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Abstract. Let F (p), p ≥ 2 be the family of generalized Thompson’s
groups. Here F (2) is the famous Richard Thompson’s group usually
denoted by F . We find the growth rate of the monoid of positive words
in F (p) and show that it does not exceed p + 1/2. Also we describe
new normal forms for elements of F (p) and, using these forms, we find
a lower bound for the growth rate of F (p) in its natural generators.
This lower bound asymptotically equals (p−1/2) log2 e+1/2 for large
values of p.

Introduction

The family of generalized Thompson’s groups F (p) was introduced by K.
S. Brown in [6]. Additional facts about these groups can be found in [8, 22].
The case p = 2 corresponds to the famous Richard Thompson’s group F .
See the survey [9] for details about this group.

The groups F (p) have many common features. All of them are embed-
dable into each other [4]. None of them has free non-abelian subgroups.
None of these groups satisfy any nontrivial group law. The derived sub-
groups of each of the F (p) is simple (infinitely generated). Every proper
homomorphic image of F (p) is abelian (so these groups are not residually
finite). Each F (p) is finitely presented and has quadratic Dehn function
[16].

Each of these groups has a faithful representation by piecewise linear
functions. The word problem has an easy solution in each of these groups.
Also all these groups are diagram groups in the sense of [17]. Namely, F (p) is
a diagram group over a very simple semigroup presentation 〈x | x = xp 〉. It
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follows then from [17, Section 15] that F (p) has solvable conjugacy problem.
Each group F (p) satisfies homological finiteness condition F∞. All integer
homology groups Hn(F (p),Z) are free abelian of finite rank and the Poincaré
series are rational [19].

However, there is some difference between the groups of this family. Brin
[3] described the group Aut F for F = F (2). Some information about
automorphisms of F (p), where p > 2, can be found in [4], where it is shown
that already for p = 3 there are “wild” automorphisms of F (p).

The goal of this article is to obtain analogs of some results for the group
F . The first author found the growth function of the monoid of positive
elements of F . This function is rational, namely, it equals

1− x2

1− 2x− x2 + x3
.

Notice that the elements x0, x1, . . . , xp−1 generate a free submonoid of rank
p in F (p). Thus the growth rate of positive elements in F (p) is at least p.
In this paper we show that for any p, the exact value of the growth rate of
positive elements is only slightly higher than p — it never exceeds p + 1/2.

Guba and Sapir [18] found two new normal forms for elements of F . One
of them is a normal form in the infinite set of generators. This normal
form is locally testable (unlike the standard normal form). It has the same
feature as the normal form in the free group: a word is in a normal form if
and only if all its subwords of length 2 are in the normal form. In this paper,
we find such a form for every F (p). Another normal form constructed in
[18] for F allows one to construct a regular set of normal forms in F . We
find an analogous construction for each F (p).

Using the above regular normal form, the second author proved in [15]
that the growth rate of the group F in generators x0, x1 is at least (3+

√
5)/2.

Notice that neither the growth function, nor the growth rate for F is known
at the present. In this paper we find a lower bound of the growth rate for
each of the groups F (p), where the generating set consists of x0, x1, . . . ,
xp−1. We show that the lower bound is a root of a certain algebraic equation
and find the asymptotic behaviour of this root. For large values of p, this
is (p− 1/2) log2 e + 1/2, where log2 e = 1.442695 . . . .

The plan of the paper is as follows. In Section 1 we recall the definition
of the family F (p) of generalized Thompson’s groups and some basic facts
about growth functions and growth rates. This Section also contains a
description of (positive) elements in F (p) in terms of rooted p-trees.

In Section 2 we describe Fordham’s method to calculate the word length
in F (p). We restrict ourselves to the case of positive words only (the de-
scription for this case is much simpler). Recall that for the case p = 2, a
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fast algoritm to find the word length metric was described in [11, 12]. This
algorithm is very effective but it has quite a complicated description. A
simplification of the method due to Belk and Brown can be found in [1].
One of the easiest algorithms to find the word length in F (the so-called
Length Formula) is contained in [15, Section 5]. Notice that for p > 2, none
of the simplified versions exists so we use Fordham’s approach from [13].

In Section 3, using Fordham’s method, we find equations for generating
functions describing the growth of F+(p). We solve these equations in Sec-
tion 4 and show that the generating function for positive words in F (p) is
irrational provided p > 2 (unlike the case p = 2). Then we find the growth
rate of positive words in F (p) as a root of an algebraic equation. We prove
that this growth rate never exceeds p + 1/2 approaching this value as p
approaches infinity. Thus the set F+(p) of all positive words is not much
higher than the free submonoid generated by x0, x1, . . . , xp−1.

Section 5 describes two new normal forms of elements in F (p). The first
of these forms is locally testable (one needs to test only subwords of length
2, similar to a free group). The second of the normal forms leads to a
regular language that represents each element of F (p) exactly once. Based
on that regular language, we construct the corresponding automaton and
find a lower bound for the growth rate of F (p) in Section 6. This lower
bound is given as a root of an algebraic equation. We also describe its
asymptotic behaviour showing that it approaches (p− 1/2) log2 e + 1/2 for
large values of p.

1. Preliminaries

The family of generalized Thompson’s group can be defined as follows.
The group F (p) is the group of all piecewise linear self homeomorphisms
of the unit interval [0, 1] that are orientation preserving (that is, send 0
to zero and 1 to 1) with all slopes integer powers of p and such that their
singularities (breakpoints of the derivative) belong to Z[ 1

p ]. The group F (p)
admits a presentation given by

(1) 〈xi (i ≥ 0) | xjxi = xixj+p−1 (i < j) 〉.
This presentation is infinite, but a close examination shows that the group is
actually finitely generated, since x0, x1, . . . , xp−1 are sufficient to generate
it. In fact, the group is finitely presented. The finite presentation is awkward
and it is not used much. The symmetric and simple nature of the infinite
presentation makes it much more adequate for almost all purposes.

