotent block affecting ẏ2 and ẏ3. We
have therefore an index 2 SDAE. From Propositions 4.1, 4.2 and Theorem
4.3, we can already say that, when applied to any test function φ 6= 0, the
variables y4, y2 and y1, as well as the vectors (y1, y2) and (y1, y4), will be
absolutely continuous, whereas y3 degenerates to a point.

In fact, in this case, we can of course solve completely the system: The
differential part is the one-dimensional classical SDE

(5.4) ẏ1 +
1
2
y1 = −τ1ξ1 + τ2ξ2 − τ3ξ3 ,

and the algebraic part reads simply

(5.5)





ẏ3 + y2 = −τ1ξ1 − τ2ξ2 − τ3ξ3

y3 = 0
y4 = τ3ξ3 .

The solution to (5.3) can thus be written as

y1(t) = e−(t−t0)/2
[
y(t0) +

∫ t

t0

e−(s−t0)/2(−τ1dW1 + τ2dW2 − τ3dW3)(s)
]

y2 = −τ1ξ1 − τ2ξ2 − τ3ξ3

y3 = 0
y4 = τ3ξ3 ,
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where W1, W2, W3 are independent Wiener processes whose generalised
derivatives are ξ1, ξ2 and ξ3. Multiplying by the matrix Q we finally obtain
the value of the original variables:

x1(t) = −x2(t) = − 1
2y1(t)

u1 = − 1
4y1 − 1

2y2 − 3
4y4

u2 = 1
4y1 − 1

2y2 ,

with x1(t0) = − 1
4y1(t0) a given intensity at time t0.

It is clear that the current intensities, which have almost surely contin-
uous paths, are much more regular than the voltage drops, which are only
random distributions.
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