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Abstract. We discuss metric and combinatorial properties of
Thompson’s group T , such as the normal forms for elements and
uniqueness of tree pair diagrams. We relate these properties to those
of Thompson’s group F when possible, and highlight combinatorial
differences between the two groups. We define a set of unique nor-
mal forms for elements of T arising from minimal factorizations of
elements into convenient pieces. We show that the number of carets
in a reduced representative of T estimates the word length, that F is
undistorted in T , and that cyclic subgroups of T are undistorted. We
show that every element of T has a power which is conjugate to an
element of F and describe how to recognize torsion elements in T .

1. Introduction

Thompson’s groups F , T and V are a remarkable family of infinite,
finitely-presentable groups studied for their own interesting properties as
well as for their connections with questions in logic, homotopy theory and
measure theory of discrete groups.

Cannon, Floyd and Parry give an excellent introduction to these groups
in [5]. These three groups can be studied either algebraically, analytically
or geometrically. Algebraically, each has both finite and infinite presenta-
tions. Geometrically, an element in each group can be viewed as a tree pair
diagram; that is, as a pair of finite binary rooted trees with the same num-
ber of leaves, with a numbering system pairing the leaves in the two trees.
Analytically, an element of each group can be viewed as a self map of the
unit interval:

• in F as a piecewise linear homeomorphism,
• in T as a homeomorphism of the unit interval with the endpoints

identified, and thus of S1,
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• in V as a right-continuous bijection which is locally orientation pre-
serving.

Thompson’s group F in particular has been studied extensively. The
group F has a standard infinite presentation in which every element has
a unique normal form, and a standard two-generator finite presentation.
Fordham [8] presented a method of computing the word length of w ∈ F
with respect to the standard finite generating set directly from the tree
pair diagram representing w. Regarding F as a diagram group, Guba [10]
also obtained an effective geometric method for computing the word metric
with respect to the standard finite generating set. Belk and Brown [1] have
similar results which arise from viewing elements of F as forest diagrams.

In this paper, we discuss analogues for T of some properties of F , such
as normal forms for elements. We consider metrically how F is contained as
a subgroup of T , and show that the number of carets in a reduced tree pair
diagram representing w ∈ T estimates the word length of w with respect
to a particular generating set. We show that cyclic subgroups of T are
undistorted and that every element of T has a power which is conjugate to
an element of F . The groups T and V , unlike F , contain torsion elements,
and we describe how to recognize these torsion elements from their tree pair
diagrams.

2. Background on Thompson’s groups F and T

2.1. Presentations and tree pair diagrams. Thompson’s groups F and
T both have representations as groups of piecewise-linear homeomorphisms.
The group F is the group of orientation-preserving homeomorphisms of the
interval [0, 1], where each homeomorphism is required to have only finitely
many discontinuities of slope, called breakpoints, have slopes be powers of
two and have the coordinates of the breakpoints all lie in the set of dyadic
rationals. Similarly, the group T consists of orientation-preserving homeo-
morphisms of the circle S1 satisfying the same conditions where we represent
the circle S1 as the unit interval [0, 1] with the two endpoints identified.

Cannon, Floyd and Parry give an excellent introduction to Thompson’s
groups F , T and V in [5]. We refer the reader to this paper for full de-
tails on results mentioned in this section. Both F and T can be studied
either through finite or infinite presentations. With respect to the infinite
presentation

〈xi, i ≥ 0 |xjxi = xixj+1, i < j〉
for F , group elements have simple normal forms which are unique. It is
easy to see that F can be generated by x0 and x1, which form the standard
finite generating set for F , and yield the finite presentation
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〈x0, x1 | [x0x
−1
1 , x−1

0 x1x0], [x0x
−1
1 , x−2

0 x1x
2
0]〉.

The group T also has both a finite and an infinite presentation. The
infinite presentation is given by two families of generators, {xi, i ≥ 0}, the
same generators as in the infinite presentation of F , a family {ci, i ≥ 0} of
torsion elements, and the following relators:

(1) xjxi = xixj+1, if i < j
(2) cnxk = xk+1cn+1, if k < n
(3) cn = x0c

2
n+1

(4) cnxn = cn+1.
Using the first three relators, we see that only the generators x0, x1 and

c1 are required to generate the group, since the other generators can be
obtained from these three. In the following, we will use c to denote the
generator c1. The group T is finitely presented using the following relators,
both with respect to the infinite generating set and the finite generating set
{x0, x1, c}:

(1) [x0x
−1
1 , x−1

0 x1x0]
(2) [x0x

−1
1 , x−2

0 x1x
2
0]

(3) c2x1 = x2c3, (that is, x−1
1 cx0 = cx1)

(4) c1 = x0c
2
2, (that is, c = x0(x−1

1 cx0)2)
(5) c1x1 = c2, (that is, x−1

1 cx0x1 = x−1
0 x1x0x

−2
1 cx2

0)
(6) c3 = 1.

As with Thompson’s group F , we will frequently work with the more
convenient infinite set of generators when constructing normal forms for
elements and performing computations in the group. We will need to express
elements with respect to the finite generating set when discussing word
length.

A convenient representation for an element w in F or T is a tree pair
diagram, as discussed in [5]. A tree pair diagram is a pair of finite rooted
binary trees with the same number of vertices, together with a numbering of
the valence one vertices. A node of the tree together with its two downward
directed edges is called a caret. Valence one vertices of these trees are
called exposed leaves. In F , we insist that both leaf numberings begin at
0 and increase from left to right. In T , the numberings need only increase
cyclically from left to right.

The left side of the tree consists of the root caret, and all carets connected
to the root by a path of left edges; the right side of the tree is defined
analogously. A caret is called a left caret if its left leaf lies on the left side of
the tree. A caret is called a right caret if it is not the root caret and its right
leaf lies on the right side of the tree. All other carets are called interior.
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A caret is called exposed if it contains two exposed leaves. We write
w = (T−, T+) to express w as a tree pair diagram, and refer to T− as the
source tree and T+ as the target tree. Such a tree pair diagram is not
unique. There are many possible diagrams representing a given element.
We can choose the cyclic ordering for elements of T to always begin with 0
on the leftmost leaf of the source tree, and furthermore we impose a natural
reduction condition: if w = (T−, T+) and both trees contain a caret with
two exposed leaves numbered n and n+1, then we remove these carets and
renumber the leaves, thus forming a representative for w with fewer carets
and leaves. A tree pair diagram which admits no such reductions is called a
reduced tree pair diagram, and any element of F is represented by a unique
reduced tree pair diagram. When we write w = (T−, T+) below, we are
assuming that the tree pair diagram is reduced unless otherwise specified.