One such example where the infinite presentation is particularly appropri-
ate is in the construction of the normal form. A word given in the generators
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xi and their inverses, can have its generators moved around according to
the relators, and the result is the following well-known statement:

Theorem 1.1. An element in F (p) always admits an expression of the form

xi1xi2 · · ·xim
x−1

jn
· · ·x−1

j2
x−1

j1
,

where
i1 ≤ i2 ≤ · · · ≤ im, j1 ≤ j2 ≤ · · · ≤ jn.

In general, this expression is not unique, but for every element there is a
unique word of this type which satisfies certain technical condition (see [9]
for details). This unique word is called the standard normal form for the
element of F (p).

Observe that the infinite presentation for F (p) is actually a monoid pre-
sentation. Hence F (p) admits a submonoid, the submonoid F+(p) given by
the same presentation, whose elements are called positive words. Theorem
1.1 shows that F (p) is the group of right fractions of this monoid.

An element of F (p) can be represented by two subdivisions of the interval
[0, 1], namely, the subdivision into intervals which get mapped linearly to
each other. A subdivision of this type, where the dividing points are all in
Z[ 1

p ], can always be obtained by subsequent subdivisions of the interval into
p equal pieces. Hence, a subdivision of the interval is equivalent to a rooted
tree where each vertex has valence p + 1 except the root, which has valence
p (or 1 in case when the tree consists of the root only), and the leaves,
which have valence 1. A node (except the root and the leaves) is pictured
to have one edge going up and p edges going down to its p children. These
trees will be called rooted p-trees. An element of F (p) is then represented
by a pair of rooted p-trees called the source tree and the target tree. This
representation has been extensively studied in the case p = 2. Note that
positive words can be represented by a single p-tree, because the other tree
is always the same: the tree which consists of all right carets.

A piece of these p-trees consisting of a node and its p edges going down
to its children is called a caret . Carets are the building blocks of the trees
and they give rise to the algorithm for finding the word metric in F (p), see
Section 2.

As stated in the introduction, the exact growth function for the groups
F (p) is not known. In this paper we will give lower bounds for growth rates
of these groups, computing lower bounds for the number of elements in each
length.

To be precise, given a finitely generated group G with finite generating
set X, denote its sphere of radius n by

S(n) = { g ∈ G | `(g) = n },
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where `(g) is the length of g ∈ G in the set of generators X. We also have
the ball of radius n

B(n) =
n⋃

k=0

S(k).

If γn = #B(n), the series

Γ(x) =
∞∑

n=0

γnxn

is called the (general) growth function for G with respect to X, and the
number

γ = lim
n→∞

γn

is the growth rate of G with respect to X. The limit always exists due to
the submultiplicative property of γn, that is, γm+n ≤ γmγn for all m,n ≥ 0.
Also, the spherical growth function is given by σn = #S(n) and

Σ(x) =
∞∑

n=0

σnxn,

which has the same growth rate as the general growth function (for all
infinite groups). For details about growth functions, see, for instance, [14].

If P ⊆ G is a subset of a group, not necessarily a subgroup, we can define
the growth functions of the set P by the same formulas as above but where
the coefficients are actually the cardinals of the sets P ∩B(n) or P ∩ S(n).
The goal for one of the next sections is to compute the growth series of the
subset F+(p) in F (p). In order to do that, we need to describe the algorithm
for calculating the word metric in F (p).

2. Positive words in Thompson’s groups F (p) and Fordham’s
method

In 1995, S. Blake Fordham [11] constructed an algorithm which, for any
given element in F = F (2), finds its distance to the identity in the word
metric given by generators x0, x1. This algorithm consists in defining dif-
ferent types of carets, then having each caret of the source tree paired to
its corresponding caret in the target tree, and assigning a weight to each
type of pairs of carets. A table is given for all possible pairs of types, with
the assignment of the weight. The sum of all the weights of all the pairs is
the exact distance from the element to the identity. In a set of unpublished
notes [13], Fordham extends his method to the groups F (p). This method
will be the starting block of the computation.

The method used to compute this growth will be an extension to F (p) of
the method developed in [7] for the case of F = F (2). Consider a positive
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element of F (p). As we know, the element can be represented by a rooted
p-tree. We are going to define different types of carets and their weights,
following Fordham [13].

A caret will be called left or right if it is situated in the leftmost edge
of the tree or in the rightmost edge, and middle or interior if it is situated
in the middle, i.e. if it is not right or left. For instance, a caret is left if
it represents a subinterval of [0, 1] which has left endpoint equal to zero.
Middle carets will be subdivided into p − 1 types, denoted by M1, M2,
. . . , Mp−1 according to which caret they are children of, and its position
as child.

The children of a caret are subdivided in two types, the predecessors
and the successors. This subdivision will give a total order to the set of
carets, with a caret being always after its predecessor children and before
its successors. The definitions of the caret types are as follows:

• The root caret is special. Its children are:
– Its left child is a left caret and it is the only predecessor.
– Its middle children are successors, and have types M1, M2,

. . . , Mp−2, in order-preserving way.
– Its right child is obviously a successor and a right caret.

• A left caret has the following children:
– Its only predecessor is the left child, a left caret.
– All the other children are successors, all middle carets, and of

types M1, M2, . . . , Mp−1, in order.
• A right caret has the following children:

– One single predecessor of type Mp−1.
– It has p − 1 successors, which in order are of types M1, M2,

. . . , Mp−2 and the last one of type R.
• A caret of type Mi (1 ≤ i ≤ p− 1) has the following children:

– The first p − i children are predecessors, and their types are
Mi, . . . , Mp−1.

– The other i children are successors, and they are of types M1,
M2, . . . , Mi.

