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Abstract. Here we describe the results of some computational ex-
plorations in Thompson’s group F . We describe experiments to esti-
mate the cogrowth of F with respect to its standard finite generating
set, designed to address the subtle and difficult question whether or
not Thompson’s group is amenable. We also describe experiments to
estimate the exponential growth rate of F and the rate of escape of
symmetric random walks with respect to the standard generating set.

1. Introduction

Richard Thompson’s group F has attracted a great deal of interest over
the last years. The group F is a finitely presented group which arises quite
naturally in different contexts, and allows several different, but fairly simple,
descriptions – for instance by a presentation, as a diagram group [14], as
a group of homeomorphisms of the unit interval, as the geometry group
of associativity [7], and as the fundamental group of a component of the
loop space of the dunce hat. Cannon, Floyd and Parry [3] give an excellent
introduction to F .

The interest in this group stems partly from F ’s unusual properties, and
partly from the fact that some of the basic questions about this group are
still open, in particular those related to its cogrowth and growth. It seems
clear is that F lies very close to the borderline between different regimes.

Probably the most famous open question is whether or not F is amenable.
Also, it is known that F has exponential growth, but the growth rate is
unknown. Similarly, the rate of escape of random walks in F is unknown.

The question of amenability is especially intriguing since F is either an ex-
ample of a finitely presented non-amenable group without free non-abelian
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subgroups, or an example of a finitely presented amenable but not ele-
mentary amenable group. Though there are finitely presented examples of
groups for each of these phenomena from Grigorchuk [11] and Sapir and
Olshanskii [17], those groups were constructed explicitly for those purposes,
whereas F is a more “naturally occurring” example to consider – so either
answer would be remarkable.

The aim of this paper is to contribute new empirical evidence to the
quest to understand cogrowth, growth, and escape rate. This evidence was
obtained using large computer simulations.

The structure of this paper is as follows. In Section 2 we recall briefly
the definition and those properties of the group F that will be needed in the
paper. Moreover, we give the definition of amenability which will be used in
our experiments (there are other, equivalent, definitions which are probably
more well-known). In Section 3 we describe the algorithms used in our
computations relating to amenability. In Section 4 we present the results
of our computer experiments, with the aim of obtaining evidence for or
against the amenability of F . In Section 5, we describe two computational
approaches to estimate the exponential growth rate of F with respect to
the standard two-generator generating set, and in Section 6, we describe
the results of some computations to measure the average distance from the
origin of increasingly-long random walks, known as the rate of escape.

2. Background on Thompson’s group F and amenability

Richard J. Thompson’s group F is usually defined as the group of
piecewise-linear orientation-preserving homeomorphisms of the unit inter-
val, where each homeomorphism has finitely many changes of slope (“break-
points”) which all are dyadic integers and and whose slopes, when defined,
are powers of 2. F admits an infinite presentation given by

〈x1, x2, x3, . . . |xjxi = xixj+1 if i < j〉
which is convenient for its symmetry and simplicity, while there is a finite
presentation given by〈

x0, x1 | [x0x
−1
1 , x−1

0 x1x0], [x0x
−1
1 , x−2

0 x1x
2
0]

〉
.

Brin and Squier [1] showed that F has no free non-abelian subgroups, and
thus the question of the amenability of F is potentially connected to the
conjecture of Von Neumann that a group is amenable if and only if it had no
free non-abelian subgroups. The conjecture has since been solved negatively,
but the problem of the amenability of F is of independent interest and it
has been open for at least 25 years.

The usefulness of the infinite presentation is the fact that F admits a
normal form based on the infinite set of generators. The relators of the
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infinite presentation can be used to reorder generators of a given word into
an expression of the following form:

xr1
i1

xr2
i2

. . . xrn
in

x−sm
jm

. . . x−s2
j2

x−s1
j1

with
i1 < i2 < . . . < in j1 < j2 < . . . < jm.