When w ∈ F or w ∈ T , we denote the number of carets in either tree
of a tree pair diagram representing w by N(w). When p is a word in the
generators of F or T , then p represents an element w in either F or T , and
we write N(p) interchangeably with N(w).

If w = (T−, T+) ∈ F , then the leaves in both trees are numbered from left
to right, beginning with zero. In this case, the subdivisions of the interval
are paired in increasing order, so that the intervals with zero as their left
endpoint are paired, and the intervals with one as their right endpoint are
paired. We may omit leaf numberings for elements of F for brevity without
any ambiguity. If w ∈ T , then w corresponds to a homeomorphism of S1

rather than [0, 1]. In elements of T , we can omit most leaf numbers for
brevity by adopting the following convention from [5]: we understand the
leaves in the source tree to be numbered from 0 to n beginning with the
leftmost leaf, and indicate by a circle or zero which of the leaves in the target
tree is paired with the first leaf in the source tree. Other leaf numberings
can be deduced from this single mark using the cyclic order. For this reason,
we often refer to tree pair diagrams representing elements of T as marked
tree pair diagrams.

For example, the element c corresponds to the homeomorphism of S1

given by

c(t) =





1
2 t + 3

4 if 0 ≤ t < 1
2

2t− 1 if 1
2 ≤ t < 3

4
t− 1

4 if 3
4 ≤ t ≤ 1

and has the marked tree pair diagram given in Figure 1.

2.2. Group Multiplication in F and T . Group multiplication in F and
T corresponds to composition of homeomorphisms, which we can interpret
on the level of tree pair diagrams as well. First, we consider u, v ∈ F , where
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Figure 1. The tree pair diagram for the generator c in T .

u

210

4

3

43

21

0

0
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4

3

4

1

2

v

Figure 2. The tree pair diagram for sample elements u
and v in T .

u = (T−, T+) and v = (S−, S+). To compute the tree pair diagram corre-
sponding to the product vu, we create unreduced representatives (T ′−, T ′+)
and (S′−, S′+) of the two elements in which T ′+ = S′−. Then the product is
represented by the possibly unreduced tree pair diagram (T ′−, S′+).

To multiply tree pair diagrams representing elements of T we follow a
similar procedure. We let u, v ∈ T , where u = (T−, T+) and v = (S−, S+).
To compute the tree pair diagram corresponding to the product vu, we
create unreduced representatives (T ′−, T ′+) and (S′−, S′+) of the two elements
in which T ′+ = S′− as trees. The product vu will be represented by the pair
(T ′−, S′+) of trees. To decide which leaf in S′+ to mark with the zero, we
just note that it should be the leaf which is mapped onto by the zero leaf
in T ′−. To identify this leaf, we find the zero leaf in T ′+. Since T ′+ = S′−
as trees, this leaf viewed as a leaf in S′− will be labelled m. Then the leaf
labelled m in S′+ will be the new zero leaf in the tree pair diagram (T ′−, S′+)
for vu. Alternately, we can follow the composition in both pairs of trees to
see how the leaves map to each other. This constructed tree pair diagram
will represent vu and is not necessarily reduced. For an example of this
multiplication, see Figures 2, 3 and 4.

3. Words and diagrams

3.1. Normal forms and tree pair diagrams in F . With respect to the
infinite presentation for F given above, every element of F has a unique
normal form. To describe these, we first observe that any w can be written
in the form

w = xr1
i1

xr2
i2

. . . xrk
ik

x−sl
jl

. . . x−s2
j2

x−s1
j1
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v
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0
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21

0

4 5

u

Figure 3. Unreduced versions of u and v for the multi-
plication vu in T , with carets added to perform the mul-
tiplication indicated with dashes. Now the target tree of
u has the same shape as the source tree of v, allowing the
composition.

vu

3

21

0

4 5

2 3

4

1

5

0

Figure 4. The tree pair diagram representing the product vu.

where ri, si > 0, 0 ≤ i1 < i2 . . . < ik and 0 ≤ j1 < j2 . . . < jl. However, this
expression is not unique. Uniqueness is guaranteed by the addition of the
following condition: when both xi and x−1

i occur in the expression, so does
xi+1 or x−1

i+1, as discussed by Brown and Geoghegan [2]. When we refer to
elements of F in normal form, we mean this unique normal form.

If the normal form for w ∈ F contains no generators with negative expo-
nents, we refer to w as a positive word and similarly, we say a normal form
is a negative word if there are no generators with positive exponents.

We call any word which has the form

w = xr1
i1

xr2
i2

. . . xrk
ik

x−sl
jl

. . . x−s2
j2

x−s1
j1

where ri, si > 0, 0 ≤ i1 < i2 . . . < ik and 0 ≤ j1 < j2 . . . < jl, a word in
pq form, where p is the positive part of the normal form and q the negative
part. The normal form for an element of F is the shortest word among all
words in pq form representing the given element.
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To any (not necessarily reduced) tree pair diagram (T−, T+) for an ele-
ment of F we may associate a word in pq form representing the element,
using the leaf exponents in the target and source trees. When the leaves of
a finite rooted binary tree are numbered from left to right, beginning with
zero, the leaf exponent of leaf k is the integer length of the longest string of
left edges of carets which originates at leaf k and does not reach the right
side of the tree. A tree pair diagram then gives the word

xr1
i1

xr2
i2

. . . xrn
in

x−sm
jm

. . . x−s2
j2

x−s1
j1

precisely when leaf ik in T+ has exponent rk, leaf jk in T− has leaf exponent
sk, and generators which do not appear in the word correspond to leaves
with exponent zero. We think of this word as the pq factorization of the
element given by the particular tree pair diagram. On the other hand, any
word in pq form can be translated into a tree pair diagram. Furthermore,
under this correspondence for F , reduced tree pair diagrams correspond
exactly to normal forms. For examples of this correspondence, see [5, 6, 7].

We observe that if an exposed caret has leaves numbered i and i+1, then
leaf i + 1 must have leaf exponent zero, since it is a right leaf. If both trees
in a tree pair diagram have exposed carets with leaves numbered i and i+1,
then the corresponding normal form, computed via leaf exponents, contains
the generators xi to both positive and negative indices, but no instances of
the generator xi+1. This is precisely the situation when the normal form
can be reduced by a relator of F . Thus the condition that the normal form
is unique is exactly the condition that the tree pair diagram is reduced.
This correspondence will be extended to elements of T in the next section.

