ON MODULI OF SMOOTHNESS OF FRACTIONAL
ORDER

S. TIKHONOV

ABSTRACT. In this paper we consider the properties of moduli of
smoothness of fractional order. The main result of the paper describes
the equivalence of the modulus of smoothness and a function from
some class.

1. INTRODUCTION

In 1977 P.L. Butzer, H. Dyckhoff, E. Goerlich, R.L. Stens (see [2]) and
R.Tabersky (see [14]) introduced the modulus of smoothness of fractional
order. This notion could be considered as a direct generalization of the
classical modulus of smoothness, and it is more natural to use it for a
number of problems of harmonic analysis (see, for example, [2], [5], [7],
10]).

The important problem of approximation theory and theory of Fourier
series is the problem of description of moduli of smoothness (see [1], [4], [8],
[11]). One can consider this problem from the viewpoint of description of
majorant of smoothness moduli. Recently, A. Medvedev (see [6]) has proved
that for any modulus of continuity on [0, 00) there exists a concave majorant
that is infinitely differentiable. In this paper, we obtain the description of
the modulus of smoothness of fractional order from the viewpoint of the
order of decreasing to zero of the modulus of smoothness.

Let us introduce several definitions. If 1 < p < oo, let L, be the space of

27 P
27-periodic, measurable functions f(z) such that ||f||p:<ﬂf(x)|p da:><oo.
0
Similarly, let Lo, be the space of 2m-periodic, continuous functions f(x)

with ||f|lec = n[l(;a;( | |f(z)]. We will define the difference of fractional order
x€|0,27

B (8> 0) of function f(z) at the point  (z € R) with increment h (h € R)
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by

oo

81w = 0 () st + (6= vim),

v=0
Where(u) wforu>l() ﬁforv—l(ﬁ)—lforyzo.
The modulus of smoothness of order 5 (6 > 0) of function f € L,
‘Aﬁf H see [2,[14]).

1 <p < o0, is given by ws(f,t), = sup
Let @, (v € R) be the set of nonnegatlve bounded functions ¢(d) on
(0, 00) such that
a): ¢(0) — 0as d — 0,
b): ¢(d) is nondecreasing,
¢): ©(6)0~7 is nonincreasing.
If for f € L), there exists g € L, such that hm Hh ﬁABf( H =0

then g is called the Liouville-Grunwald- Letnlkov derivative of order ﬁ >0
of a function f in the L,-norm, denoted by g = DPf (see [2], [12]). Set
Wf = {f € L, : DPf exists as element in Lp} . The K-functional is given

(L W)= it (If =gl +¢|D%]], ).

2. RESULTS
Let f(x) € Ly, p € [1,00] and 8 > 0. It is clear that (see [12])
(¢)]- [Ptz o)

v

" BV eN
implies C*(8) = > ‘(f)‘ < oo and the fractional difference A’gf(x) is
v=0

<

defined almost everywhere and belongs to Ly:

18R FOllp < C*B)IF Ol (1)
It is easy to write the following representation for C*(3) (see [14]):

k
23 (£), i 2k<B<2%+1(k=0,1,2,),
crB) =9 "% o)
2% () i RH1<ASAA2 (k=012

The fractional differences and moduli of smoothness have some useful
properties and we shall establish some of them in the following lemmas.

[2], [14]) Let f € Ly, p € [1,00], a, 3> 0; h € R. Then

Lemma 2.1. (
(a): A%(Aﬁf( ) = AZ'mf(x) for almost every x;
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() 18550y < C@IALFC)
() Jim ARG, =0.

Lemma 2.2. Let f, f1,fo € Ly, p€[1,0], a,8>0; z,h € R. Then

(a): wg(f,d), is nondecreasing nonnegative function of & on (0,00)
with 6lir(1)1+ wg(f,0)p =0;

(b : wﬂ(fl + and)p < wﬁ(flvé)p +wﬂ(f276)p;

(©): warp(f;0)p < C*(Wws(f,0)p;

(d): if A > 1, then  ws(f,A8)p < C(B)Nws(f,68)p;

(e): if 0 <t <4, then ws(f,8),d " <C(Bws(f,t),t=".