For the purposes of computing the length of an element, these caret types
are subdivided in further types depending on the existence of predecessor
and successor types. This classification is actually more complicated in
Fordham’s paper but we do not need the total strength of the method since
we are dealing only with positive words. We will indicate also which is the
weight of each caret for the purposes of the computation of the length of a
positive word.

The caret types are as follows:
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• The root, which has always weight zero.
• Left carets, which have always weight one.
• Carets of type R∅ are right carets whose all successors are right

carets, i.e., it has no middle successors. Its only successors hang
from its rightmost leaf. These carets carry weight zero.

• Carets of type RM are right carets which are not R∅, that is, which
have middle successors. Observe that the middle successors do not
have to be immediate successors, they can be successors of succes-
sors. Carets of type RM have weight two.

• Carets of type Mi
∅ are middle carets which do not have any suc-

cessor children. They carry weight one.
• Carets of typeMi

M are middle carets which have at least a successor
child. These carets have weight three.

Observe that the index on the middle carets is only necessary to identify
its successors, but it has no role in the weight assignment beyond that one.

Now, the main theorem giving the length is as follows:

Theorem 2.1. (S. B. Fordham) [13] Given a positive word in F (p) repre-
sented by a rooted p-tree, the distance from this element to the identity (in
the word metric for F (p) with generators x0, x1, . . . , xp−1) is equal to the
total sum of the weights of its carets.

3. Generating functions for the growth of positive words

Once the theorem for the length has been established, now the computa-
tion of the growth function is reduced to a combinatorial problem, namely,
finding how many trees have a given weight, according to the rules above.
The method for finding the number of trees with a given weight is to split
the trees in several ones in such a way that recurrences can be found. The
reader can see details about generating functions in [23], and can see this
method used already in [7].

We will make use of several sequences:
• The sequence sn = #(F+(p) ∩ S(n)). This is the number of trees

which have weight n.
• The sequence ln. This sequence gives the number of subtrees which

can be left subtrees of a rooted p-tree and such that its total weight
is n. The subtrees are required to be strict, that is, the main tree
does not qualify as a left subtree.

• Analogously the sequence rn is the sequence of possible right sub-
trees of weight n.

• The sequence m
(i)
n for i = 1, . . . , p− 1, gives the number of interior

subtrees which start with a caret of type Mi. Observe that this
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subtree is completely composed of middle carets, and also with total
weight n.

Observe that the subtrees are always considered as subtrees of the main
tree, which means that, for instance, a left subtree never has carets of type
R because that would mean it is the total tree. A subtree which starts in
an Mi caret has all interior carets.

Each one of these sequences will have its generating function:

S(x) =
∞∑

n=0

snxn L(x) =
∞∑

n=0

lnxn

R(x) =
∞∑

n=0

rnxn Mi(x) =
∞∑

n=0

m(i)
n xn.

Now we will establish relations between the sequences which will give
functional equations for their generating functions, which then will allow
us to find the growth of the submonoid of positive words. For instance, if
one considers the tree representing a word, and assumes the tree has total
weight n, since the root has weight zero, the weight has to be distributed
among all the p children subtrees. Hence, a tree of total weight n will be
obtained every time that we take a family of subtrees such that the sum of
their separate weights as subtrees is n.

This fact gives the first formula satisfied by the sequences, and also by
the generating functions:

(2) sn =
∑

j0+···+jp−1=n

lj0m
(1)
j1
· · ·m(p−2)

jp−2
rjp−1

(3) S = LM1 · · ·Mp−2R.

To find a formula for the function L(x) of left subtrees, one needs to
consider that left carets have weight 1. Hence the different subtrees only
have to add up to n− 1. The formula is

ln =
∑

j0+···+jp−1=n−1

lj0m
(1)
j1
· · ·m(p−2)

jp−2
m

(p−1)
jp−1

(4) L− 1 = xLM1M2 · · ·Mp−1.

The formula for the generating functions is obtained by multiplying each
side of the formula for sequences by xn. The right hand side has an x
multiplying because the indices are shifted by one.

For the function for right trees, one has to take into account the fact
that a right caret can be of type R∅ or RM , with weights zero and two
respectively. For the first possibility, the caret is of type R∅, and all its
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successors have no weight. Observe that in a positive word there can be
one and only one caret of type R∅, because any others would be reducible.
Hence, if the caret is of type R∅, all the weight is concentrated in its only
predecessor. So there are as many right subtrees of this type as trees of the
typeMp−1 with the same weight, which gives the first part of the recurrence
equal to m

(p−1)
n .

If the right caret is of type RM , it carries weight 2 and one the successors
is necessarily nonempty with a middle caret somewhere. Hence if one of
the successors is necessarily nonempty, the term in the recurrence has all
possible weights for these successors. The formula is

rn = m(p−1)
n +

∑

j0+···+jp−1=n−2
j1+···+jp−1≥1

m
(p−1)
j0

m
(1)
j1
· · ·m(p−2)

jp−2
rjp−1

(5) R = Mp−1 + x2(M1M2 · · ·Mp−1R−Mp−1).

Finally, the middle subtrees are the ones whose children are also middle
subtrees and hence facilitate the resolution of the equations. A middle caret
of type Mi has either weight 1 if its successors are empty or weight 3 if one
of the successor subtrees is nonempty. Both cases correspond to the two
adding terms of the formula for the sequence:
m

(i)
n =

=
∑

ji+···+jp−1=n−1

m
(i)
ji
· · ·m(p−1)

jp−1
+

∑

j0+j1+···+jp−1=n−3
jp−i+···+jp−1≥1

m
(i)
j0
· · ·m(p−1)

jp−i−1
m

(1)
jp−i

· · ·m(i)
jp−1

which gives the following formula for the generating functions:

(6) Mi−1 = xMiMi+1 · · ·Mp−1+x3MiMi+1 · · ·Mp−1(M1 · · ·Mi−1Mi−1).