3.2. Tree pair diagrams for elements of T . We now discuss the rela-
tionship between words in T and tree pair diagrams. The relationship is
more complicated in T than it is in F . The representation of elements of T
by marked tree pair diagrams suggests a way to decompose an element of T
into a product of three elements: the positive and negative parts together
with a torsion part in the middle, as described in [5].

Definition 3.1. Let the marked tree pair diagram (T−, T+) represent g ∈ T .
If T− and T+ each have i+1 carets, then we let R be the all-right tree which
has i + 1 carets, all of which lie on the right side of the tree. We can write
g as a product of:

(1) a ∈ F with tree pair diagram (T−, R) and a has negative normal
form u,

(2) a cyclic permutation cj
i for some i where 1 ≤ j ≤ i + 1 (which

permutes the leaf numbering in R), and
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q pc

Figure 5. Three tree pair diagrams representing the word
x1x2c

5
5x
−2
2 x−1

1 x−2
0 factorized as pcq.

(3) b ∈ F represented by (R, T+), where b has positive normal form v,
ignoring the leaf numbering on T+.

Then the word w = vcj
iu is called the pcq factorization of g associated to the

marked tree pair diagram (T−, T+). In the special case where g ∈ F ⊂ T ,
the pcq factorization will just be the usual pq factorization, as we consider
the c part of the word to be empty.

Figure 5 illustrates an example of an element of T decomposed in this
way.

The following theorem follows from the existence of these decompositions,
and an algebraic proof of this result is found in [5].

Theorem 3.2 ([5], Theorem 5.7). Any element x ∈ T admits an expression
of the form

xr1
i1

xr2
i2

. . . xrn
in

cj
i x−sm

jm
. . . x−s2

j2
x−s1

j1
,

where 0 ≤ i1 < i2 < · · · < in and 0 ≤ j1 < j2 < · · · < jm and either
1 ≤ j < i + 2 or cj

i is not present.

We refer to any word satisfying the hypotheses of Theorem 3.2 as a word
in pcq form for an element of T (just as words of this form with no cj

i term
are called words in pq form in the group F ) . Neither proof of the existence
of pcq forms gives an easy explicit method for transforming a general word
in the generators x±1

i , ci into pcq form without resorting to drawing tree
pair diagrams, so we will outline such a method below. We recall that the
four types of relators we are using in T are:

(1) xjxi = xixj+1, if i < j
(2) cnxk = xk+1cn+1, if k < n
(3) cn = x0c

2
n+1

(4) cnxn = cn+1

Lemma 3.3 (Pumping Lemma). The generators xi and cj of T satisfy

cm
n = xm−1c

m+1
n+1 if 1 ≤ m < n + 2.

Proof. This follows immediately from the relators of the types (2) and (3).
tu
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We consider a word w ∈ T written in the generators {xi, cj}. To put
w into pcq form, we must move all the positive powers of the xi to the
left and all negative powers to the right, leaving only generators ci in the
middle. We can use relators of types (1), (2) and (4) to accomplish that
in the following way. If there is a cn followed by an xk, we apply a relator
of type (2) to switch them if n > k. If n ≤ k, then we use the Pumping
Lemma to increase the index of the cn until it is large enough, and then we
use the equation

cm
k xk = cm−1

k ck+1 = xm−2c
m+1
k+1 ,

where the first equality is a relator of type (4) and the second equality follows
from the Pumping Lemma. The same procedure can be used for negative
powers of the xi by taking inverses in the relators and the Pumping Lemma.
During this process, if two generators of the type xn need to be moved past
each other, we use the relators of type (1).

The result of this process is a product of a positive word in F , several
powers of different elements of the form cj , and a negative word in F .
To combine a product of several cj into a single element ck, we use the
Pumping Lemma. We can always combine cicj to obtain an expression
with a single ck by raising the lower index via the Pumping Lemma, at
the cost of potentially accumulating some positive powers of xi generators
at the front of the expression or negative powers of xi at the back of the
expression. For example,

c2
3c5 = x1c

3
4c5 = x1x2c

4
5c5 = x1x2c

5
5.

Once the resulting expression contains a single ci generator, we can again
use the relators of type (1), the relators in F , to arrange the positive and
negative words so that the generators have the appropriate increasing or
decreasing order by index.

The relationship between words in pq form and tree pair diagrams in F
is different than the relationship between pcq forms and tree pair diagrams
in T . In F , every tree pair diagram has a pq factorization associated to it,
and any word in pq form is in fact the pq factorization associated to a (not
necessarily unique) tree pair diagram. Given any word in pq form, then
we can form a tree pair diagram for this element as follows. We consider
reduced tree pair diagrams for p and q, and construct a tree pair diagram
for the product pq as described in Section 2.2. The middle trees of the four
trees involved in the product are all-right trees. The all-right trees in this
decomposition may not have the same number of carets, so in forming the
diagram for pq we simply enlarge the smaller of the two of these all-right
trees (as well as the other tree in that diagram). Since only right carets are
ever added during this process, all of whose leaves have leaf exponent zero,
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this results in a tree pair diagram whose pq factorization is precisely the
word pq we began with.

In T , the correspondence between pcq factorizations and general pcq
words is not so straightforward. Although each tree pair diagram has a
pcq factorization associated to it, general words in algebraic pcq form are
not always the pcq factorizations associated to a tree pair diagram. The
difficulty arises when the tree pair diagram for c does not have as many
carets as those for p or q, as adding right carets to enlarge c appropriately
necessitates adding generators to the normal forms for p and q, so the tree
pair diagram one obtains by multiplying as in F will not necessarily have
the original word as its factorization. For example, the word x1c1 is in
algebraic pcq form, yet it is not the pcq factorization associated to some
tree pair diagram. There is a different representative for this element of T
which is the pcq factorization associated to the reduced tree pair diagram
for this group element: x1c2x

−1
1 . We prefer to work with words which are

pcq factorizations associated to tree pair diagrams, which will lead us to
unique normal forms.

We can algebraically characterize the words of type pcq which are pcq
factorizations associated to tree pair diagrams. The important condition is
that the reduced tree pair diagram for c should have at least as many carets
as those for p and q. We say that words in T with this property satisfy the
factorization condition.

Theorem 3.4. For elements in T \ F , the word

xr1
i1

xr2
i2

. . . xrn
in

cj
i x−sm

jm
. . . x−s2

j2
x−s1

j1
,

where i1 < i2 < · · · < in, j1 < j2 < · · · < jm, and 1 ≤ j < i + 2, is the
pcq factorization associated to a tree pair diagram if and only if the number
of carets in the reduced tree pair diagram for cj

i is greater than or equal to
the number of carets in the reduced tree pair diagram for either of the words
xr1

i1
xr2

i2
. . . xrn

in
or x−sm

jm
. . . x−s2

j2
x−s1

j1
in F .