Indeed, we immediately have (a) — (¢) from Lemma 2.1, (d) was proved
in [2], and (d) implies (e):

on(r. 8= (1,51) <00) (5) watsn

Lemma 2.3. Let f € L, p € [1,00], 8> 0.
(a): If B €N, then ||AZf(- || < 2l

NN

470,
(b): I B¢ N, then [ AZFC)||, < 25500 [ A% £( Hp

Corollary 2.4. For a function ¢(t) = t* (0
smoothness of order B (8 > 0) of a function

necessary to have a < [BH] + 1.

< )to be a modulus of
€L, 1<p<ooitis

<t
fC)

Theorem 2.5. Let p € [1,0¢0], > 0.
(A): If f(-) € Ly, then there exists a function ¢(-) € ®g such that
p(t) Sws(f,t)p < C(B)p(t) (0 <t <o0),

where C(f) is a positive constant depending only on 3.
(B): If (-) € ®g, then there exist a function f(-) € L, and a constant
t1 > 0 such that

Ci(B)wp(fit)p < (t) < Co(B)wp(fit)p (0 <t <ty),
where C1(8), Ca2(B) are positive constants depending only on 3.

Corollary 2.6. Letp € [1,00], 8 > 0.
(A): If f(-) € Ly, then there exists a function ¢(-) € ®g such that

Ci(B)p(t) < K(f,t7, Ly, W)) < Ca(B)e(t). 3)

s true.
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(B): If o(-) € ®g, then there exists a function f(-) € L, such that (3)
18 true.

Remark 2.7. 1). We can replace the condition f € L, by condition f € Ly
in the part (B) of Theorem 2.5.

2). Note that theorem 2.5 for 3 € N was proved in [11]. Also, for HP-spaces
the analogue of Corollary 2.6 for 5 € Ry and the analogue of theorem 2.5
for B € N were proved in [5].

3. PROOFS

Proof of Lemma 2.3. The first inequality was proved in [3]. Let 3 > 1,¢
N. We shall use the following representation (see [14])

14
v=0

Agh (z —2ph) = Z (6) A’gf(x — Bh —vh) for almost every x (4)
By Lemma 2.1(a) and part (a) of this Lemma, it follows that
la2s0)ll, = (&P ¥n) o

257 | (AP a7 )) )

P
Here we use (4) for h = 5. We have

HAgf(')Hp < 2[[ﬁ]2+1] A[g] {i (5 ;[ﬂ])A%[ﬂ]f} (-— %T _ g)
V= P
17 (e /3 = [B _
ENICSY ;( V[ ]) (A[g](ﬁﬁ [mf))() p
Thus, by Lemma 2.1(a) and inequality (1), we get
|8270)], < 0B [8) 25 a5 70|
If we combine this result with C*(8—[3]) = 2 (see (2)) and ol %] = [%],
we obtain the required inequality. If 0 < 8 < 1, then we use (1) and (4).

This completes the proof of Lemma.
We will need the following lemma.

Lemma 3.1. Let 3>0,ne€ N, § > 0.

(a): If f(x) = sinz and p € [1,00|, then there exist t; > 0 and
C1(08),C2(8) > 0 such that for any 6 € (0,t1) we have

C1(B)6° < wa(f,0), < Ca(B)d”. (5)
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(b): If f(x) = sinnx andp € [1,00], then for any § € (0,%] we have'
123l < 2m)7 (nd)”.
(c): If f(x) = sinnx, then ||Aﬂ/nf( Y = 2°+2.
(d): If f(z) = sinnz, then for any § € (0,%] we have ||A?f()||1 >
4(2)7 (on)”.
Proof of Lemma 3.1  Let T}, (z) = Zn: c, e then

v=—n

n 3
B 7@ _ © ol Lé (A%
AT (x 5 )= Z <21$1n 5 > c, et

vV=—n

Thus, for f(x) =sinnz, n € N, we get
B
A?f(x - '8—5) (2 sin 1125) sin <nx + 6;) . (6

For n = 1 we obviously have C;(f) (2’Sing|)6 < HA’?sin(-)Hp
Ca(B) (2 ’sin%DB. If we combine this inequality with sint < ¢ (¢ > 0)

and sint > 2L (0 <t < Z), then we obtain (5). In the same way, by (6), w
shall have the proofs of (b) — (d). This completes the proof of Lemma.
Proof of Theorem 2.5. (A). Let us define o(t) := t9 Oirgfq{f’ﬁwg(f, Ep

}
We immediately have ¢(t) € @5 from [13, §2]. It is trivial, that ¢(t) <
wg(f,t)p. By Lemma 2.2(e), we have wg(f,t), < C(8)e(t):
wﬁ(fa t)P = tﬁtiﬁwﬂ(fv t)p
CEY it {7 ws(f.9)y}

C(B)p(t).

