
ON MODULI OF SMOOTHNESS OF FRACTIONAL
ORDER

S. TIKHONOV

Abstract. In this paper we consider the properties of moduli of
smoothness of fractional order. The main result of the paper describes
the equivalence of the modulus of smoothness and a function from
some class.

1. Introduction

In 1977 P.L. Butzer, H. Dyckhoff, E. Goerlich, R.L. Stens (see [2]) and
R.Tabersky (see [14]) introduced the modulus of smoothness of fractional
order. This notion could be considered as a direct generalization of the
classical modulus of smoothness, and it is more natural to use it for a
number of problems of harmonic analysis (see, for example, [2], [5], [7],
[10]).

The important problem of approximation theory and theory of Fourier
series is the problem of description of moduli of smoothness (see [1], [4], [8],
[11]). One can consider this problem from the viewpoint of description of
majorant of smoothness moduli. Recently, A. Medvedev (see [6]) has proved
that for any modulus of continuity on [0,∞) there exists a concave majorant
that is infinitely differentiable. In this paper, we obtain the description of
the modulus of smoothness of fractional order from the viewpoint of the
order of decreasing to zero of the modulus of smoothness.

Let us introduce several definitions. If 1 ≤ p < ∞, let Lp be the space of

2π-periodic, measurable functions f(x) such that ‖f‖p=
(

2π∫
0

|f(x)|p dx

) 1
p

<∞.

Similarly, let L∞ be the space of 2π-periodic, continuous functions f(x)
with ‖f‖∞ = max

x∈[0,2π]
|f(x)|. We will define the difference of fractional order

β (β > 0) of function f(x) at the point x (x ∈ R) with increment h (h ∈ R)
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by

4β
hf(x) =

∞∑
ν=0

(−1)ν

(
β

ν

)
f(x + (β − ν)h),

where
(
β
ν

)
= β(β−1)···(β−ν+1)

ν! for ν > 1,
(
β
ν

)
= β for ν = 1,

(
β
ν

)
= 1 for ν = 0.

The modulus of smoothness of order β (β > 0) of function f ∈ Lp,

1 ≤ p ≤ ∞, is given by ωβ(f, t)p = sup
|h|≤t

∥∥∥4β
hf(·)

∥∥∥
p

(see [2],[14]).

Let Φγ (γ ∈ R) be the set of nonnegative, bounded functions ϕ(δ) on
(0,∞) such that

a): ϕ(δ) → 0 as δ → 0,
b): ϕ(δ) is nondecreasing,
c): ϕ(δ)δ−γ is nonincreasing.

If for f ∈ Lp there exists g ∈ Lp such that lim
h→0+

∥∥∥h−β4β
hf(·)− g(·)

∥∥∥
p

= 0

then g is called the Liouville-Grunwald-Letnikov derivative of order β > 0
of a function f in the Lp-norm, denoted by g = Dβf (see [2], [12]). Set
W β

p :=
{
f ∈ Lp : Dβf exists as element in Lp

}
. The K-functional is given

by K(f, t, Lp, W
β
p ) := inf

g∈W β
p

(
‖f − g‖p + t

∥∥Dβg
∥∥

p

)
.

2. Results

Let f(x) ∈ Lp, p ∈ [1,∞] and β > 0. It is clear that (see [12])
∣∣∣∣
(

β

ν

)∣∣∣∣ =
∣∣∣∣
β(β − 1) · · · (β − ν + 1)

ν!

∣∣∣∣ ≤
C(β)
νβ+1

, ν ∈ N

implies C∗(β) :=
∞∑

ν=0

∣∣∣
(
β
ν

)∣∣∣ < ∞ and the fractional difference 4β
hf(x) is

defined almost everywhere and belongs to Lp:

‖4β
hf(·)‖p ≤ C∗(β) ‖f(·)‖p. (1)

It is easy to write the following representation for C∗(β) (see [14]):

C∗(β) =





2
k∑

ν=0

(
β
2ν

)
, if 2k < β ≤ 2k + 1 (k = 0, 1, 2, · · · ),

2
k∑

ν=0

(
β

2ν+1

)
, if 2k + 1 < β ≤ 2k + 2 (k = 0, 1, 2, · · · ).