Proof. Given a tree pair diagram, by construction, the pcq factorization
associated to it satisfies the factorization condition. Given a word that sat-
isfies the factorization condition, we can easily construct the corresponding
tree pair diagram as described above. We see that the tree pair diagram for
the c part has enough carets so that only right carets need to be added to
the trees in the diagrams for p and q, so that the diagram constructed will
indeed have the original word as its pcq factorization. tu

We can compute the number of carets of a word w ∈ F algebraically
from the normal form of w [4].
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Proposition 3.5 ([4]). Given a positive word in w ∈ F in the form

w = xr1
i1

xr2
i2

. . . xrn
in

,

then the number of carets N(w) in either tree of a reduced tree diagram
representing w is

N(w) = max{ik + rk + . . . + rn + 1, for k = 1, 2, . . . , n}.
When w ∈ F is not a positive word, N(w) is the maximum of the two

numbers obtained by applying Proposition 3.5 to the positive and negative
parts of the normal form for w. When considering elements of T , we recall
that the number of carets in a tree pair diagram for cj

i is equal to i + 1.
Thus it is always possible to decide algebraically when w ∈ T written in pcq
form corresponds to a tree pair diagram, using Proposition 3.5 to count the
carets for the positive and negative parts of the word.

4. Normal forms in T

In T , we will declare the words in pcq form which are pcq factorizations
associated to reduced diagrams to be the normal forms for elements of T ,
similar to the approach used in F . However, it is no longer true that these
words cannot be shortened by applying a relation. As we saw with the
normal form x1c2x

−1
1 in T , a word may be the shortest word representing

an element which satisfies the factorization condition, yet there may be
shorter words we can obtain by applying a relator which do not satisfy the
factorization condition.

Thus, when algebraically characterizing the normal form for elements of
T , we restrict ourselves to words of pcq form which satisfy the factorization
condition, regardless of whether or not a relator may reduce the length of
the word. We next need to specify algebraic conditions which characterize
the pcq forms that correspond to normal forms.

Theorem 4.1. Let w be a pcq factorization for an element g ∈ T associated
to a marked tree pair diagram in which each tree has i + 1 carets, where the
c part of the word is cj

i with 1 ≤ j ≤ i + 1. A reduction of a pair of carets
from the tree pair diagram occurs only if the word w satisfies one of the
following conditions:

(1) There exists a pair of generators xk+j and x−1
k , with 0 ≤ k ≤

i−j−1, and neither of the two generators xk+j+1 and x−1
k+1 appear.

The reduction corresponds to applying the relation

xk+jc
j
ix
−1
k = cj

i−1

after applying relations from F in the p and q parts of the word, if
necessary, to make xk+j and x−1

k adjacent to cj
i .
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(2) The generator x−1
k with k = i− j appears, and x−1

k+1 does not. The
reduction corresponds to applying

cj
ix
−1
k = cj

i−1

after possibly using relations from F as in (1).
(3) There exists a pair of generators xk−i+j−2 and x−1

k for i > k ≥
i−j+2 and neither one of the generators xk−i+j−1 or x−1

k+1 appear.
The reduction corresponds to applying

xk−i+j−2c
j
ix
−1
k = cj−1

i−1

after possibly applying relations from F .
(4) The generator xj−2 appears, and the generator xj−1 does not ap-

pear. The reduction corresponds to

xj−2c
j
i = cj−1

i−1

after possibly applying relations from F .

Proof. Let g ∈ T be represented by a tree pair diagram (T−, T+). If both
trees have an exposed caret whose leaves are identically numbered, then
we call that a reducible caret, as it must be removed in order to obtain
the reduced tree pair diagram representing g. We now consider algebraic
conditions corresponding to a reducible caret in a tree pair diagram.

In the tree pair diagram (T−, T+) for g ∈ T , there are two ways of
labelling the leaves in the target tree T+. The first labelling corresponds
to the order in which the intervals in the subdivisions determined by these
trees are paired in the homeomorphism, and is called the cyclic labelling.
The cyclic labelling gives the marked leaf in the target tree the number zero,
and the other leaves are given increasing labels from left to right around
the leaves of the tree. The second labelling ignores the marking and puts
the leaves in increasing order from left to right, beginning with zero. The
first labelling is used to determine which leaves in T− are paired with which
leaves in T+, and the second labelling is used in the computation of leaf
exponents to determine the powers of the generators that appear in the
word.

Suppose that the tree pair diagram for g ∈ T is not reduced. The four
cases above correspond to the following four possible locations of a reducible
caret relative to the marked leaf in the target tree.

(1) Case (1) corresponds to the case when the left leaf of the reducible
caret is to the left of the marked leaf in T+, but the reducible caret
is not the rightmost caret in T−.

(2) Case (2) corresponds to the special case when the reducible caret is
a right caret in T− (in which case necessarily the left leaf is to the



COMBINATORIAL AND METRIC PROPERTIES OF THOMPSON’S GROUP T 13

left of the marked leaf in T+). Leaf exponents from right carets will
always be zero and thus right carets cannot contribute generators
to the normal form. They may still result in an exposed reducible
caret, which occurs exactly in this case, and the reduction will only
affect the q part of the normal form.

(3) Case (3) corresponds to the case when the left leaf of the reducible
caret is either to the right of or coincides with the marked leaf in
T+, but the reducible caret is not the rightmost caret in T+.

(4) Case (4) corresponds to the special case when the reducible caret
is a right caret in T+ (in which case it cannot be to the left of the
marked caret in T+). As in Case (2), the exposed caret in this case
is a right caret and does not contribute a generator to the normal
form, but may still be reduced. This cancellation affects only the p
part of the normal form.

We will prove case (1), and the proofs in the other cases are analogous.
We consider an element g ∈ T represented by a tree pair diagram. If g /∈ F
then the two labellings of the leaves of T+ do not coincide. It is easy to
see that if w is the pcq word satisfying the factorization condition, where
the middle expression for c is cj

i , then the marked leaf, with leaf number
zero in the first labelling, always corresponds to the generator xi−j+2. Thus
the leaf in T+ which corresponds to the generator x−1

k is the one numbered
k + j in the cyclic labelling, and hence the exposed caret in T− corresponds
to the generator xk+j . Since the caret in question is not a right caret in
T−, the generator xk+j will appear in w. Since the caret in question is to
the left of the marked caret in T+, it cannot be a right caret in T+, and
hence the generator x−1

k appears in w. The fact that the generator xk+j+1

(respectively x−1
k+1) does not appear in w follows from the fact that the caret

is exposed in the source (respectively target) tree. This proves case (1).
We note that in case (2), the generator x−1

k is the highest index generator
with a negative exponent. This x−1

k generator must correspond to a caret
in T+ which is immediately before the marked caret, and its corresponding
caret in T− is the rightmost caret. Since right carets do not correspond to
algebraic generators in the normal form, there is no generator in the positive
part of the word involved in this reduction.