This normal form is unique if one requires the following extra condition: if
the generators xi and x−1

i both appear, then either xi+1 or x−1
i+1 must appear

as well. Indeed, if neither xi+1 nor x−1
i+1 appeared, then the relator could be

applied so as to obtain a shorter word representing the same element. The
uniqueness of this normal form can be used to solve the word problem in
short time: given a word in the infinite set of generators, find the normal
form, which can be done in quadratic time, and the element is the identity
if and only if the normal form is empty. This unique normal form is most
helpful when the task at hand is to decide whether two words represent
the same element of F . If one wishes simply to test whether a given word
represents the trivial element of F , it is enough to reorder the generators,
but without checking the extra condition for uniqueness.

For an introduction to F and proofs of its basic properties see Cannon,
Floyd and Parry [3]. Also, for an excellent introduction to amenability, the
interested reader can consult Wagon [18], Chapters 10 to 12.

There are several equivalent definitions of amenability, especially for fi-
nitely generated groups. The standard definition is given by the existence
of a finitely-additive left-invariant probability measure on the set of sub-
sets of G. If the group is finitely generated, a celebrated characterization
due to Følner [8] in terms of the existence of sets with small boundary, has
given a special interest to this concept from the point of view of geometric
group theory, making it easier to see that amenability is a quasi-isometry
invariant.

The numerical criterion we will use extensively in this paper is due to
Kesten [15, 16] and it uses the concept of cogrowth.

Definition 2.1. Let G be a finitely generated group and let

1 → K → Fm → G → 1

be a presentation for G. The cogrowth of G is the growth of the subgroup
K inside Fm. In particular, the cogrowth function of G is

g(n) = #(B(n) ∩K),

where B(n) is the ball of radius n in Fm,and the cogrowth rate of G is

γ = lim
n→∞

g(n)1/n.
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Kesten’s cogrowth criterion for amenability states basically that a group
is amenable when it has a large proportion of freely reduced words, for
every length n, representing the trivial element; that is, when the cogrowth
is large.

Theorem 2.2 (Kesten). Let G be a finitely generated group, and let X be
a finite set of generators, with cardinal m. Let γ be its cogrowth rate. Then
G is amenable if and only if γ = 2m− 1.

This can also be interpreted in terms of random walks. If the group is
nonamenable (that is, if there are very few nontrivial words representing
the trivial element of the group), then the probability of a random walk
in the group ending at 1 is small. Since our random walks are taken to
be non-reduced, we consider the (2m)L non-reduced words of length L in
m generators, and let T (L) be the set of these words which represent the
identity in the group G. Then, define

p(L) =
#T (L)
(2m)L

,

that is, we define p(L) to be the proportion of words which are equal to the
identity in G. Then, a rewriting of Kesten’s criterion for non-reduced words
can be given by

Theorem 2.3 (Kesten). A group is amenable if and only if

lim sup
L→∞

p(L)1/L = 1

Roughly speaking, a group is amenable if the probability of a random
walk of length L returning to 1 decreases more slowly than exponentially
with L. This form of the criterion will be used in the subsequent sections
to try to study numerically the amenability of F .

3. Algorithms and programs

The direct approach at finding the numbers p(L) exactly for Thomp-
son’s group F fails even at quite small values of L due to the fact that the
number of words grows exponentially, so the computation times get large
easily. For instance, for a length as small as 14 the number of total words
is 414=268,435,456, out of which there are 1,988,452 representing the neu-
tral element, for a value p(14)1/14 = 0.704423677. It would be hard to
decide whether the sequence approaches 1. A number of improvements can
be made to ease the calculation so it becomes more feasible to estimate
whether the sequence tends to 1.

First, we take samples of words of a given length instead of the all words
of a given length. The number 4L grows impracticably large even for small
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values of L, so sampling becomes a necessity. Since the number p(L) is
basically a proportion (or a probability), it can be approximated by Monte
Carlo methods. One can always take a random non-reduced word in the
two generators x0 and x1 and check if it is the identity by solving the word
problem quickly using the normal form. Repeating this process one can find
a reasonably good approximation of the number p(L).