Solving these equations will give us information on the function S(x), which
is the one we are interested in, and the growth of positive elements in the
groups F (p).

4. Growth functions and growth rates of F+(p)

Now we collect formulas (3), (4), (5), (6) to find the equation on S(x)
and the radius of convergence of the corresponding series. First of all, we
have to mention that F+(p) has a free submonoid generated by x0, x1, . . . ,
xp−1 and so the growth rate of F+(p) is at least p. As we will see at the
end of this Section, the exact value of the growth rate is only slightly larger
than p. (In fact, it is always less than p + 1/2.)

Let
M(x) = M1(x)M2(x) · · ·Mp−1(x).
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Lemma 4.1. For all 0 ≤ i ≤ p− 1, we have

M1M2 · · ·Mi =
x−2

(1− x3M)i
+ 1− x2.

Proof. We proceed by induction on i. If i = 0, then the result is obvious.
Let 1 ≤ i ≤ p− 1. Formula (6) can be written as

Mi = 1 +
xM

M1 · · ·Mi−1
+ x3

(
MiM − M

M1 · · ·Mi−1

)
.

Therefore,

M1 · · ·Mi = M1 · · ·Mi−1 + xM + x3M ·M1 · · ·Mi − x3M

and so
M1 · · ·Mi(1− x3M) = (x− x3)M + M1 · · ·Mi−1.

Using the inductive assumption, we have

M1 · · ·Mi(1− x3M) = (x− x3)M +
x−2

(1− x3M)i−1
+ 1− x2 =

=
x−2

(1− x3M)i−1
+ (1− x2)(1− x3M).

Now the only thing left to do is to divide by 1− x3M . ¤

Taking i = p− 1 gives us

Corollary 4.2. The function M = M(x) satisfies

x2M =
1

(1− x3M)p−1
+ x2 − 1.

Now we express S(x) in terms of M(x). It follows from (4) and (5) that

L =
1

1− xM
R =

(1− x2)Mp−1

1− x2M
.

Now, using (3), we have

(7) S =
LMR

Mp−1
=

(1− x2)M
(1− xM)(1− x2M)

.

The first author proved in [7] that the growth function S(x) of positive
elements of F = F (2) is rational (although M(x) is irrational). Now we
have the following

Theorem 4.3. The growth function S(x) of positive elements in F (p) is
irrational provided p ≥ 3.
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Proof. Let N = (1− x3M)−1. From Corollary 4.2 we have

1−N−1 = x3M = xNp−1 + x3 − x.

Hence N = N(x) satisfies the equation

(8) xNp + (x3 − x− 1)N + 1 = 0.

Suppose that S(x) is rational. Then it follows from (7) that M(x) satisfies
a quadratic equation with coefficients in the field Q(x) of rational functions.
Since M = x−3(1 − N−1), the function N(x) also satisfies an equation
of degree at most 2 over Q(x). This implies that the polynomial f(t) =
xtp +(x3−x− 1)t+1 from Q(x)[t] is divisible by a polynomial of degree at
most 2. Since p ≥ 3, the polynomial f(t) is reducible over Q(x). A standard
algebraic trick (using Gauss’ lemma) implies that f(t) is a product of two
polynomials from Z[x][t] of degree less than p. Taking x = 1, we obtain that
the polynomial tp − t + 1 is reducible over Q. However, this contradicts a
result from [20]. ¤

Now we will find the growth rate of F+(p). To do that, we need to take
the radius of convergence of the series for S(x) and take the reciprocal.
Observe that from (2) we deduce mn ≤ sn for all n ≥ 0. This implies that

(lim sup
n→∞

mn)−1 ≥ (lim sup
n→∞

sn)−1,

that is, the radius of convergence of the series S(x) does not exceed the one
for the series M(x). Let x > 0 be a real number such that S(x) converges.
Then M(x) also converges and formula (7) holds.

To find the radius of convergence of S(x), we need to find the smallest
positive real number such that the denominator of the right hand side of
(7) is zero. Since M(x) is increasing and 0 < x < 1, the smallest positive
solution of the equation M(x) = x−1 will not exceed the smallest positive
solution of the equation M(x) = x−2. Therefore, we need to solve the
equation M(x) = x−1. Notice that M(x) increases and x−1 decreases so we
can just speak about a positive root of this equation. Using (4.2), we get
x = (1− x2)−(p−1) + x2 − 1, that is, we need to find the positive root of

(9) (1− x2)p−1(1 + x− x2) = 1.

The growth rate of F+(p) will thus be equal to x−1. We already know that
the growth rate of F+(p) is at least p, as it was mentioned in the beginning
of this Section. Hence x ≤ 1/p.

Let us rewrite this equation in the following form:

p− 1 =
ln(1 + x− x2)
− ln(1− x2)

.
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From the Taylor formula for ln(1 + y), we deduce the inequality

y − y2/2 < ln(1 + y) < y − y2/2 + y3/3,

where y > 0, and then we get ln(1+x−x2) < x− 3x2/2+4x3/3− 3x4/2+
x5 − x6/3 < x − 3x2/2 + 4x3/3. Since − ln(1 − x2) > x2, we have p − 1 <
x−1−3/2+4x/3 ≤ x−1−3/2+4/3p. So x−1 > p+1/2−4/3p = p+1/2+o(1)
as p →∞.