Finally, we observe one impossible situation for a marked tree pair dia-
gram, which does not appear in the classification above. It is impossible to
have a caret in T+ corresponding to the generator x−1

i−j+1. The leaf num-
bered i−j+1 in the left to right labelling of T+ is labelled i+1 in the cyclic
labelling, since leaf i− j + 2 is the marked leaf in T+, so the corresponding
caret cannot be exposed in T−. tu
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The conditions in Theorem 4.1 together with the factorization condition
algebraically characterize our normal forms. The normal forms for elements
in F have already been characterized, so we restrict to elements not in F in
our description.

Theorem 4.2. Any element g ∈ T which is not an element of F admits an
expression of the form pcq where

p = xr1
i1

xr2
i2

. . . xrn
in

c = cj
i q = x−sm

jm
. . . x−s2

j2
x−s1

j1
,

0 ≤ i1 < i2 < · · · < in, 0 ≤ j1 < j2 < · · · < jm, and 1 ≤ j < i + 2. Among
all the words in this form representing an element, there is a unique one
satisfying the following conditions, and it is the normal form.

• The factorization condition, which we now state as
i + 1 ≥ max{N(p), N(q)}.

• The word does not admit any reductions. Namely, this word satisfies
the following conditions:

– If there exists a pair of generators xk+j and x−1
k simultane-

ously, for k ≤ i− j − 1, then one of the generators xk+j+1 or
x−1

k+1 must appear as well.
– If there is a generator x−1

k with k = i− j, then x−1
k+1 must exist

too.
– If there exists a pair of generators xk−i+j−2 and x−1

k for k ≥
i − j + 2, then one of the generators xk−i+j−1 or x−1

k+1 must
appear as well.

– If there exists a generator xj−2, then a generator xj−1 must
also appear.

Proof. We claim that the conditions above precisely describe a set of unique
normal forms for T . A pcq word satisfying the factorization condition is the
pcq factorization associated to a marked tree pair diagram. However, if the
pcq word satisfies all four reduction conditions, we have just shown in the
previous theorem that this diagram is in fact the unique reduced diagram,
and hence the word is in fact a normal form. tu

We remark that the Pumping Lemma together with the reductions in
Theorem 4.1 give an explicit way of algebraically transforming any word
in the generators of T into a normal form. Namely, given any word, we
rewrite it in pcq form using the process described following the Pumping
Lemma. If the resulting word does not satisfy the factorization condition,
then we iterate the Pumping Lemma until we obtain a word for which
the factorization condition is satisfied. The Pumping Lemma increases the
number of carets for c and the number of carets for one of the words p
and q. Once a word is obtained which satisfies the factorization condition,
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there must be a corresponding tree pair diagram for the element. Now, if
the word satisfies any of the reduction conditions in Theorem 4.1, we apply
them successively using the relations described there. This method thus
produces the unique normal form.

5. The word metric in T

5.1. Estimating the word metric. For metric questions concerning T ,
we must consider a finite generating set instead of the one used to obtain the
normal form for elements. We now approximate the word length of an ele-
ment of T with respect to the generating set {x0, x1, c1}, using information
contained in the normal form and the tree pair diagram. These estimates
are similar to those for the word metric in F with respect to the generating
set {x0, x1} found in [3] and [4].

Theorem 5.1. Let w ∈ T have normal form

w = xr1
i1

xr2
i2

. . . xrn
in

cj
i x−sm

jm
. . . x−s2

j2
x−s1

j1
.

We define

D(w) =
n∑

k=1

rk +
m∑

l=1

sl + in + jm + i.

Let |w| denote the word metric in T with respect to the generating set
{x0, x1, c1}. There exists a constant C > 0 so that for every w ∈ T ,

D(w)
C

≤ |w| ≤ C D(w)

and similarly, for N(w) the number of carets in a reduced tree pair diagram
representing w,

N(w)
C

≤ |w| ≤ C N(w).

Proof. These inequalities follow from the correspondence between the nor-
mal form and the tree pair diagram for an element w ∈ T . It is clear, from
Proposition 3.5, that N(w) ≥ ∑n

k=1 rk, N(w) ≥ ∑m
l=1 sl, N(x) ≥ in, and

N(w) ≥ jm. The inequality N(w) ≥ i is clear from the fact that ci has i+1
carets. These inequalities prove that

D(w) ≤ 5 N(w).

We rewrite the generators xi and cj in terms of x0, x1 and c and look at
the lengths of these words to obtain the inequality

|w| ≤ C D(w)

for some constant C > 0. Combining the two inequalities above we have

|w| ≤ C ′N(w).
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To obtain lower bound on the word length, one only needs to observe
that the tree pair diagram for each generator has either two or three carets.
If u is a word in x0, x1 and c with length n, then as these generators are
multiplied together, each product may add at most 3 carets to the tree pair
diagram. Thus the diagram for u will have at most 3n carets. It then follows
that

N(w) ≤ 3|w|.
Combining this with the above inequality, we obtain the desired bounds. tu

We use Theorem 5.1 to show that the inclusion of F in T is a quasi-
isometric embedding. This means that there are constants K > 0 and C so
that for any w, z ∈ F we have

1
K

dF (w, z)− C ≤ dT (w, z) ≤ KdF (w, z) + C

where dF and dT represent the word metric in F and T respectively, with
regard to the generating set {x0, x1} of F and {x0, x1, c} of T .

When considering whether the inclusion of a finitely generated subgroup
H into a finitely generated group G is a quasi-isometric embedding, we
can instead equivalently show that the distortion function is bounded. The
distortion function is defined by

h(r) =
1
r

max{|x|H such that x ∈ H, |x|G ≤ r}.
Word length in F is comparable to the number of carets in the reduced

tree pair diagram representing the word, as seen in [4, 8]. This, combined
with Theorem 5.1 easily shows that the distortion function is bounded, and
thus proves the following corollary.

Corollary 5.2. The inclusion of F in T is a quasi-isometric embedding.

