EMBEDDING THEOREMS OF FUNCTION CLASSES, IV

SERGEY TIKHONOV

ABSTRACT. We study the interrelation between the strong class S ()
and the Nikol’skii class WTHE’.

1. INTRODUCTION

Let f(x) be a 2m-periodic continuous function and let
% + ;(an cosnz + by, sinnx) (1)

be its Fourier series. The modulus of smoothness of order 5 (8 > 0) of a
function f € C' is given by

wa(f,t) = sup
[h|<t

’
14

Z{)(l)”(ﬁ)f@ (8- )

v=

where (/j) = BB=D-Bovtl) gy > 1, (f) =1for v =0and ||[f())]| =

v!
L |f(@)].

Denote by Sy, (z) = S,(f,z) the n-th partial sum of (1). Let E,(f) be
the best approximation of f(x) by trigonometric polynomials of order n and
let f(") be the derivative of the function f of order 7 > 0 (f(® := f) in the
sense of Weyl.

We will write Iy < I, if there exists a positive constant C' such that
L1 <CL. If I <« I, and I, < I; hold simultaneously, then we will write
Il = IQ.
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A sequence v := {7, } of positive terms will be called almost increasing
(almost decreasing), if there exists a constant K := K () > 1 such that

Ky 2 vm  (n < Kym)

holds for any n > m.

Let €25 be the set of nondecreasing continuous functions on [0, 27] such
that w(0) = 0, w(§) is nondecreasing and §~”w(§) is nonincreasing. Define
the following function classes:

< oo} s

where w (8) € Qg, A = {\,},—, is a sequence of positive numbers, r €
[0,00), and B, p € (0,00). We also define Hj := WOHY.
We say that the sequence A = {\, }—, satisfies the AZ-condition if

W' Hg = {f €C:w(f),8) = O[w(é)]},

Sp(N) = {f e C:|I>S N /@) ~ @)l
v=1

A < Ag for n<k<2n. (2)

We will need the following
Definition. The sequence of positive numbers a = {a, }22; is said to be
general monotone, or a € GM, if the relation

2n—1

§:|au“ay+1|fgcan

v=n

holds for all integer n, where the constant C' is independent of n.
It was proved in [11] that a € GM if and only if a satisfies

a, < Cay, for n<v<2n (3)
and
N N,
Z |Aag| < C (an + Z ;) for any n < N. (4)
k=n k=n+1
We remark that
M ¢ QM URBVS ¢ ORVQM URBVS C GM,

where M is a class of monotone sequences, QM is a class of quasi monotone
sequences (see [7], [9]), ORVQM is a class of O-regularly varying quasi
monotone sequences (see [8]), and RBV'S is a class of sequences of rest
bounded variation (see [6]).
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We define the following two subclasses of C":

e = {f eC: f(x) = iancosnx, {an} € GM},
n=1

csn = {g eC:g(x)= Zansinnx, {an} € GM} )
n=1

In this paper we study the interrelation between W"Hyg and Sp(A). Our
investigation continues the findings from the book [3] and the papers [2],
[5], [6] of L. Leindler.

2. RESULTS

First we study the embedding S,(A\) C W"Hj. Related results can be
found in [2] and [3].

Theorem 2.1. Let 3,p > 0,r > 0, w € Qg and let {\,} satisfy N3-
condition. Suppose

Apw? (i) =P > C. (5)
(). If r > 0 and w satisfies the conditions
— 1 /1 1
(B) > 1e(p)=0l«(2)].
k=n+1
< 1
(Bs) Sokt(p) =0 e (g)]
k=1
then
Sp(A) C W"HE. (6)

(ii). If r = 0 and w satisfies the condition (Bg), then
Sp(\) C H. (7)

We note that for certain subclasses of continuous functions the conditions
on w can be relaxed.

Theorem 2.2. Let B,p > 0,7 > 0, w € Qg N B. Suppose {\,} satisfy
A3-condition and condition (5); then

Sp(A)NC* C W"H for r+p=201-1, (8)
Sp(A)NC*" Cc W"HY for r+3="2l 9)
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Remark 2.3. Theorems 2.1 and 2.2 provide, in particular, an answer for
the following question (see [3]): When does the condition