A further improvement can be implemented by taking only balanced
words. We observe that, since the two relators in G are commutators, a
word which represents the identity has to be balanced : it has to have total
exponent zero in both generators x0 and x1. So we consider not all random
words, but only balanced ones. We remark that the abelianization of F
is Z2, generated by x0 and x1, so being balanced is in fact equivalent to
representing the trivial element of Z2 = Fab. Now we let C(L) be the set
of balanced words among the 4L non-reduced words of length L in F2, and
define

p̂(L) =
#T (L)
#C(L)

,

the proportion of words representing the identity of F among balanced
words of length L. We have

L
√

p(L) = L

√
#T (L)

4L
= L

√
#T (L)
#C(L)

· L

√
#C(L)

4L

= L
√

p̂(L) · L

√
#C(L)

4L
.

Moreover, the last factor L

√
#C(L)

4L tends to 1 as L tends to infinity, because
Z2 is amenable. Thus F is amenable if and only if we have
lim supL→∞ p̂(L)1/L = 1.

So in order to decide whether F is amenable, we shall try to find good
approximations of p̂(L), the proportion of words representing 1F among
balanced words of length L, and this for values of L which are as large
as possible. Obviously, the algorithm for creating random balanced words
must be designed in such a way that all balanced words of length L have the
same chance of appearing. The practical advantage of approximating p̂(L)
rather than p(L) is that p̂(L) is much larger (roughly by a factor πL/2), so
much smaller sample sizes are required.

Yet another improvement, which substantially increases the efficiency of
the algorithm, can be made by using a “divide and conquer” strategy. The
underlying observation is that if L is even, then the probability that a ran-
dom word of length L represents the trivial element of F is equal to the
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probability that two random words of length L/2 represent the same ele-
ment. Thus, the idea of the algorithm is to create a large number N of
random words of length L/2 (in our implementations, values for N between
15,000 and 200,000 were generally used). Each of the N words is immedi-
ately brought into normal form, and these normal forms are stored. In order
to decide if two words represent the same element of F , we simply compare
their normal forms. Therefore we can consider all N(N − 1)/2 unordered
pairs of words in normal form, and we count how many identical pairs we
see. This number, divided by N(N − 1)/2, is an approximation for the
proportion p(L). However, the description just provided is an oversimplifi-
cation, because as described above, we would like to restrict our sample to
balanced words. Here we describe the estimation algorithm more precisely:

Each iteration of the algorithm has the following steps. In a preliminary
step, we create one random balanced word of length L. Then we focus our
attention on the first half (the first L/2 letters) of this word and we count
which element in the quotient Fab = Z2 this first half represents —that is,
we count the exponent sums of the letters x0 and x1 for the first half of the
word.

In the second step, we create N random words of length L/2 which all
represent this same element of the abelianization Fab = Z2, in such a way
that all possible words of length L/2 with the given x0-balance and x1-
balance have the same chance of appearing. As soon as it is created, each
random word is transformed into normal form, and this normal form is
stored.

In the third step, we count the proportion of identical pairs among all
N(N − 1)/2 unordered pairs of stored words in normal form.

In this way, each iteration of the algorithm gives an approximation to the
true value of p̂(L). Performing a few thousand iterations, and taking the
mean of the proportions obtained in each step, one obtains an approximation
to p̂(L).

The expected value for the result of this algorithm is indeed p̂(L), which
we interpret as the probability that two random words of length L/2 rep-
resent the same element of F , under the condition that they represent the
same element of Fab = Z2. It is immediate from the construction of the
algorithm that for any pair (k, l) ∈ Z2, the proportion of words representing
(k, l) in Fab among all words constructed by the algorithm is what it should
be —namely the probability that the first half of a balanced random word
of length L represents (k, l) in Fab = Z2.