Now we want to show that x−1 < p+1/2. We have ln(1+x−x2) > x−x2−
(x−x2)2/2 = x−3x2/2+x3−x4/2 and − ln(1−x2) = x2+x4/2+x6/3+· · · <
x2 + x4(1 + x2 + x4 + · · · )/2 = x2 + x4/(2 − 2x2) ≤ x2 + 2x4/3 because
x ≤ 1/p ≤ 1/2. This gives p− 1 > (x− 3x2/2 + x3 − x4/2)/(x2 + 2x4/3) =
(1− 3x/2 + x2 − x3/2)/(x + 2x3/3). Finally,

p− 1 >
1− 3x/2 + x2 − x3/2

x + 2x3/3
=

1
x
− 9− 2x + 3x3

2(3 + 2x2)
> 1/x− 3/2

since 3x2 − 6x − 2 < 0 on [0; 1]. This gives x−1 < p + 1/2, as desired. So
we get the following result.

Theorem 4.4. The growth rate of the monoid F+(p) of positive elements
in the group F (p) generated by x0, x1, . . . , xp−1 is a number ζp, which is
the root of equation

(y2 − 1)p−1(y2 + y − 1) = y2p.

This number has the form ζp = p + λp, where 0 < λp < 1/2 for all p and
λp → 1/2 as p →∞.

Indeed, we proved inequalities p + 1/2− 4/3p < x−1 < p + 1/2, where x
is the solution of (9). The inequality x−1 > p obviously follows for p ≥ 3; if
p = 2, then it is known from [7] that ζ2 > 2.24.

The equation in the statement of Theorem 4.4 is equivalent to (9) via
the substitution y = 1/x. Notice that x and y are roots of polynomials of
degree 2p − 1 with integer coefficients. Also let us mention without proof
that λp is strictly increasing with respect to p.

The number ζp gives a lower bound for the growth rate of the group F (p).
However, this estimate can be essentially improved.

5. New normal forms for elements of F (p)

We are going to find two new normal forms for elements of F (p). They
will be analogs of the normal forms constructed in [18] for the case F = F (2).

The first of these normal forms will involve the infinite set of generators
Σ = {xi (i ≥ 0) }. Consider the following rewriting system Γ = Γ(p) over
the alphabet Σ±1 = Σ ∪ Σ−1 (basic facts about rewriting systems can be
found in [2, 10]):
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(1) xε
i x
−ε
i → 1 (i ≥ 0, ε = ±1)

(2) xε
jxi → xix

ε
j+p−1 (j > i, ε = ±1)

(3) xε
j+p−1x

−1
i → x−1

i xε
j (j > i, ε = ±1)

Notice that for every rewriting rule of Γ, the left hand side and the right
hand side are equal in F (p).

It is easy to see that Γ is terminating , that is, for every word w, the
process of applying rewriting rules to w always terminates. Indeed, Γ either
decreases the length of a word or it preserves the length. In the second case,
if we make a vector that consists of subscripts of a word, the rewriting rules
will decrease this vector lexicographically.

Since Γ is terminating, applying the rewriting rules to a word w gives us
a word v that cannot be reduced (that is, no more rewriting rules can be
applied to v). We say that v is an irreducible form of w. Now we are going
to check that Γ is also confluent , that is, every word has a unique irreducible
form. To do that, we apply the Diamond Lemma. In our case, this means
that if we have rewriting rules of the form ab → u, bc → v, where a, b, c, d
are letters and u, v are words, then uc and av have a common descendant.
There are only finitely many cases to check, and all of them are easy. We
will show one of these cases, the rest is left to the reader.

Let us take the rewriting rules xε
k+p−1x

−1
j →x−1

j xε
k and x−1

j xi→xix
−1
j+p−1,

where k > j > i, ε = ±1. We have:

x−1
j xε

kxi → x−1
j xix

ε
k+p−1 → xix

−1
j+p−1x

ε
k+p−1

and
xε

k+p−1xix
−1
j+p−1 → xix

ε
k+2p−2x

−1
j−p−1 → xix

−1
j+p−1x

ε
k+p−1.

So the words have a common descendant.
Now we know that Γ is complete, that is, terminating and confluent.

Therefore, each element of F (p) can be uniquely represented by an irre-
ducible word. So we have proved the following

Theorem 5.1. Each element g ∈ F (p) can be uniquely represented as a
word of the form

N(g) = xε1
i1

xε2
i2
· · ·xεm

im
,

where m ≥ 0, ε1, ε2, . . . , εm = ±1, and for every 1 ≤ k < m one of the
following conditions holds:

• ik < ik+1

• ik = ik+1 and εk = εk+1

• 0 < ik − ik+1 < p and εk+1 = −1.

Indeed, the conditions listed in the statement exactly mean that the word
N(g) is irreducible, that is, it has no subwords that are left hand sides of
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the rewriting rules of Γ. The set of these irreducible words over Σ±1 will be
denoted by Ninf .

Notice that the set Ninf has the following property: a word belongs to
Ninf if and only if all its subwords of length 2 belong to Ninf . That is, the
normal form of Theorem 5.1 is locally testable.

Now we will construct another normal form for elements of F (p). Now
all words will involve only the finite set of generators x±1

0 , x±1
1 , . . . , x±1

p−1.
Moreover, these normal forms will give a regular language closed under
taking subwords. Notice that this gives a regular spanning tree in the Cayley
graph of F (p) in the above generators. As in [18] for the case p = 2, this
tree is not geodesic.

It is possible to write down a new rewriting system in order to get the
normal form we wish to construct. However, it will take too much effort to
prove that the rewriting system ijs complete. We choose an approach that
differs from [18].

Let j ≥ 1. Then j can be uniquely expressed in the form j = r+d(p−1),
where 1 ≤ r ≤ p − 1, d ≥ 0. In this case xj equals in F (p) to the word
x−d

0 xrx
d
0. For any word w over Σ±1, replace each letter of the form xε

j

(j ≥ 1, ε = ±1) by x−d
0 xrx

d
0, where j = r + d(p− 1), 1 ≤ r ≤ p− 1, d ≥ 0

and then freely reduce all subwords of the form xε
0x
−ε
0 (ε = ±1). We obtain

a word in generators x±1
0 , x±1

1 , . . . , x±1
p−1 denoted by w̄.