D Rl f(a) — S, (@)P|| < oo (10)
v=1

imply the condition
wp(f",8) = 0[5 7 (11)
In particular, the answer is: 0 < a < 8 (by Theorem 2.1), and a = 3 if
fece andr+a=20—1orif f € C*" and r + o = 2l (by Theorem
2.2). We note that in general, if « = (3, the answer is negative. Indeed, for
p,a, =1, (10) implies only
1

wa(f,8) =0 (6 log 5) (12)
and this result is the best possible (see [3]).
Remark 2.4. Let 3> 0,r > 0, w € QN B, and let w*(0) := 6"w(d). We

have
* x 1
W'HY = HY ; C B = {f €C:Eu(f) = O[w*(ﬁ)] }
Moreover,
C°NW"Hg =C® ﬂH‘C’j* =(C° NEY, where a>r+0=21—1,
and
c*nn W"Hg = c*mn H;’ =¥ N EY, where o >1+ 3 =2l

We remark that for some strong classes one can write the embedding into
W' Hj without the conditions (B) and (Bg) on w.

Remark 2.5. Let B,p > 0,7 > 0, w € Q5. Suppose {\,} satisfy A3-
condition and condition (5); then

S,(\)={feC: OOH g: M| f (@) — S, (z)]P H < o0y CWTHS.
1

v=2"+1

_ (13)

Now we study the converse embedding W"Hj C Sp(A). A useful overview
and a history of the question can be found in [3], [5], [6]. There the next
Theorem 2.6 was proved for » = 0 and Theorem 2.7 was proved for r = 0
and g € {g € C*": {a,} € RBVS} ¢ C*™".
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Theorem 2.6. Let B,p > 0,7 > 0, w € Qp and let {\,} satisfy A3-
condition. Suppose

© AwP (L
M (2) oy (14)
n'p
n=1
then
W"H5 C Sp(A). (15)

We remark that condition (14) implies
1 1—nr
AP | = n 7P < CL (16)
n

As in the case of Theorem 2.2, one can assume only this weaker condition
if we consider C**".

Theorem 2.7. Let B,p > 0,7 > 0, w € Qg and let {\,} satisfy A3-
condition and condition (16). Suppose there exists € € (0,1) such that

{n'7°\,} s almost increasing; (17)
then
W"Hg N C*™ C Sp(N). (18)

Remark 2.8. In general, condition (16) is not sufficient for embedding
(15). Indeed, suppose w(§) = 0% and a = [ = 1; then there exists a
function f such that f € W"HE but f & Sp(\*), where A}, = n"Ply~P (%)
satisfies (17) (see [3]).

From Theorems 2.2 and 2.7 and Remark 2.4 we have

Corollary 2.9. Let 8,p > 0,7 >0, w € Qg N B, and let w*(§) := §"w(0).
Suppose o > r + 3 = 2l; then

Spm(A) = CU M AWTHY = O A HY = 05 n B

where

A ‘ =1
o0 = se({575)

_ {fecsm: Z%u(@—sy(:ﬁnp <oo}.
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3. PROOFS
We start with the following lemmas.

Lemma 1. ([3, Theorem 8.1]). Letp > 0 and let {~,} be a positive sequence
such that yon < Cygnyi (C > 1,n € N,1 <4 <2"). Then

) =[S U@ -s@F) | <w 9
v=[3]+1
implies
En(f) < (20)

Lemma 2. ([1)). If f(z) € C, then
Watr (f, (5) < 6"wg (f(r),(5> for r,8>0.
Lemma 3. ([13]). If f(z) € C has a Fourier series

o0
Z ay sin kx, ag >0, (21)
k=1

then .
AN ! -
n?S k ak<<wg(f,—), for B421=1,2,-
n

k=1
Lemma 4. ([4]). Let a, >0, A\, > 0.
(a): If p>1, then

oo oo p %) n P
> A (Z ay> <> AP (Z Ay> :
n=1 v=n n=1 v=1

(b): If 0<p<1and ayyj < Ka, for1 <j<wv, then
0o 0o p 0o n—1
Z A\, (Z ay> < Z P la? (n)\n + Z /\l,) .
n=1 v=n n=1 v=1

Proof of Theorem 2.1. Since {),} satisfies A3-condition it is clear that

f € Sp(N) implies V,,(f,p) < (n)\n)_% . By Lemma 1 and condition (5),
we have

Eu(f) < (0A) 77 < w (i) —

Further we use the conditions (B) and (Bg) and the following inequalities:
in the case of 7 > 0

ws (f(">, i) < niﬁ SR + Y KT Bk (f) (22)
k=1 k=n
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and in the case of r =0
1 1 &
- — > kE . 2
o (3) < K B ) (23)

Finally, we have wg (f(")7 %) <L w (%) , which finishes the proof.
Proof of Theorem 2.2. As in the proof of Theorem 2.1 we have E,(f) <
().