Then, having fixed some pair (k, l) in Z2, we restrict our attention to
those iterations of the algorithm that deal with words with x0-balance k
and x1-balance l (and length L/2). We have to prove that the expected
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value for the proportion of identical pairs of words in our algorithm is what it
should be – namely the probability that a pair of random words, chosen with
uniform probability from the set pairs of words of length L/2 representing
the element (k, l) of Fab = Z2, represent the same element of F . That is,
we have to prove that our taking words in batches of N and comparing
all couples in that batch, rather than taking independent samples of pairs
of words, does not distort the result. That, however, follows immediately
from the fact that in our algorithm, all pairs of words of length L/2 with
x0-balance k and x1-balance l, appear on average with the same frequency
(they have uniform probability). The fact that our N(N − 1)/2 samples
are not independent has no impact on the expected value. It does have an
impact on the variation, that is, on the size of the error bars, but even this
negative impact becomes negligible when we have, on average, less than one
identical pair per batch of N words, as we typically have.

The authors have implemented the last two algorithms in computer pro-
grams written in FORTRAN and C. These programs were run for several
weeks on the “Wildebeest” 132-processor Beowulf cluster at the City Uni-
versity of New York. The results of these implementations will be shown in
the next section.

4. Computational results concerning amenability

The results for the computations of trivial words for F are represented
in Table 1. This table contains the following information. For lengths
L = 20, 40, . . . , 300, 320, it gives in the second and third columns the sample
size (the number of words that were tested) and the number of words among
them that were found to represent the trivial element of F ; thus the quotient
of these two quantities is an approximation of p̂(L). The fourth column
contains the Lth root of this proportion. The last column contains the 20th
root of the quotient of the proportions obtained for length L and for length
L− 20.

In order to clarify the last two columns we remark that the sequences
L
√

p̂(L) and 20
√

p̂(L)/p̂(L− 20) have the same limits – for instance if we had
p̂(L) ' const · aL then we would obtain

lim
L→∞

L
√

p̂(L) = lim
L→∞

20
√

p̂(L)/p̂(L− 20) = a

The difference between the two sequences is that the second one converges
much more quickly, but it is also more sensitive to statistical errors related
to insufficient sample size.

In summary, the question of amenability comes down to the question
whether the numbers in the last two columns converge to 1, or to a smaller
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length L sample size trivial L
√

p̂(L) 20

√
bp(L)

bp(L−20)

20 2.000 · 107 1 364 638 0.8744
40 2.000 · 107 82 922 0.8718 0.8693
60 2.000 · 107 6 341 0.8744 0.8794
80 2.500 · 1011 7 255 725 0.8776 0.8873
100 3.125 · 1011 938 587 0.8806 0.8928
120 8.750 · 1012 2 961 321 0.8832 0.8966
140 1.312 · 1013 551 480 0.8857 0.9009
160 1.238 · 1013 67 542 0.8879 0.9030
180 2.420 · 1013 18 618 0.8900 0.9067
200 1.425 · 1014 16 040 0.8918 0.9084
220 1.572 · 1015 26 596 0.8934 0.9096
240 2.063 · 1016 55 941 0.8950 0.9125
260 2.716 · 1016 12 162 0.8964 0.9139
280 7.566 · 1015 599 0.8976 0.9139
300 1.343 · 1016 196 0.8993 0.9221
320 5.856 · 1016 148 0.9003 0.9161

Table 1. Cogrowth estimates for F .

number. The numbers in the second to last column converge more slowly,
but they are more reliable.

Before we can establish any conclusions, it would be interesting to com-
pare these results with the corresponding results for groups which are known
to be amenable or not. As test groups we will take the free group on two
generators as a nonamenable example, and the group Z o Z (Z wreath Z).
The latter group is amenable since it is abelian-by-cyclic, and it appears
as a subgroup of F in multiple ways [14, 4]. The group Z o Z admits the
presentation

〈
a, t |

[
ati

, atj
]
, i, j ∈ Z

〉
,

and being two-generated it appears to be a good match to compare with F .
The results for these two groups are in Table 2.