5.2. Comparing word length in F and T . Although Corollary 5.2 shows
that F is quasi-isometrically embedded in T , we now show that the word
length of certain elements of F does not change when these elements are
considered as elements of T , with respect to natural finite generating sets.
For this, we use the standard finite generating set {x0, x1} for F and the
generating set {x0, x1, t} for T , where t = c0 is the non-identity element
of T in which each tree has a single caret. This element corresponds to a
rotation of the unit circle of order 2. We use t instead of c = c1 for the third
generator because we are interested in understanding how multiplication by
generators can change the number of carets, which is more straightforward
using t than c.

To find elements which have the same length in F and T with respect to
these generating sets, we consider the process by which they are constructed.
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A geodesic word an · · · a2a1 in the generators {x0, x1, t} representing w ∈
F ⊂ T describes how a tree pair diagram for w = (T−, T+) is created by
successively applying the generators ak to the tree pair diagram for the
word ak−1 · · · a2a1, as k increases from 1 to n. We begin with the identity
element of T and its reducible tree pair diagram consisting of two identical
trees with one caret each, and multiply first by a1. This changes the tree
pair diagram of the identity element by creating some new carets or adding a
marking. As each successive generator is added to the product, the number
of carets in the existing tree pair diagram may increase, decrease or remain
the same. If the number of carets increases, it can increase by at most two
since each generator has at most two carets in addition to the root caret. In
other cases, the number of carets may remain the same or decrease. When
all generators in the sequence an · · · a2a1 have been added to the product,
the resulting tree pair diagram is (T−, T+). We now carefully analyze the
circumstances under which a single generator in this product can add two
carets to an existing tree pair diagram.

Lemma 5.3. If w ∈ T is a non-identity element, and w 6= t, then N(tw) =
N(w).

Proof. Since the tree pair diagram for t contains a single caret, no new
carets must be added to the tree pair diagram for w in order to perform
the multiplication tw. It is easy to see that no reduction can occur after
multiplication by t. tu
Lemma 5.4. Let w = (T−, T+) ∈ T be nontrivial and α ∈ {x±1

0 , x±1
1 , t}.

Then N(αw) = N(w) + 2 if and only if α = x±1
1 and the right subtree of

the root caret of T+ is empty.

Proof. Since the source tree of the tree pair diagram for x±1
1 contains two

carets in the right subtree of the root caret, it is clear that these carets must
be added to (T−, T+) in order to perform the multiplication, and that the
resulting product does not have reducible carets in the right subtree of the
root caret in either tree. The tree pair diagram for x±1

0 contains two carets
in each tree, but one is the root caret, so the maximum number of carets
that could be added to (T−, T+) in order to multiply by x±1

0 is one. Lemma
5.3 completes the proof. tu

We consider the process of constructing the tree pair diagram for a prod-
uct an · · · a2a1 where ai ∈ {x±1

0 , x±1
1 , t}. Let Pi = aiai−1 · · · a2a1 for

1 ≤ i ≤ n. We construct the tree pair diagrams for the successive products
Pi for i = 1, · · · , n. Each additional generator may either reduce, leave
unchanged, increase by one, or increase by two the number of carets in the
tree pair diagram corresponding to the suffix Pi of Pn. To distinguish those
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generators which add two carets to the tree pair diagram, we will use the
letter b, while for other generators we will use the letter a. So we represent
an element w ∈ T by a string of generators

ar · · · ahbk · · · as+1b1as · · · a1

where if at is the generator immediately to the right of bj, then N(bjat· · ·a1)=
N(at · · · a1) + 2, and otherwise we have N(as · · · a1) ≤ N(as−1 · · · a1) + 1.

Lemma 5.5. If w ∈ F and w = ar · · · ahbk · · · as+1b1as · · · a1 where not
all ai ∈ {x±1

0 , x±1
1 }, then there must be at least two indices i and j so that

ai = aj = t.

Proof. Suppose that in the expression above for w ∈ F , there was a single
letter t. Then we easily obtain t ∈ F , a contradiction. tu
Lemma 5.6. Let w ∈ T be given by an expression of the form
ar · · · ahbk · · · as+1b1as · · · a1. Then bj+1 and bj cannot be adjacent in the
expression. Note that possibly s = 0 in which case the word ends with b1

and that possibly h− 1 = r in which case the word begins with bk.

Proof. Let v be the suffix of the word w to the right of the generator bj .
We know from Lemma 5.4 that in a tree pair diagram (R−, R+) for v, the
right subtree of the root caret of R+ is empty. Since bj = x±1

1 , the right
subtree of the root caret of S+ has one of two forms: two right carets or
a right caret with a left child. In either case, the right subtree of the root
caret is nonempty, and thus the next generator in the multiplication cannot
add two carets to the tree pair diagram, so is not bj+1. tu

We now characterize one type of element of F whose word length is
unchanged when viewed as an element of T , using the generating set {x0, x1}
for F and {x0, x1, t} for T . These are elements w ∈ F for which N(w)
exceeds the word length |w|F . Fordham [8] computes |w|F by assigning an
integer weight between zero and four to each pair of carets in the tree pair
diagram representing w. In a given word there are at most two weights of
zero. Here we investigate words in which most weights are one. Such words,
for example, are represented by tree pair diagrams with no interior carets
having right children.

Theorem 5.7. If w ∈ F with N(w) ≥ |w|F + 1 then |w|T = |w|F , where
word length if computed with respect to the generating set {x0, x1} for F
and {x0, x1, t} for T .

We immediately obtain the following corollary, since |xn
0 |F = |xn

1 |F = n,
while N(xn

0 ) = n + 1 and N(xn
1 ) = n + 3.
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Corollary 5.8. The elements xn
0 and xn

1 have word length n in both F and T
with respect to the finite generating sets {x0, x1} and {x0, x1, t} respectively.

We now prove Theorem 5.7.

Proof. Suppose w ∈ F can be written as w = ar · · · a2a1 where ai ∈
{x±1

0 , x±1
1 , t}, and r < n = |w|F . If ai is a generator which adds two carets

to the tree pair diagram, then rename this generator bj . So we rewrite the
expression for w as

w = ap · · · bk · · · as+1b1as · · · a1

with r = p + k where k is the number of bj generators. By Lemma 5.6 we
have k − 1 ≤ p, and we know from Lemma 5.4 that bi = x±1

1 .
We first prove the following lemma relating to this expression for w:

Lemma 5.9. Let ap · · · ahbk · · · bjat · · · as+1b1as · · · a1 be an expression for
a word w ∈ T , where each bj = x±1

i is a generator which adds two carets to
the tree pair diagram, and each ai is a generator from the set {x±1

0 , x±1
1 , t}

which adds at most one caret to the tree pair diagram. We consider the
generators ak which appear between bj+1 and bj.