(2)

The fractional differences and moduli of smoothness have some useful
properties and we shall establish some of them in the following lemmas.

Lemma 2.1. ([2], [14]) Let f ∈ Lp, p ∈ [1,∞], α, β > 0; h ∈ R. Then

(a): 4α
h(4β

hf(x)) = 4α+β
h f(x) for almost every x;
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(b): ‖4α+β
h f(·)‖p ≤ C∗(α)‖4β

hf(·)‖p;
(c): lim

h→0+
‖4α

hf(·)‖p = 0.

Lemma 2.2. Let f, f1, f2 ∈ Lp, p ∈ [1,∞], α, β > 0; x, h ∈ R. Then
(a): ωβ(f, δ)p is nondecreasing nonnegative function of δ on (0,∞)

with lim
δ→0+

ωβ(f, δ)p = 0;

(b): ωβ(f1 + f2, δ)p ≤ ωβ(f1, δ)p + ωβ(f2, δ)p;
(c): ωα+β(f, δ)p ≤ C∗(α)ωβ(f, δ)p;
(d): if λ ≥ 1, then ωβ(f, λδ)p ≤ C(β)λβωβ(f, δ)p;
(e): if 0 < t ≤ δ, then ωβ(f, δ)p δ−β ≤ C(β)ωβ(f, t)p t−β .

Indeed, we immediately have (a)− (c) from Lemma 2.1, (d) was proved
in [2], and (d) implies (e):

ωβ(f, δ)p = ωβ

(
f,

δ

t
t

)

p

≤ C(β)
(

δ

t

)β

ωβ(f, t)p.

Lemma 2.3. Let f ∈ Lp, p ∈ [1,∞], β > 0.

(a): If β ∈ N, then
∥∥4β

πf(·)
∥∥

p
≤ 2[ β+1

2 ]
∥∥∥4β

π
2
f(·)

∥∥∥
p
.

(b): If β /∈ N, then
∥∥4β

πf(·)
∥∥

p
≤ 2[ β+1

2 ]+1
∥∥∥4β

π
2
f(·)

∥∥∥
p
.

Corollary 2.4. For a function ϕ(t) = tα (0 ≤ t ≤ π) to be a modulus of
smoothness of order β (β > 0) of a function f(·) ∈ Lp, 1 ≤ p ≤ ∞ it is

necessary to have α ≤
[

β+1
2

]
+ 1.

Theorem 2.5. Let p ∈ [1,∞], β > 0.
(A): If f(·) ∈ Lp, then there exists a function ϕ(·) ∈ Φβ such that

ϕ(t) ≤ ωβ(f, t)p ≤ C(β)ϕ(t) (0 < t < ∞),

where C(β) is a positive constant depending only on β.
(B): If ϕ(·) ∈ Φβ, then there exist a function f(·) ∈ Lp and a constant

t1 > 0 such that

C1(β)ωβ(f, t)p ≤ ϕ(t) ≤ C2(β)ωβ(f, t)p (0 < t < t1),

where C1(β), C2(β) are positive constants depending only on β.

Corollary 2.6. Let p ∈ [1,∞], β > 0.
(A): If f(·) ∈ Lp, then there exists a function ϕ(·) ∈ Φβ such that

C1(β)ϕ(t) ≤ K(f, tβ , Lp,W
β
p ) ≤ C2(β)ϕ(t). (3)

is true.
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(B): If ϕ(·) ∈ Φβ, then there exists a function f(·) ∈ Lp such that (3)
is true.

Remark 2.7. 1). We can replace the condition f ∈ Lp by condition f ∈ L∞
in the part (B) of Theorem 2.5.
2). Note that theorem 2.5 for β ∈ N was proved in [11]. Also, for Hp-spaces
the analogue of Corollary 2.6 for β ∈ R+ and the analogue of theorem 2.5
for β ∈ N were proved in [5].

3. Proofs

Proof of Lemma 2.3. The first inequality was proved in [3]. Let β > 1, /∈
N. We shall use the following representation (see [14])

4β
2hf(x− 2βh) =

∞∑
ν=0

(
β

ν

)
4β

hf(x− βh− νh) for almost every x (4)

By Lemma 2.1(a) and part (a) of this Lemma, it follows that
∥∥4β

πf(·)
∥∥

p
=

∥∥∥
(
4[β]

π (4β−[β]
π f)

)
(·)

∥∥∥
p

≤ 2[ [β]+1
2 ]

∥∥∥
(
4[β]

π
2

(4β−[β]
π f)

)
(·)

∥∥∥
p
.