A graphical representation of comparing these estimates of cogrowth in
the three groups F , Z o Z and F (2) is given in Figures 1.

Do these pictures suggest that F is amenable or non-amenable? It is
difficult to discern convergence to 1 or something less than 1 with this data,
and it is clear by considering other amenable groups such as iterated wreath
products like Z oZ oZ that the convergence to 1 could be exceptionally slow.
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Z o Z F2

L sample trivial L
√

p̂(L) sample trivial L
√

p̂(L)
20 2.475 · 107

1 802 935 0.8772 1.000 · 107
655 940 0.8727

40 2.475 · 107
247 710 0.8913 1.000 · 107

30 685 0.8653
60 1.980 · 107 34 658 0.8996 2.000 · 107 2 888 0.8630
80 2.475 · 107 9 669 0.9066 3.000 · 107 230 0.8631
100 1.980 · 107 2 079 0.9125 4.000 · 108 159 0.8630
120 1.095 · 108 3 485 0.9173 6.975 · 1011

14 167 0.8628
140 9.950 · 107 1 035 0.9213 8.000 · 1011 819 0.8626
160 4.990 · 108 1 847 0.9248 2.400 · 1012 136 0.8629
180 2.997 · 109 4 141 0.9278
200 4.740 · 1010 26 919 0.9306
220 8.636 · 1010 20 625 0.9330
240 1.859 · 1011 19 469 0.9352
260 4.249 · 1011 20 112 0.9372
280 5.734 · 1011 12 735 0.9390
300 5.844 · 1011 6 256 0.9407
320 4.050 · 1012 21 229 0.9422

Table 2. Cogrowth estimates for Z oZ and the free group
of rank 2.

5. Computational results concerning the growth of F

Another family of open questions about Thompson’s group F center on
the growth of F with respect to its standard generating set {x0, x1}. To
study the growth of a group with respect to a generating set, we consider
gn, the number of distinct elements of F of length n and we form the
spherical growth series, g(x) =

∑
gnxn. If we consider balls of radius n

and the number of elements bn whose length is less than or equal to n, we
have the growth series b(x) =

∑
bnxn. Thompson’s group has exponential

growth as the submonoid generated by x0, x1 and x−1
1 is free (see Cannon,

Floyd and Parry [3]). Burillo [2] computed the exact growth function for
positive words in F with respect to the standard two generator generating
set {x0, x1} which gives a lower bound for the growth rate of words in the full
group as the largest root of x3− 2x2−x + 1, which is about 2.24698. Guba
[12] used the normal forms for elements of F developed by Guba and Sapir
[13] to sharpen the lower bound of the growth function to 1

2 (3 +
√

5) which
is about 2.61803. Guba conjectures that 2.7956043 is an upper bound by
considering the ratio of the ninth and eighth terms in the spherical growth
series of F . But the exact growth function of F remains unknown – it is
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Figure 1. Comparing cogrowth estimates L
√

p̂(L) for
three groups.

not even known if the growth function is rational, though Cleary, Elder and
Taback [5] show that there are infinitely many cone types, which may be
evidence that the growth of the full language of geodesics is not rational.

Here, we use a computational approach to estimate the growth function
of F . We use two methods both based upon taking random samples of words
via random walks. Both of these methods estimate the number of words in
successive n-spheres of F . For the first method, we take an element of length
n and consider its “inward” and “outward” valence in the Cayley graph.
Since the relators of F with respect to the standard finite presentation are
all of even length, application of a generator x to an element w of F will
either increase or reduce the length by 1. The inward valence of w is the
number of generators which reduce the word length and the outward valence
of w is the number of generators which increase word length. If the length
of w is n, then the outward valence gives the number of words adjacent to w
which lie on the n + 1 sphere. By taking an average of the outward valence
of a large number of elements in the n sphere, we can estimate the ratio of
the number of elements in the n + 1 sphere to the number of elements in
the n sphere. Thus we can estimate the rate of growth, as the limit of these
ratios (for n →∞) will be the exponential growth rate for the group.