(1) There is at least one generator between bj+1 and bj which does not
increase the number of carets.

(2) Let aJ be the generator between bj+1 and bj and closest to bj+1 such
that if vJ is the suffix of w immediately to the right of aJ , then the
right subtree of the the target tree of vJ is nonempty, but the right
subtree of the target tree of aJvJ is empty.
If aJ = t and bj is not the rightmost generator in the expression for
w, then there is another generator aL between bj+1 and bj which
does not add carets to the tree pair diagram.

Proof. We know that bj+1 = x±1
1 , and for multiplication by bj+1 to add

two carets to the tree pair diagram, the target tree of the tree pair diagram
for the suffix of w immediately following bj+1 must have an empty right
subtree. We also know that the target tree of the tree pair diagram for
the suffix of w beginning with bj does not have an empty right subtree,
according to Lemma 5.4. Thus the generator aJ in the statement of the
lemma must exist.

As in the statement of the lemma, let vJ denote the suffix of w immedi-
ately to the right of aJ . We now claim that N(vJ ) ≥ N(aJvJ ). If aJ = t
then the claim follows from Lemma 5.3. If aJ = x−1

0 or aJ = x±1
1 , and

N(aJvJ) = N(vJ ) + 1, then the right subtree of the target tree of aJvJ can
never be empty. Thus if aJ is one of the above three generators, it can never
add a caret to the tree pair diagram of vJ , because we know that the right
subtree of the target tree of aJvJ must be empty.
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Suppose that aJ = x0. If N(aJvJ ) = N(vJ ) + 1, then the right subtree
of the target tree of the tree pair diagram for vJ must be empty. But this
contradicts the definition of aJ , and thus N(aJvJ) ≤ N(vJ ), and the claim
is again true.

Now consider the case aJ = t when bj is not the rightmost generator in
the expression for w. Let bj · · · a1 = (R−, R+) and vJ = (S−, S+). Since
bj = x±1

1 , the right subtree of the root caret of R+ has one of two forms: two
right carets or a right caret with a left child. Let A denote the left subtree
of the root caret of this tree. Denote the right subtree of S+ by A′. Since bj

is not the rightmost generator in the expression for w, we know that both
A and A′ are nonempty. Thus there must be at least one generator between
aJ and bj . We claim that there must be a generator between aJ and bj

which does not increase the number of carets in the tree pair diagram.
Since the right subtree of the root caret of R+ is nonempty, as is the

left subtree A of the root caret, we see immediately that N(x±1
0 bj · · · a1) ≤

N(bj · · · a1). Similarly, multiplication by b−1
j cannot increase the number

of carets in the tree pair diagram (R−, R+), and multiplication by t never
increases the number of carets in any tree pair diagram. Thus the only
generator which can precede bj and increase the number of carets in the
tree pair diagram is bj itself. Repeat occurrences of bj = x±1

1 are written as
ai in the expression for w, since they do not increase the number of carets
by 2. But the target tree in the tree pair diagram for bm

j · · · a1 will always
have left subtree A and a nonempty right subtree. Since vJ = (S−, S+) has
a tree S+ with empty right subtree of the root caret, we see that there must
be another generator not equal to bj between bm

j · · · a1 and the leftmost
letter in vJ . By the above argument, this generator must not increase the
number of carets in the tree pair diagram. Hence there must be another
generator between aJ and bj which does not increase the number of carets
in the tree pair diagram. tu

According to Lemma 5.9, between each pair of generators bj+1 and bj

there is a generator which does not add carets to the tree pair diagram.
There are at least k−1 such generators in the expression for w, between bj+1

and bj for j = 1, 2, · · · k−1. In the proof of Lemma 5.9, these generators are
denoted aJ . Lemma 5.9 also shows the existence of at least one additional
generator which does not increase the number of carets in the tree pair
diagram, for the following reason.

We can assume that the expression for w contains at least one gener-
ator t, otherwise we would have a word in F . In F , we know that the
word length of w is n > r. It follows from Lemma 5.5 that there must
be at least two t generators in the expression for w. We now prove in
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three cases that there must be an additional generator in the sequence
ap · · · ahbk · · · bjat · · · as+1b1as · · · a1 which is not one of the aJ generators
guaranteed by Lemma 5.9, which does not increase the number of carets in
the tree pair diagram.

(1) If no aJ = t, then we have found two additional generators which do
not increase the number of carets in the tree pair diagram, namely
the two instances of the generator t guaranteed by Lemma 5.5.

(2) If two t generators play the role of aJ , one between bj+1 and bj ,
and the other between bm+1 and bm, then at most one of bj and bm,
say bj , can be the rightmost generator in the sequence representing
w. Then Lemma 5.9 guarantees one additional generator between
bm+1 and bm which does not increase the number of carets in the
tree pair diagram.

(3) If only one of the t generators in the expression is an aJ genera-
tor, then the other t generator guaranteed by Lemma 5.5 does not
increase the number of carets in the tree pair diagram.

Thus we always have at least k generators in the expression
ap · · · ahbk · · · bjat · · · as+1b1as · · · a1 which do not increase the number of
carets in the tree pair diagram.

We then obtain the following upper bound for the number of carets N(w):

n + 1 ≤ N(w) ≤ 1 + 2k + (r − k − k) = r + 1 < n + 1

which is clearly a contradiction. Thus we are unable to express w using
fewer generators than n = |w|F . tu

5.3. Cyclic subgroups of T . We can use the interpretation of elements
of T as homeomorphisms of the circle to understand how F is contained in
T and that the cyclic subgroups of T are quasi-isometrically embedded.

Theorem 5.10. Every element in T has a power which is conjugate to an
element in F .

Proof. Ghys and Sergiescu [9] and Liousse [12] show that every element in T
has rational rotation number as a homeomorphism of S1. A standard result
in dynamics is that a homeomorphism of the circle has rational rotation
number if and only if it has a periodic orbit (see, for example Katok and
Hasselblatt [11].) Thus, every element in T has a periodic orbit. That is,
given f ∈ T , there exists a dyadic rational x ∈ [0, 1] such that fn(x) = x
for some n.