Here we use (4) for h = π
2 . We have

∥∥4β
πf(·)∥∥

p
≤ 2[ [β]+1

2 ]
∥∥∥∥∥4

[β]
π
2

{ ∞∑
ν=0

(
β − [β]

ν

)
4β−[β]

π
2

f

}
(· − βπ

2
− νπ

2
)

∥∥∥∥∥
p

= 2[ [β]+1
2 ]

∥∥∥∥∥
∞∑

ν=0

(
β − [β]

ν

) (
4[β]

π
2

(4β−[β]
π
2

f)
)

(·)
∥∥∥∥∥

p

.

Thus, by Lemma 2.1(a) and inequality (1), we get
∥∥4β

πf(·)
∥∥

p
≤ C∗(β − [β]) 2[ [β]+1

2 ]
∥∥∥4β

π
2
f(·)

∥∥∥
p
.

If we combine this result with C∗(β−[β]) = 2 (see (2)) and 2[ [β]+1
2 ] = 2[ β+1

2 ],
we obtain the required inequality. If 0 < β < 1, then we use (1) and (4).
This completes the proof of Lemma.

We will need the following lemma.

Lemma 3.1. Let β > 0, n ∈ N, δ > 0.

(a): If f(x) = sinx and p ∈ [1,∞], then there exist t1 > 0 and
C1(β), C2(β) > 0 such that for any δ ∈ (0, t1) we have

C1(β)δβ ≤ ωβ(f, δ)p ≤ C2(β)δβ . (5)
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(b): If f(x) = sin nx and p ∈ [1,∞], then for any δ ∈ (
0, π

2

]
we have1

‖4β
δ f(·)‖p ≤ (2π)

1
p (nδ)β

.

(c): If f(x) = sin nx, then ‖4β
π/nf(·)‖1 = 2β+2.

(d): If f(x) = sin nx, then for any δ ∈ (
0, π

n

]
we have ‖4β

δ f(·)‖1 ≥
4

(
2
π

)β (δn)β
.

Proof of Lemma 3.1 Let Tn(x) =
n∑

ν=−n
cνeiνx, then

4β
δ Tn(x− βδ

2
) =

n∑
ν=−n

(
2i sin

νδ

2

)β

cνeiνx.

Thus, for f(x) = sin nx, n ∈ N, we get

4β
δ f(x− βδ

2
) =

(
2 sin

nδ

2

)β

sin
(

nx +
βπ

2

)
. (6)

For n = 1 we obviously have C1(β)
(
2

∣∣sin δ
2

∣∣)β ≤ ‖4β
δ sin(·)‖p ≤

C2(β)
(
2

∣∣sin δ
2

∣∣)β
. If we combine this inequality with sin t ≤ t (t ≥ 0)

and sin t ≥ 2t
π (0 ≤ t ≤ π

2 ), then we obtain (5). In the same way, by (6), we
shall have the proofs of (b)− (d). This completes the proof of Lemma.

Proof of Theorem 2.5. (A). Let us define ϕ(t) := tβ inf
0<ξ≤t

{ξ−βωβ(f, ξ)p}.
We immediately have ϕ(t) ∈ Φβ from [13, §2]. It is trivial, that ϕ(t) ≤
ωβ(f, t)p. By Lemma 2.2(e), we have ωβ(f, t)p ≤ C(β)ϕ(t):

ωβ(f, t)p = tβt−βωβ(f, t)p

≤ C(β)tβ inf
0<ξ≤t

{
ξ−βωβ(f, ξ)p

}

= C(β)ϕ(t).

Therefore, for any t > 0 the following inequality ϕ(t) ≤ ωβ(f, t)p ≤ C(β)ϕ(t)
holds and (A) follows.