For the second method, we consider a variation of this approach where
instead of looking at the words at distance 1 from w, we look at the words
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at distance 2 from w and see how many of those words lie in the n + 2
sphere. This gives an estimate of the ratio of the number of elements in the
n+2 sphere to the number of elements in the n sphere, and in the limit, we
expect the square root of these ratios to approach the exponential growth
rate for the group.

We expect both methods to yield overestimates of the true growth rate,
but the error should be larger for the first method than for the second
one. The raw outward valence method is expected to overestimate because
it may count elements in the n + 1 sphere which are adjacent to more
than one element in the n sphere multiple times. An extreme example of
this are “dead-end” elements in F , characterized by Cleary and Taback
[6]. These dead-end elements have the property that right multiplication by
any generator reduces word length. The “outward valence” method includes
these dead-end elements in the count of growth – if the randomly selected
element in the n sphere is one of the 4 elements in the n sphere which
is adjacent to a particular dead-end element in the n + 1 sphere, it will
contribute to the average outward valence at least 1. For the distance two
method, however, such elements will not contribute to the growth as there
will be no words adjacent to the dead-end element which lie in the n + 2
ball.

To compute the length of an element of F , we use Fordham’s method
[10] for measuring word length of elements of F with respect to {x0, x1}.
This remarkable method amounts to building the reduced tree pair diagram
associated to an element of F , classifying each internal node of the trees
diagram into one of seven possible types, and then pairing the nodes and
summing a weight function of those node type pairs to get the exact length
of the element.

We note that selecting a random element of the n sphere for a predeter-
mined value of n is not feasible given current understanding of the metric
balls in F – we do not even know the number of such elements, as in fact
that is what we are trying to estimate. So we construct elements by taking
random walks in the group with respect to the standard generating set of
a predetermined length n, and then measure the length l of the element
obtained. We then compute its outward valence by measuring the lengths
of elements adjacent to it in the Cayley graph and we also count the number
of elements at distance two from it which lie in the l + 2 sphere. Thus, we
obtain simultaneously estimates of outward valence for elements in a range
of balls. Furthermore, we can record the length l of a word obtained by a
random walk of length n and use that to estimate crudely the rate of escape
of a random walk in F , as described in the next section. The results of the
computations concerning growth are presented in Table 3 and Figure 2.
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Lengths Words Average out-
ward valence

Average
num. at dist.
2

Growth es-
timate from
dist 2

0 - 19 5723 2.8440 7.8363 2.7993
20 - 39 629964 2.7334 7.3239 2.7063
40 - 59 1017998 2.7128 7.2521 2.6930
60 - 79 602694 2.6781 7.0389 2.6531
80 - 99 612613 2.6698 7.0041 2.6465

100 - 119 514665 2.6564 6.9256 2.6317
120 - 139 392069 2.6512 6.9074 2.6282
140 - 159 272564 2.6407 6.8529 2.6178
160 - 179 234893 2.6331 6.8057 2.6088
180 - 199 281806 2.6275 6.7779 2.6034
200 - 219 283764 2.6299 6.7897 2.6057
220 - 239 164359 2.6336 6.8234 2.6122
240 - 259 48750 2.6341 6.8431 2.6159
260 - 279 7326 2.6403 6.8756 2.6221
280 - 299 521 2.6430 6.8829 2.6235
300 - 319 17 2.6470 6.8235 2.6122

Table 3. Average outward valence of words arising from
random walks.