Therefore, for any ¢ > 0 the following inequality p(t) < ws(f,t), < C(8)¢(t)
holds and (A) follows.

(B). 1 case. Let hm = C((0 < C < o). Then, by virtue of

~

IN

@

IN

monotonicity of £ t[, , We erte

(*) () < CtP for 0 <t < m;

(#+)  there exists ¢; > 0 such that ¢(t) > CTtﬁ for 0 <t <t.

Indeed, (*) is trivial like (x*) for C = 0. If C' > 0 and 1%ilr% % = C, then
for any € > 0 there exists ¢; > 0 such that C' — % <efor 0 <t <ty

Then % > C — ¢, and choosing small € we have ().

Here é =0.
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Define f(z) = C'sinz. By Lemma 3.1(a), we have

ws(f.8), > COLP)S® > Ca(B)p(6) for 0<d<m,

ws(f,8)p < CC3(B)8” < Ca(B)p(8) for 0 <<t

completing the proof in this case.
. . . s
2 case. Let }1_1)1(1) % = +4o00. Then }1_1)1(1) (t) = 0 and tlgr(l) % = 0. We
fix @ > 2. Then, following Oskolkov ([9]), we define the sequence {n,}>2,,
where n, = 2™» are the numbers m, such that

m1:2,

. p(2™™) 2’”"%(2_’””)) 1}
My41 = min meN:maX( , < = (v eN).
i { p(27m)’ 2mBp(27m) ) T a )

From the definition of {n, }32 , it follows that m,+; > m,, n,11 > 2n, and

for any v € N we have
1 1 1
¢ ( ) <-p () ; (7)
Ny+1 a ny

1 1 1
bo( =) < =n” : 8
ny, ¥ <nl,> > anu+190 (ny+1) (8)

Let us fix »2 = 29(d € N) such that » > 27. Note that (7) implies

o0 oo
© (ni) < (n%) a'™" < oo, and, therefore, we can define the func-
v=1 v v=1

tion f(z)= > ¢ (ni) sin(sn,x).
v=1 v
First, we shall estimate wg(f,d), from above. By the inequality || f||, <

©2m) 7 || flloe < 27| flloe, p € [1,00), it is enough to prove wg(f,8)se <
C(B)p(d). Let 6 € (0,-1]. For all h € (0, n—ll] we can find the number

7711

N € N such that 1+1 <h< % Then

nN

|atr@| < +

X1

E ® () A’Z sin(sen, )
ny

v=1 oo

f: @ <nl) AP sin(sen, x)

v=N+1 v

+

oo

=: Il+12.
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Combining Lemma 3.1(b), inequality (8), and condition (c¢) in the definition
of @3, we get

N
I, < Zap (nl> HAf Sin(%nl,m)H
v=1 v °
N
< O (o) nd S a
v=1
< co o ()
< CB)e(h).
Inequalities (1) and (7) yield that
I, < Z ® <n1) HAﬁ sin(%nl,x)H
v=N+1 v *°

IA
Q
=
hE
Y
VR
g~
N———

IA
2
=
AS)
A/~
—
S~
S
=2
s
|
<

nN+1 v=N+1
< coe ()
< CBp ).

Therefore, if h € (nN+1 , nN] N € N, then ||Aﬁf( Moo < C(B)p (h), which
implies wg(f, )0 < C(B)p(9).

Now we shall obtain the inequality ¢(§) < C(8)ws(f,d),. From the
inequality ||f|li < 2x||fllp, p € [1,00] it is sufficient to prove ap(é) <
C(B)wp(f,0)1. Also, we note that if the last inequality holds for § = 7, k =
N,N+1,N+2,---, where N € N, then it holds for ¢ € (2k7 2k+1). In-
deed, from the monotonicity of t=7p(t), we see that the estimate ¢ (§) <
C(B)¢ (g%) is true. By Lemma 2.2(a), we get

7r
0 () = Ce(5)
CBws (f55).
C(B)ws(f,0)1-
To go further, we suppose that § = .