Lemma 5.2. If w ∈ Ninf , then w̄ has no subwords of the following form:
(1) xε

i x
−ε
i (0 ≤ i ≤ r − 1)

(2) xε
αxk

0xβ (k ≥ 0, 1 ≤ β < α ≤ r − 1)
(3) xε

αxk+1
0 x−1

β (k ≥ 0, 1 ≤ β < α ≤ r − 1)
(4) xε

αxk+1
0 xβ (k ≥ 0, 1 ≤ α ≤ β ≤ r − 1)

(5) xε
αxk+2

0 x−1
β (k ≥ 0, 1 ≤ α ≤ β ≤ r − 1)

The words of the form 1) – 5) are called forbidden subwords. The set of
words in {x±1

0 , x±1
1 , . . . , x±1

p−1 } without forbidden subwords will be denoted
by Nfin.

Proof. Let w ∈ Ninf have the form

(10) w = xk0
0 xl1

α1
xk1

0 xl2
α2
· · ·xkh−1

0 xlh
αh

xkh
0 ,

where h ≥ 0, αi = ri + di(p − 1), 1 ≤ ri ≤ p − 1, di ≥ 0, li 6= 0 for all
1 ≤ i ≤ h. By definition,

(11) w̄ = xk0−d1
0 xl1

r1
xd1+k1−d2

0 xl2
r2
· · ·xdh−1+kh−1−dh

0 xlh
rh

xdh+kh
0 .

Suppose that w̄ is not freely irreducible. Then there exist an i from 1 to
h − 1 such that di + ki − di+1 = 0, ri = ri+1, and and lili+1 < 0. By
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definition, words from Ninf have no subwords of the form x±1
j x0 for j > 0

and also have no subwords of the form x±1
j x−1

0 for j ≥ p. This implies
ki ≤ 0.

Suppose that ki < 0. Then di = 0 (otherwise αi ≥ p). Since di+1 ≥ 0,
we obtain di +ki−di+1 = ki−di+1 < 0. This is a contradiction. Therefore,
ki = 0 and so di = di+1. This implies αi = ri+di(p−1) = ri+1+di+1(p−1) =
αi+1. Thus the word w is not freely irreducible since lili+1 < 0. We have a
contradiction. This proves that w̄ has no subwords of the form 1).

Suppose that w̄ has a subword of one of the forms 2) – 5). Let
x±1

ri
x

di+ki−di+1
0 x±1

ri+1
be such a subword, where 1 ≤ i < h. As above,

ki ≤ 0. Suppose that ki 6= 0. This implies di = 0 and di + ki − di+1 < 0.
But none of the words 2) – 5) can contain x−1

0 . This allows us to conclude
that ki = 0 and w̄ contains v = x±1

ri
x

di−di+1
0 x±1

ri+1
as a subword.

Suppose that v satisfies condition 2). This means that di ≥ di+1, ri >
ri+1, li+1 > 0. Hence w contains x±1

αi
xαi+1 , where αi = ri + di(p − 1) >

ri+1 + di+1(p− 1). So w does not belong to Ninf , which is impossible.
Suppose that v satisfies condition 3). Now di − di+1 ≥ 1, ri > ri+1,

li+1 < 0. This leads to αi − αi+1 = (ri − ri+1) + (di − di+1)(p − 1) ≥ p,
which also contradicts w ∈ Ninf .

Suppose that v satisfies condition 4). Then di − di+1 ≥ 1, ri ≤ ri+1,
li+1 > 0. Now ri − ri+1 ≥ 1 − (p − 1) = 2 − p and so αi − αi+1 =
(ri − ri+1) + (di − di+1)(p − 1) ≥ (p − 1) + (2 − p) > 0. Thus w contains
x±1

αi
xαi+1 with αi > αi+1. This cannot happen by definition of Ninf .

Finally, suppose that v satisfies condition 5). Now we have di− di+1 ≥ 2
and so αi−αi+1 = (ri− ri+1) + (di− di+1)(p− 1) ≥ 2(p− 1) + (2− p) = p.
However, it should be αi − αi+1 < p because w ∈ Ninf .

The proof is complete. ¤

For every g ∈ F (p), we have the word N(g) ∈ Nfin that represents g.
We will prove that g is represented uniquely by a word from Nfin. This will
follow from

Lemma 5.3. The mapping w 7→ w̄ from Ninf to Nfin is a bijection.

Proof. We prove first that the mapping w 7→ w̄ fromNinf toNfin is injective.
As above, let w ∈ Ninf have the form (10). Thus w̄ equals (11). Suppose
that we know the word w̄, that is, we know the numbers m0 = k0 − d1,
m1 = d1 + k1 − d2, . . . , mh−1 = dh−1 + kh−1 − dh, mh = kh + dh. Our aim
is to recover the numbers k0, d1, k1, . . . , dh−1, kh−1, dh, kh.

Let h ≥ 1. It follows from the definition of Ninf that kh ≤ 0. Moreover,
either kh < 0 and dh = 0, or kh = 0. In the first case mh = kh+dh = kh < 0,
in the second case mh = kh + dh = dh ≥ 0. Since we know mh, we can
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distinguish between these two cases. Namely, if mh < 0, then dh = 0,
kh = mh. If mh ≥ 0, then kh = 0, dh = mh. Now we know dh and kh.

If h ≥ 2, then kh−1 ≤ 0. As above, we have one of the two cases:
kh−1 < 0, dh−1 = 0, or kh−1 = 0. The number kh−1 + dh−1 is negative in
the first case and nonnegative in the second case. But this number equals
mh−1 + dh, so we know it and thus we are able to distinguish these cases.
In the first case we have dh−1 = 0, kh−1 = mh−1 + dh; in the second case
— kh−1 = 0, dh−1 = mh−1 + dh. Therefore, we know dh−1 and kh−1.