As we can see from the data, and as expected, the estimates using the
distance two method are lower than the estimate from the outward va-
lence method. Moreover, for the first experiment, the values lie between
the proven lower bound of 2.618. . . and the conjectured upper bound of
2.763. . . , for words of length 20 and more. However, other aspects of the
computational results are more surprising. Both functions appear to have
a minimum at length about 190. Moreover, for the second experiment, the
values obtained lie below the proven lower bound for words of length be-
tween 140 and 260, and lie in the expected range before and after that. This
data suggests that the rate of growth is close to the proven lower bound or
that random walks are not an unbiased method for estimating growth by
average outward valence. Of course, since we do not know the growth func-
tion, it is difficult to effectively pick a random element, so perhaps random
walks tends to bias toward those which have lower outward valence than is
representative. The role of “dead-end” elements of outward valence 0 may
play a role in this bias and we describe estimates of densities of dead-end
elements in the next section. It may be that random walks get stuck near
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Figure 2. Estimates for the exponential growth rate from
the data in Table 3

dead-end elements and other low outward valence items and thus random
walks may select these elements at a greater proportion than uniform.

Finally, we mention that we have also computed first twelve terms of the
exact spherical growth function of F to obtain:

g(x) = 1 + 4x + 12x2 + 36x3 + 108x4 + 314x5 + 906x6 + 2576x7 +
+7280x8 + 20352x9 + 56664x10 + 156570x11 + . . .

Guba [12] had already calculated the first ten terms of this sequence and
noticed that the ratios of successive terms of this series appear to decrease
and form a natural conjectural upper bound to the growth function. The two
additional successive quotients arising from our additional terms continue
the decreasing pattern and are 2.7841981 . . . and 2.7631300 . . . and lie well
above the experimental estimates of growth described above.
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6. Rate of escape of random walks and dead-ends in F

Here we note that as a side effect of the computations described in the
previous section to estimate growth, we obtain two pieces of data which are
interesting in their own right.

First, since the random elements used to estimate growth are constructed
by random walks and we measure their exact lengths using Fordham’s
method, we are able to see how quickly these random walks leave the origin.
Since these are symmetric random walks, there is of course the possibility
of backtracking to get non-freely reduced words, so we do not expect a
random walk of length 100 to actually reach the sphere of radius 100 with
non-negligible probability. Our estimates of the rate of escape of random
walks of lengths 100 to 1000 are shown in Table 4 and the rate of escape
seems to be decreasing in this range.

Length of
random
walk

Number of
walks

Average
length

Standard
deviation

Rate of
escape

100 4764000 41.18 8.34 0.4118
200 3242898 76.01 12.33 0.3800
300 2700000 109.3 15.51 0.3545
400 1500000 141.8 18.33 0.3544
500 600000 173.8 20.82 0.3476
600 1500000 205.3 23.08 0.3421
700 900000 236.5 25.14 0.3379
800 900000 267.6 27.14 0.3345
900 300000 298.5 29.02 0.3316
1000 300000 329.0 30.86 0.3290

Table 4. Distance from origin (word length) as a function
of random walk length

Second, since we compute the outward valence of words to estimate the
growth, we can look for words of outward valence zero- these are exactly the
“dead-end” elements discovered by Fordham [9] and characterized by Cleary
and Taback [6]. Though dead-end elements can occur in any group (with
respect to generating sets contrived for that purpose) groups with dead-end
elements with respect to natural generating sets are much less common.
Geodesic rays from the identity towards infinity cannot pass through dead-
end elements, and thus the existence of many dead-end elements tends to
reduce the growth of the group. Table 5 shows the observed incidence of
dead ends during the course of the growth estimation calculations in Section
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5. We see that there are significant numbers of dead ends but that the
fraction decreases as the lengths of elements increases.

Range of lengths Number of words Number of
dead-ends

Fraction

0 - 39 634927 665 0.001047
40 - 79 1620692 1386 0.0008552
80 - 119 1127278 625 0.0005544
120 - 159 665245 239 0.0003593
160 - 199 561502 149 0.0002654
200 - 239 825785 162 0.0001962
240 - 279 689500 114 0.0001653
280 - 319 393643 39 0.00009907
320 - 359 128254 11 0.00008577
360 - 399 20926 1 0.00004779
400 - 439 1193 0 0
440 - 479 21 0 0
Table 5. Fractions of dead-ends observed during random
walks as a function of resulting word length.
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