IN

IN
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Let M be the integer, M > 1, and, let h; =

st @), 240 () (- ). 0

For this purpose, we shall use the following representation of a function

f(@):

M—

1
flx) = 2 © (711”) sin(sn,x) + ¢ (7;\4) sin(enprx) +

+ Z go(nl> sin(sen, x)

v=M+1 v

= fi+ fo+ fa.

Note, that Sln(%n,,x + ) = sin(sn,x) for v > M, and f3(x) has the
period T = hy = We therefore obtain

A} fa(@) = f(x + Bhn) fj ( )

£=0
By Lemma 3.1(b) and (8), we have

M—-1

B
HAhlfl(ic)Hl < ;CP(n,,)“Ah sin }ml,x)Hl
M-1
< ZQW %nyhl (>
v=1 Ny
8 M—1
1
- () 2o
nyr n,
v=1
™\’ (M—1-v)
< 27| — v
- 7T(”M) (p(nM )nM 1Za

M —(M—1-v) : I 4mPH1
Using > a ¥)<2 and (8), we obtain HAhlfl(x)Hl < Tgp(
=1

= () [ st 24

).
).

3
£

-

By Lemma 3.1(c

3
S
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Therefore, for hy = —X—, the inequality > |fo] = | f1| — | f3| implies
xn

i s@l, = [ai @], - [ah @], - [ahsw],
= |8 s, -t ne],
> 4@(1> (2ﬁ—ﬂﬁ+1)
> -~ a )

i.e. we obtain (9).

Further, we choose the integer ¢ such that

1 1 1 1
< j—

Njiq 2Mi+1 — 2mi n;

Note, that, by definition of m;, at the least one of the following inequalities

is true:
1 1
B(miy1—1) Bm;
9B(mit1 SD(QmH—l_l) <a?2 @(2"“) , (10)

1 1 1
¢ <2m+—1> > L <2mi) (11)

Case 2(a). Let (10) be true. Using the monotonicity of ¢(¢) and (10), we

get
1 1
B < BoB(mir1—1)
g1 <ni+1> = 272 ¥ (QTVLi+1—1)
1
< a26nﬂ</)< ) (12)
n;
We write
1—1 1
fl@) = Z:l © < > sin(zn,z) + ¢ <m) sin(sen;z) +
+ Z < >s1n N,x)
v=1+1
= fit ot fs
It is clear, that the function f3 has a period T" = %nﬂﬂ' Then, for s =
2¢ > 271 we have § = o > %M > T, therefore, f3 has a period § and

A?fS(‘T) =
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For 0 <4 < 7=, by Lemma 3.1(d), we have
7 ( ) HA5 sin %nﬂ;)”l

() oo

Using Lemma 3.1(b) and inequality (8), we estimate f:

£ (L) oo,

< ;?wwmmﬂ¢Qi)
< 477(%ni_16)54p< ! )

]

v

IN

HAglfl(x)‘L

iy
< dm (3ni6)”? %cp (;) .
T we obtain
o], » ool -],
>

ot 12}

——71 >0 (then4( )B 4—”—7 >O)
From (12) and the condition (c) in the definition of ®3, we have

() = (52 ()

1
277 (9).
L% )
Thus, the inequality wg(f,d), > C(8)p(d) holds for T <5< . If
o <0< T%, then (9) implies

Now we choose a such that 2°—

v

ws(f,0)p = wpg <f7%7;1>p
> cww(é)

W
2
=
&S

=



ON MODULI OF SMOOTHNESS OF FRACTIONAL ORDER 11

The theorem has been proved in case 2(a).

Case 2(b). Let (11) be true. By virtue of monotonicity of %, we

write ¢ (ﬁ) < 2% (zmr).
(W)

Hence,
()
P
41
o (7m)
-8 1
()

20

Il
AS)

IV
1\3

l\J

l\D

= 14
It follows from (9) and (13) that

wg (f7 5)1

IV
&
@
7N
b
S
I~
N————

V2
€
=)
7 N
)
X
Sy
£

v

Q
=
AS)
A/~
| —
~—

> CB)e(d).

This completes the proof of case 2(b) and Theorem 2.5.
Proof of Corollary 2.6 follows from the following estimates (see [2]):

Cr(Bws(f,t)p < K(f,t7, Ly, WJ) < Co(B)ws(f.t)p-
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