Continuing in this way, we get the values of dh−2, kh−2, . . . , d1, k1. At
the final step we get k0 = m0 + d1.

Now we show that the mapping is surjective. We start with a word from
Nfin. This word has the form

(12) xm0
0 xl1

r1
xm1

0 xl2
r2
· · ·xmh−1

0 xlh
rh

xmh
0 .

Using the rules described in the first part of the proof, we define the numbers
k0, d1, k1, . . . , dh, kh. It follows that di ≥ 0 for all i from 1 to h. So we
can form a word w as in (10), where αi = ri + di(p − 1) (1 ≤ i ≤ h). It is
obvious that w̄ equals the word (12). It remains to prove that w belongs to
Ninf .

Let us assume the contrary. Since w has no subwords of the form xε
0x
−ε
0 ,

it should contain one of the following subwords:
a) xε

i x
−ε
i (i ≥ 1, ε = ±1);

b) x±1
j xi (j > i);

c) x±1
j+p−1x

−1
i (j > i).

In case a), w̄ will contain a forbidden subword of the form xε
rx
−ε
r . Notice

that ki ≤ 0 for all 1 ≤ i ≤ h; if ki < 0, then di = 0. This means that in
cases b) and c) one has i ≥ 1. Let j = α+ d(p− 1), i = β + d′(p− 1), where
1 ≤ α, β ≤ r−1, d, d′ ≥ 0. Applying the “bar” mapping to b) and c), we see
that the word w̄ contains u = x±1

α xd−d′
0 xβ in case b) and v = x±1

α xd−d′+1
0 x−1

β

in case c). Since j > i, we have (d− d′)(p− 1) > β − α > −(p− 1). Hence
d − d′ ≥ 0. If u is not forbidden, then α ≤ β. But in this case d − d′ > 0
so u has to be forbidden anyway. If v is not forbidden, then we also have
α ≤ β, which implies d− d′ + 1 ≥ 2. We have a final contradiction.

The proof is complete. ¤

From Lemmas 5.2 and 5.3 we obtain

Theorem 5.4. Each element g ∈ F (p) can be uniquely represented by a
word w ∈ Nfin. This means that for every g ∈ F (p) there is exactly one word
over {x±1

0 , x±1
1 , . . . , x−1

p−1 } that represents g and has no forbidden subwords.
This gives a regular set of normal forms for the group F (p).
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Indeed, the set of forbidden subwords is a regular language. So the set
Nfin of words that do not contain forbidden subwords will be also regular.
Throughout the rest of the paper, we will denote this language by Lp. (For
basic properties of regular languages see [21].)

6. Lower bounds for the growth rates of F (p)

A lower bound of (3+
√

5)/2 = 2.618 . . . for the growth rate of F = F (2)
was obtained by the second author in [15]. Now we will find a similar lower
bound for each F (p). In the previous section, we constructed a regular
language Lp of normal forms for F (p). Each word of length n in Lp is at a
distance at most n from the identity in the Cayley graph of F (p). So the
growth function of Lp does not exceed the number of elements in the ball of
radius n for F (p). Then, finding the growth function and the growth rate
of Lp, we find a lower bound for the growth rate of the group F (p).

An automaton to recognize the language Lp has 3p + 1 states. However,
it is easier to construct a directed graph with only 2p + 1 vertices (states).
This graph will be denoted by Ap and we will also call it an automaton
although its edges have no labels. The description of Ap is as follows.

The vertices (states) of Ap are denoted by q, q0, q1, . . . , qp−1, q1,0, q2,0,
. . . , qp−1,0, q̄. They will correspond to the following partition of Lp into
disjoint subsets:

• The set { 1 } that consists of the empty word (state q).
• The set of words that end with x±1

0 and do not have a terminal
segment of the form x±1

i xk
0 , where 1 ≤ i ≤ p− 1, k ≥ 1 (state q0).

• The set of words that end with x±1
i (state qi for each 1 ≤ i ≤ p−1).

• The set of words that end with x±1
i x0 (state qi,0 for each 1 ≤ i ≤

p− 1).
• The set of words that end with x±1

i xk
0 for some 1 ≤ i ≤ p − 1 and

k ≥ 2 (state q̄).

Let w ∈ Lp. If w is empty, then wx±1
i will be in Lp for all 0 ≤ i ≤ p− 1.

We draw two arrows from q to qi for each 0 ≤ i ≤ p− 1.
Let w correspond to the state q0. Then w = vxε

0 for some word v and
for some ε = ±1. The word wxε

0 will be in Lp; for each 1 ≤ i ≤ p − 1 the
word wx±1

i will be also in Lp since w has no terminal segments of the form
x±1

i xk
0 (1 ≤ i ≤ p− 1, k ≥ 1. Thus we draw an arrow from q0 to itself and

two arrows from q0 to each qi (1 ≤ i ≤ p− 1).
Let w correspond to qi (1 ≤ i ≤ p−1). The words wx−1

0 and wx0 belong
to Lp; we draw an arrow from qi to q0 and an arrow from qi to qi,0. The
words wxj belong to Lp whenever i < j ≤ p− 1; the words wx−1

j belong to
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Lp for all 1 ≤ j ≤ p − 1. So we draw one arrow from qi to each q1, . . . , qi

and two arrows from qi to each qi+1, . . . , qp−1.
Let w correspond to qi,0 (1 ≤ i ≤ p− 1). The word wx0 is in Lp and we

draw an arrow from qi,0 to q̄. Also wx−1
j ∈ Lp whenever i ≤ j ≤ p− 1. So

one arrow goes from qi,0 to each qi, . . . , qp−1. No other arrows can appear.
Finally, let w correspond to q̄. Now only wx0 leads to a word in Lp; it

corresponds to an arrow from q̄ to itself.
The description of Ap is complete. Notice that the number of words in

Lp of length n is exactly the number of (directed) paths of length n in Ap

starting at q. We would like to compute the number of paths in Ap of length
n starting at q and ending at a given state. For each state we consider the
corresponding generating function. Namely, to each vertex v we assign a
series of the form

∑∞
n=0 antn, where an is the number of paths in Ap starting

at q and ending at v. These generating functions will be denoted by f , fi

(0 ≤ i ≤ p − 1), fi,0 (1 ≤ i ≤ p − 1), f̄ for each of the states, respectively.
We will write down a system of equations for these functions.