(B). 1 case. Let lim
t→0

ϕ(t)
tβ = C (0 ≤ C < ∞). Then, by virtue of

monotonicity of ϕ(t)
tβ , we write

(∗ ) ϕ(t) ≤ Ctβ for 0 < t ≤ π;
(∗∗ ) there exists t1 > 0 such that ϕ(t) ≥ Ctβ

2 for 0 < t ≤ t1.
Indeed, (∗) is trivial like (∗∗) for C = 0. If C > 0 and lim

t→0

ϕ(t)
tβ = C, then

for any ε > 0 there exists t1 > 0 such that C − ϕ(t)
tβ ≤ ε for 0 < t ≤ t1.

Then ϕ(t)
tβ ≥ C − ε, and choosing small ε we have (∗∗).

1Here 1
∞ = 0.
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Define f(x) = C sin x. By Lemma 3.1(a), we have

ωβ(f, δ)p ≥ CC1(β)δβ ≥ C2(β)ϕ(δ) for 0 < δ ≤ π,

ωβ(f, δ)p ≤ CC3(β)δβ ≤ C4(β)ϕ(δ) for 0 < δ ≤ t1,

completing the proof in this case.
2 case. Let lim

t→0

ϕ(t)
tβ = +∞. Then lim

t→0
ϕ(t) = 0 and lim

t→0

tβ

ϕ(t) = 0. We

fix a ≥ 2. Then, following Oskolkov ([9]), we define the sequence {nν}∞ν=1,
where nν = 2mν are the numbers mν such that

m1 = 2,

mν+1 = min
{

m ∈ N : max
(

ϕ(2−m)
ϕ(2−mν )

,
2mνβϕ(2−mν )
2mβϕ(2−m)

)
≤ 1

a

}
(ν ∈ N).

From the definition of {nν}∞ν=1 it follows that mν+1 > mν , nν+1 ≥ 2nν and
for any ν ∈ N we have

ϕ

(
1

nν+1

)
≤ 1

a
ϕ

(
1
nν

)
; (7)

nβ
νϕ

(
1
nν

)
≤ 1

a
nβ

ν+1ϕ

(
1

nν+1

)
. (8)

Let us fix κ = 2d (d ∈ N) such that κ > 2π. Note that (7) implies
∞∑

ν=1
ϕ

(
1

nν

)
≤ ϕ

(
1

n1

) ∞∑
ν=1

a1−ν < ∞, and, therefore, we can define the func-

tion f(x) =
∞∑

ν=1
ϕ

(
1

nν

)
sin(κnνx).

First, we shall estimate ωβ(f, δ)p from above. By the inequality ‖f‖p ≤
(2π)

1
p ‖f‖∞ ≤ 2π‖f‖∞, p ∈ [1,∞), it is enough to prove ωβ(f, δ)∞ ≤

C(β)ϕ(δ). Let δ ∈ (0, 1
n1

]. For all h ∈ (0, 1
n1

] we can find the number
N ∈ N such that 1

nN+1
< h ≤ 1

nN
. Then

∥∥∥4β
hf(x)

∥∥∥
∞

≤
∥∥∥∥∥

N∑
ν=1

ϕ

(
1
nν

)
4β

h sin(κnνx)

∥∥∥∥∥
∞

+

+

∥∥∥∥∥
∞∑

ν=N+1

ϕ

(
1
nν

)
4β

h sin(κnνx)

∥∥∥∥∥
∞

=: I1 + I2.
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Combining Lemma 3.1(b), inequality (8), and condition (c) in the definition
of Φβ , we get

I1 ≤
N∑

ν=1

ϕ

(
1
nν

) ∥∥∥4β
h sin(κnνx)

∥∥∥
∞

≤ C(β) (κh)β
ϕ

(
1

nN

)
nβ

N

N∑
ν=1

a−(N−ν)

≤ C(β) (nNh)β
ϕ

(
1

nN

)

≤ C(β)ϕ (h) .

Inequalities (1) and (7) yield that

I2 ≤
∞∑

ν=N+1

ϕ

(
1
nν

) ∥∥∥4β
h sin(κnνx)

∥∥∥
∞

≤ C(β)
∞∑

ν=N+1

ϕ

(
1
nν

)

≤ C(β)ϕ
(

1
nN+1

) ∞∑

ν=N+1

aN+1−ν

≤ C(β)ϕ
(

1
nN+1

)

≤ C(β)ϕ (h) .