Let f € C°°. Then because of " ap < E,(f), we get
k=2n

i ap < w (i) n-". (24)

k=n+1
It was proved in [12] that if w € B and r + 8 = 2] — 1, then condition (24)
Is equivalent to f € W"Hp.
If g € C*™, then by inequality (23), E,,(f) < w (1) n=" gives for 8 <

1
1 —r—p1 Zn Bi-1,, (1
wgy 4+ | £ " <L n k w T

k=1
<1> B NS BBl - (1)
< wl—|n 12]61 <nTwl|—).
n n
k=1
Therefore, by this, Lemma 3, and inequality (3), we write

na, < w <1) n". (25)
n

From [12], if w € B and r + 8 = 2I, then condition (25) is equivalent to
g € W"Hg. This completes the proof.

Proof of Remark 2.4 follows from [12] and Lemma 2.

Proof of Remark 2.5. Let f € S,(\). Then Lemma 1 of [2] implies

S
1
n=1 w (ﬁ)
Therefore because of w € Qg, we write
n o0

LSRR () + w(ll) S KB (f) < o,

1
nfw (5) k=1 n/) k=n
and, by (22) and (23), we have f € W"Hy. The proof is now complete.
Proof of Theorem 2.6. Let f € W"Hj. By the Jackson inequality and
Lemma 2, we have

E,.(f) < .

E.(f) < W6+r(f7 1) < nfrw<l).

n n
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Further, we use the following important result of Leindler [3, Theorem 8.2,
p. 32 and (2.75), p.65]

2n
1
= 37 18— fP < BR()), p>0, neN.
n v=n-+1

Then this inequality implies

> M f(@) = Su(@)” <Y 2" Aan BLu(f)
v=1

n=1
< Yot (D)« y 22l o
n=1 n=1

Thus, (14) implies (15). The proof is complete.
Proof of Theorem 2.7. Let f € W"Hj N C*". By Lemmas 2 and 3 and
inequality (3), we get

< (f l) <«n " (l)
nap Wa+r 'n n w )
This and (16) give

al <

nitr),’

Let us prove that (26) and {a,} € GM imply f € S,(N).
First we note that for > 0 one has

bl . 1 = a
Zaksmkx <<x<an+ Z l:) (27)

k=n k=n+1

Using Abel’s transformation, (27) follows immediately from ’ﬁk(z)‘ =

k
21 sinnz| = O (1) and inequality (4).

Let now £ > 0 and N € N such that NLH <x < %. Then

oo

o) N
v=1

v=1 v=N+1

Using (27), we write

[e%e] [e%) 0o p
I K NP> Aab + NP Y A, (Z ‘Z“) =: Ipy + Izo.
k=v

v=N v=N
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By (26), we have

< C.

121 << Np Z )\VW
v=N v

To estimate Iz, we note that if {\,,} satisfies A3-condition, then condition
(17) is equivalent to the following condition

> A < ndn. (28)
k=1

If p > 1, then by Lemma 4(a) and condition (28)

[e%S) k P
Iy < NP Y~ (%)pA}c‘p (Z Al,> < Iy < C.

k=N v=N

If 0 < p < 1, then we use Lemma 4(b):

0o k
Ly < NP S k! (%)p <k/\k +y /\V> < Iy < C.

k=N v=N

Now let us estimate I;.

N N-1
I SZ)\V Z ar sin kx

v=1 k=v+1

By (27), we have

p N p
+Z)\V = .[11 —|—,[12.

v=1

o (5%)]

Because of {n'=¢)\,} is almost increasing, one can write

0 p 00 P 00 P
ay 1 1 1 1
(Z ’“) h (Z 2(%%) © VT <Z k2+;> © N

k=N k=N k k=N

oo
E ar sin kx
k=N

N
Ly < NPY A,

v=1

Hence, we get

Ip < N'tPAy [afv ] < C.

+ NI+P AN

To estimate 111, we write

N N-1 P
h«ﬂZ&(ZmQ.
k=v

v=1
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Using inequality (28) and Lemma 4(a) for the case p > 1 and Lemma 4(b)
for the case 0 < p < 1, we have

N N
I < N7PY v Aa8 < NPy Pt < C
v=1 v=1

Thus, collecting estimates for I; and I, we obtain f € S,(A). The proof of
Theorem 2.7 is complete.
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