First of all, it is clear that f(t) = 1. To find f0, we mention that two
arrows go from q into q0 and one arrow goes into q0 from each of the states
q0, q1, . . . , qp−1. Hence

(13) f0 = t(2f + f0 + f1 + · · ·+ fp−1).

Given a vertex qi (1 ≤ i ≤ p− 1), we observe that two arrows go into qi

from q, q0, . . . , qi−1 and one arrow from qi, . . . , qp−1. Also one arrow goes
into qi from each q1,0, . . . , qi,0. Thus

(14) fi = t(2f + 2f0 + · · ·+ 2fi−1 + fi + · · ·+ fp−1) + t(f1,0 + · · ·+ fi,0).

Notice that fi,0 = tfi for each 1 ≤ i ≤ p− 1 because only one arrow goes
into qi,0 (from the state qi). Thus we can rewrite (14) as follows:

(15) fi = t(2f + 2f0 + · · ·+ 2fi−1 + fi + · · ·+ fp−1) + t2(f1 + · · ·+ fi).

Finally, there is one arrow that goes into q̄ from each of the states q1,0,
. . . , qp−1,0, q̄. So

(16) f̄ = t(f1,0 + · · ·+ fp−1,0 + f̄) = t2(f1 + · · ·+ fp−1) + tf̄ .

In order to solve the system, let us consider the difference of equation
(15) with i = 1 and (13). This gives f1−f0 = tf0+t2f1, that is, (1−t2)f1 =
(1 + t)f0. So f0 = (1− t)f1.

Now suppose that 1 ≤ i < p − 1. If we take the difference between
fi+1 and fi using (15), we obtain fi+1 − fi = tfi + t2fi+1, which implies
fi = (1− t)fi+1.
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Now for all 0 ≤ i ≤ p − 1 one has fi = (1 − t)p−1−ifp−1. The equation
(13) becomes

(1−t)p−1fp−1 = 2t+tfp−1((1−t)p−1+· · ·+(1−t)+1) = 2t+fp−1(1−(1−t)p).

This gives

(17) fp−1(t) =
2t

(1− t)p + (1− t)p−1 − 1
.

In order to find the number of words in Lp having length n, we need to
add all the generating functions for all states. The result will be

Φp(t) = 1+f0 +f1 + · · ·+fp−1 + t(f1 + · · ·+fp−1)+
t2

1− t
· (f1 + · · ·+fp−1)

(here we used (16) to express f̄). Taking into account that

f1 + · · ·+ fp−1 =
1− t

t
· f0 − 2

from (13), we have

Φp(t) = 1+f0 +
(

1 + t +
t2

1− t

)
(f1 + · · ·+fp−1) = 1+

(
1 +

1
t

)
f0− 2

1− t
.

Now, using f0 = (1− t)p−1fp−1 and (17), we finally have

(18) Φp(t) =
1 + t

1− t
· 1− t(1− t)p−1

(1− t)p + (1− t)p−1 − 1
.

This is the generating function for Lp. Thus the growth rate of Lp will be
the reciprocal of t, where t is the smallest positive root of the denominator
of the right hand side of (18).

The number y = (1 − t)−1 is the root of yp = y + 1. It is clear that
y > 1. Let y = 1 + x, where x > 0. We would like to solve the equation
(1 + x)p = 2 + x. Notice that 0 < x < 1. Since (1 + x)p < 3, the root x
approaches 0 as p goes to infinity.

The equation (1 + x)p = 2 + x can be written as

p =
ln(2 + x)
ln(1 + x)

=
ln 2 + ln(1 + x/2)

ln(1 + x)
=

ln 2 + x/2 + o(x)
x− x2/2 + o(x2)

.

Therefore,

(19)
p− 1

2

ln 2
=

1 + o(x)
x− x2 + ox2

= x−1(1 + x/2 + o(x)) = x−1 +
1
2

+ o(1)

as p →∞.
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We are interested in the number ξp = t−1, where t is the root of (1 −
t)p + (1− t)p−1 − 1 = 0. Here (1− t)−1 = y, where y = 1 + x is the root of
yp = y +1. It is easy to see that ξp = 1+x−1. So we deduce from (19) that

ξp =
p− 1

2

ln 2
+

1
2

+ o(1), p →∞.

It is also easy to see that ξp = t−1 satisfies the following equation: (2ξ −
1)(ξ − 1)p−1 = ξp. So we proved

Theorem 6.1. The growth rate of the group F (p), p ≥ 2 has a lower bound
of ξp, where ξp satisfies the equation

(2ξ − 1)(ξ − 1)p−1 = ξp.

The following asymptotic formula holds:

ξp =
p− 1

2

ln 2
+

1
2

+ o(1), p →∞.

Here are several numerical values of ξp:

ξ2 = 2.618033989

ξ3 = 4.079595623
ξ4 = 5.530132718
ξ5 = 6.977144180

and so on. For large values of p, the growth rate of F (p) is at least 0.72(2p−
1) (recall that 2p − 1 is the maximum value of the growth rate of a p-
generated group; this happens if and only if the group is free of rank p).

It would be interesting to find nontrivial upper bounds for the growth
rates of F (p). This means to find a constant c < 1 such that the growth
rate of F (p) in its natural generators does not exceed c(2p− 1).
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