Therefore, if h ∈ ( 1
nN+1

, 1
nN

], N ∈ N, then ‖4β
hf(x)‖∞ ≤ C(β)ϕ (h) , which

implies ωβ(f, δ)∞ ≤ C(β)ϕ(δ).
Now we shall obtain the inequality ϕ(δ) ≤ C(β)ωβ(f, δ)p. From the

inequality ‖f‖1 ≤ 2π‖f‖p, p ∈ [1,∞] it is sufficient to prove ϕ(δ) ≤
C(β)ωβ(f, δ)1. Also, we note that if the last inequality holds for δ = π

2k , k =
N, N + 1, N + 2, · · · , where N ∈ N, then it holds for δ ∈ (

π
2k , π

2k+1

)
. In-

deed, from the monotonicity of t−βϕ(t), we see that the estimate ϕ (δ) ≤
C(β)ϕ

(
π
2k

)
is true. By Lemma 2.2(a), we get

ϕ (δ) ≤ C(β)ϕ
( π

2k

)

≤ C(β)ωβ

(
f,

π

2k

)
1

≤ C(β)ωβ(f, δ)1.

To go further, we suppose that δ = π
2k .



8 S. TIKHONOV

Let M be the integer, M > 1, and, let h1 = π
κnM

. We shall show that

∥∥∥4β
h1

f(x)
∥∥∥

1
≥ 4ϕ

(
1

nM

)(
2β − πβ+1

a

)
. (9)

For this purpose, we shall use the following representation of a function
f(x):

f(x) =
M−1∑
ν=1

ϕ

(
1
nν

)
sin(κnνx) + ϕ

(
1

nM

)
sin(κnMx) +

+
∞∑

ν=M+1

ϕ

(
1
nν

)
sin(κnνx)

=: f1 + f2 + f3.

Note, that sin(κnνx + πnν

nM
) = sin(κnνx) for ν > M , and f3(x) has the

period T = h1 = π
κnM

. We therefore obtain

4β
h1

f3(x) = f(x + βh1)
∞∑

ξ=0

(−1)ξ

(
β

ξ

)
= 0.

By Lemma 3.1(b) and (8), we have

∥∥∥4β
h1

f1(x)
∥∥∥

1
≤

M−1∑
ν=1

ϕ

(
1
nν

) ∥∥∥4β
h1

sin(κnνx)
∥∥∥

1

≤
M−1∑
ν=1

2π (κnνh1)
β

ϕ

(
1
nν

)

= 2π

(
π

nM

)β M−1∑
ν=1

ϕ

(
1
nν

)
nβ

ν

≤ 2π

(
π

nM

)β

ϕ

(
1

nM−1

)
nβ

M−1

M−1∑
ν=1

a−(M−1−ν).

Using
M−1∑
ν=1

a−(M−1−ν)≤2 and (8), we obtain
∥∥∥4β

h1
f1(x)

∥∥∥
1
≤ 4πβ+1

a ϕ
(

1
nM

)
.

By Lemma 3.1(c),
∥∥∥4β

h1
f2(x)

∥∥∥
1
=ϕ

(
1

nM

) ∥∥∥4β
h1

sin(κnMx)
∥∥∥

1
=2β+2ϕ

(
1

nM

)
.
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Therefore, for h1 = π
κnM

, the inequality |f | ≥ |f2| − |f1| − |f3| implies
∥∥∥4β

h1
f(x)

∥∥∥
1

≥
∥∥∥4β

h1
f2(x)

∥∥∥
1
−

∥∥∥4β
h1

f1(x)
∥∥∥

1
−

∥∥∥4β
h1

f3(x)
∥∥∥

1

=
∥∥∥4β

h1
f2(x)

∥∥∥
1
−

∥∥∥4β
h1

f1(x)
∥∥∥

1

≥ 4ϕ

(
1

nM

)(
2β − πβ+1

a

)
,

i.e. we obtain (9).
Further, we choose the integer i such that

1
ni+1

=
1

2mi+1
< δ ≤ 1

2mi
=

1
ni

.