Given a dyadic rational x, we consider the rotation of the circle tx(p) =
p + x, where we view S1 as the unit interval with the endpoints identified.
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Then tx is an element of T , and conjugation of w ∈ T by tx, for the appro-
priate choice of x yields an element with zero as a fixed point. Thus the
conjugated element must lie in F . tu

We use Theorem 5.10 to show that cyclic subgroups of T are quasi-
isometrically embedded. We again bound the distortion function, as in the
proof of Corollary 5.2.

Theorem 5.11. Let x ∈ T be a non-torsion element. Then the cyclic
subgroup 〈x〉 generated by x is quasi-isometrically embedded in T .

Proof. If the element x lies in F , the result can be deduced from Corol-
lary 5.2, since Burillo [3] shows that all cyclic subgroups in F are quasi-
isometrically embedded, and F is quasi-isometrically embedded in T . If
x /∈ F , it has a power wn which is conjugate to an element of F by some
element z ∈ T . Since x is not a torsion element, this power is not conjugate
to the identity element of F .

The cyclic subgroup generated by zwnz−1 is quasi-isometrically embed-
ded in T . Conjugation by z changes the number of carets by at most a
factor of 2N(z), and thus we see that 〈x〉 must also be quasi-isometrically
embedded in T . tu

6. Torsion elements

Although the group F is torsion free, both T and V contain torsion
elements. It is easy to construct torsion elements in T or V by choosing
any binary tree S and making any marked tree pair diagram with S as
both source and target tree. If the labelling of the target tree is the same
as the labelling of the source tree, we get an unreduced representative of
the identity; otherwise, we get a non-trivial torsion element. If this is an
element of T , the tree pair diagram has pcq factorization in which q = p−1.
In fact, any torsion element can be represented by such a tree pair diagram,
though its reduced marked tree pair diagram may well not have the same
source and target trees, corresponding to the fact that although it has a
pcq word where q = p−1, the normal form may well not have this special
balanced appearance.

Proposition 6.1. If f ∈ F, T or V is a torsion element, then it can be
represented by a (marked) tree pair diagram with the same source and target
trees.

Before proving Proposition 6.1, we establish some notation which links
the analytic and geometric interpretations of these groups. For f ∈ F , T ,
or V , if (T−, T+) is a marked tree pair diagram representing f , then it is
sometimes convenient to denote the tree T+ by f(T−). The element f can
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be though of as mapping the leaves of T− to the leaves of f(T−) = T+,
where the marking defines this mapping of the leaves.

Given two rooted binary trees T and T ′, we say that T ′ is an expansion
of T if T ′ can be obtained from T by attaching the roots of additional
trees to some subset of the leaves of T . We observe that if (T, f(T )) is a
marked tree pair diagram for f , and T ′ is an expansion of T , then there
is always a tree pair diagram (T ′, f(T ′)) for f , and f(T ′) is an expansion
of f(T ). Given two rooted binary trees S and T , by the minimal common
expansion of S and T we mean the smallest rooted binary tee which is an
expansion of both S and T . Using this language, if (T, f(T )) and (S, g(S))
are marked tree pair diagrams for f and g respectively, the process described
in Section 2.3 for creating a tree pair diagram for the product gf could be
summarized as follows. If E is the minimal common expansion of f(T ) and
S, then there are tree pair diagrams (f−1(E), E) for f , (E, g(E)) for g, and
(f−1(E), g(E)) for gf .

Proof. Suppose that f is a torsion element, and that f cannot be represented
by a tree pair diagram with the same source and target trees. Since there
exists a positive integer m such that fm is the identity, it follows that all
tree pair diagrams for fm have the same source and target trees. We reach
a contradiction by constructing (marked) tree pair diagrams (An, Bn) for
fn such that An 6= Bn for every n ≥ 1. These tree pair diagrams are
constructed inductively, viewing fn as a product (fn−1)(f). For n = 1, let
(A1, B1) be the reduced marked tree pair diagram for f . If k ≥ 2, suppose
the marked tree pair diagram (Ak−1, Bk−1) for fk−1 has been constructed.
Let Ek−1 be the minimal common expansion of the trees A1 and Bk−1.
Then fk has tree pair diagram (f−(k−1)(Ek−1), f(Ek−1)), and we let Bk =
f(Ek−1) and Ak = f−(k−1)(Ek−1).

By construction, Ak+1 is an expansion of Ak for all k ≥ 1. We claim also
that Bk+1 is an expansion of Bk for all k ≥ 1. For k = 1, E1 is by definition
an expansion of A1, which implies that B2 = f(E1) is an expansion of
B1 = f(A1). Suppose inductively that Bk is an expansion of Bk−1. Now
Ek is an expansion of Bk and A1, so Ek is an expansion of Bk−1 and A1.
But Ek−1 is the minimal common expansion of Bk−1 and A1, so Ek is an
expansion of Ek−1, which implies that Bk+1 = f(Ek) is an expansion of
Bk = f(Ek−1).

Now if An = Bn, then since An is an expansion of A1, Bn is an expansion
of A1. But since En−1 is the minimal common expansion of Bn−1 and A1,
this implies that Bn = f(En−1) is an expansion of En−1. But they have the
same number of carets, so in fact f(En) = En−1, which cannot be. Hence
An 6= Bn for all n, as claimed. tu
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Corollary 6.2. An element of T is torsion if and only if it is a conjugate
of some cj

i .

Proof. If an element is torsion, then it admits a diagram with two equal
trees. The pcq factorization associated with this diagram has the form
pcj

ip
−1, where p is a positive element of F . tu

A particularly natural torsion subgroup is the subgroup R of pure rota-
tions, where by a pure rotation by d = a

2n (where a is not divisible by 2) we
mean an element gd ∈ T which corresponds to the homeomorphism of S1

given by

gd(t) =
{

t + a
2n if 0 ≤ t < 1− a

2n

t + a
2n − 1 if 1− a

2n ≤ t < 1
Such pure rotations were used in Section 5.3 to conjugate the fixed point

of a homeomorphism to 0.
This subgroup is isomorphic to the group of dyadic rational numbers

modulo 1, which has a 2-adic metric as follows: if x = p
2l , y = q

2m , and
z = |x− y| = r

2k , where p, q and r are odd, then d(x, y) = 2k. With respect
to this metric, the subgroup of rotations is quasi-isometrically embedded in
T .

Proposition 6.3. The subgroup R of the pure rotations, with the 2-adic
metric, is quasi-isometrically embedded in T .

Proof. We note that if g ∈ T is the rotation by a
2n where a is not divisible by

2, then there are 2n−1 carets in the reduced tree pair diagram representing
g, so N(g) = 2n− 1. Since we have shown that the word length of g in T is
bi-Lipschitz equivalent to N(g), the proposition follows. tu
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