Note, that, by definition of mi, at the least one of the following inequalities
is true:

2β(mi+1−1)ϕ

(
1

2mi+1−1

)
< a 2βmiϕ

(
1

2mi

)
, (10)

ϕ

(
1

2mi+1−1

)
>

1
a

ϕ

(
1

2mi

)
(11)

Case 2(a). Let (10) be true. Using the monotonicity of ϕ(t) and (10), we
get

nβ
i+1ϕ

(
1

ni+1

)
≤ 2β2β(mi+1−1)ϕ

(
1

2mi+1−1

)

< a 2βnβ
i ϕ

(
1
ni

)
. (12)

We write

f(x) =
i−1∑
ν=1

ϕ

(
1
nν

)
sin(κnνx) + ϕ

(
1
ni

)
sin(κnix) +

+
∞∑

ν=i+1

ϕ

(
1
nν

)
sin(κnνx)

=: f1 + f2 + f3.

It is clear, that the function f3 has a period T = 2π
κni+1

. Then, for κ =
2d > 2π we have δ = π

2r > 1
ni+1

> T , therefore, f3 has a period δ and

4β
δ f3(x) = 0.
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For 0 < δ ≤ π
κni

, by Lemma 3.1(d), we have
∥∥∥4β

δ f2(x)
∥∥∥

1
= ϕ

(
1
ni

) ∥∥∥4β
δ sin(κnix)

∥∥∥
1

≥ 4
(

2
π

)β

ϕ

(
1
ni

)
(κniδ)

β
.

Using Lemma 3.1(b) and inequality (8), we estimate f1:

∥∥∥4β
h1

f1(x)
∥∥∥

1
≤

i−1∑
ν=1

ϕ

(
1
nν

) ∥∥∥4β
δ sin(κnνx)

∥∥∥
1

≤
i−1∑
ν=1

2π (κnνδ)β
ϕ

(
1
nν

)

≤ 4π (κni−1δ)
β

ϕ

(
1

ni−1

)

≤ 4π (κniδ)
β 1

a
ϕ

(
1
ni

)
.

For 1
ni+1

< δ ≤ π
κni

we obtain
∥∥∥4β

δ f(x)
∥∥∥

1
≥

∥∥∥4β
δ f2(x)

∥∥∥
1
−

∥∥∥4β
δ f1(x)

∥∥∥
1

≥ ϕ

(
1
ni

)
(κniδ)

β

{
4

(
2
π

)β

− 4π

a

}
.

Now we choose a such that 2β−πβ+1

a = γ1 > 0
(

then 4
(

2
π

)β−4π
a = γ2 > 0

)
.

From (12) and the condition (c) in the definition of Φβ , we have

(δni)
β

ϕ

(
1
ni

)
≥

(
δni+1

2

)β 1
a
ϕ

(
1

ni+1

)

≥ 2−β 1
a
ϕ (δ) .

Thus, the inequality ωβ(f, δ)p ≥ C(β)ϕ(δ) holds for 1
ni+1

< δ ≤ π
κni

. If
π
κni

< δ ≤ 1
ni

, then (9) implies

ωβ(f, δ)p ≥ ωβ

(
f,

π

κni

)

p

≥ C(β)ϕ
(

1
ni

)

≥ C(β)ϕ (δ) .
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The theorem has been proved in case 2(a).

Case 2(b). Let (11) be true. By virtue of monotonicity of ϕ(t)
tβ , we

write ϕ
(

1
2mi+1−1

)
≤ 2βϕ

(
1

2mi+1

)
.

Hence,

ϕ

(
1

ni+1

)
= ϕ

(
1

2mi+1

)

≥ 2−βϕ

(
1

2mi+1−1

)

>
2−β

a
ϕ

(
1

2mi

)

=
2−β

a
ϕ

(
1
ni

)
. (13)

It follows from (9) and (13) that

ωβ (f, δ)1 ≥ ωβ

(
f,

1
ni+1

)

1

≥ ωβ

(
f,

π

κni+1

)

1

≥ C(β)ϕ
(

1
ni+1

)

≥ C(β)ϕ
(

1
ni

)

≥ C(β)ϕ (δ) .

This completes the proof of case 2(b) and Theorem 2.5.
Proof of Corollary 2.6 follows from the following estimates (see [2]):

C1(β)ωβ(f, t)p ≤ K(f, tβ , Lp,W
β
p ) ≤ C2(β)ωβ(f, t)p.
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