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Abstract. Perturbing the system ẋ = −y(1+x), ẏ = x(1+x), ż = 0,
inside the family of polynomial differential systems of degree n in R3,
we obtain at most n2 limit cycles using averaging theory of first order.
Moreover, there are such perturbed system having at least n2 limit
cycles.

1. Introduction and statement of the main results

We perturb the system ẋ = −y(1 + x), ẏ = x(1 + x), ż = 0 inside the
class of polynomial differential systems of degree n in R3. The unperturbed
system has the straight line x = 0, y = 0 and the plane x = −1 fulfilled of
singular points, and on each plane z = z̄ = constant the flow is invariant.
In fact, on every plane z = z̄ the singular point (0, 0, z̄) is a center.

Theorem 1. We consider the family of systems

(1)
ẋ = −y(1 + x) + ε(ax + F (x, y, z)),
ẏ = x(1 + x) + ε(ay + G(x, y, z)),
ż = ε(cz + R(x, y, z)),

where F (x, y, z), G(x, y, z) and R(x, y, z) are polynomials of degree n start-
ing with terms of degree 2. Then there exists an ε0 > 0 sufficiently small
such that for |ε| < ε0 there are systems (1) having at least n2 limit cycles bi-
furcating from the periodic orbits of the system ẋ = −y(1+x), ẏ = x(1+x),
ż = 0.

Theorem 1 improves the results of [1] where perturbing the system ẋ =
−y, ẏ = x, ż = 0 inside the same class of polynomial vector fields the
averaging method up to first oder only can obtain at most n(n− 1)/2 limit
cycles. Preliminary results in this direction where obtained by ŻoÃla̧dek in
[5, 6, 7]. His main result is that the number of limit cycles that he can
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obtain from the periodic orbits of the center at the origin of the invariant
plane z = 0 is of the order a constant·n. But we study the limit cycles
bifurcating from the periodic orbits at any plane z = constant, not only
from the plane z = 0. In this way we get that the number of limit cycles is
n2.

2. Limit cycles via averaging theory

In few words we can say that the averaging method [3, 4] gives a quanti-
tative relation between the solutions of some non–autonomous periodic dif-
ferential system and the solutions of its averaged differential system, which
is an autonomous one. The next theorem provides a first order approxima-
tion in ε for the limit cycles of a periodic differential system, for a proof see
Theorem 2.6.1 of Sanders and Verhulst [3] and Theorem 11.5 of Verhulst
[4].

Theorem 2. We consider the following two initial value problems

(2) ẋ = ε f(t, x) + ε2 g(t, x, ε), x(0) = x0,

and

(3) ẏ = ε f0(y), y(0) = x0,

where x, y, x0 ∈ D an open subset of Rn, t ∈ [0,∞), |ε| ≤ ε0, f and g are
periodic of period T in the variable t, and f0(y) is the averaged function of
f(t, x) with respect to t, i.e.,

f0(y) =
1
T

∫ T

0

f(t, y)dt.

Suppose: (i) f , its Jacobian ∂f/∂x, its Hessian ∂2f/∂x2, g and its Jacobian
∂g/∂x are defined, continuous and bounded by a constant independent on
ε in [0,∞) × D and |ε| ≤ ε0; (ii) T is a constant independent of |ε|; and
(iii) y(t) belongs to D on the interval of time [0, 1/|ε|]. Then the following
statements hold.

(a) On the time scale 1/|ε| we have that x(t)− y(t) = O(ε), as ε → 0.
(b) If p is a singular point of the averaged system (3) such that the

determinant of the Jacobian matrix ∂f0/∂y|y=p is not zero, then
there exists a limit cycle φ(t, ε) of period T for the system (2) which
is close to p and such that φ(t, ε) → p as ε → 0.

(c) The stability or instability of the limit cycle φ(t, ε) is given by the
stability or instability of the singular point p of the averaged system
(3). In fact, the singular point p has the stability behavior of the
Poincaré map associated to the limit cycle φ(t, ε).
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3. Preliminary results

To prove Theorem 1 we shall need the following three lemmas which are
proved in [2].

Lemma 3. For i, j ∈ N, we define

Ii,j =
1
2π

∫ 2π

0

cosi θ sinj θ

1 + r cos θ
dt.

Then Ii,j 6= 0 if and only if j is even number.

Lemma 4. For i, j ∈ N, and j even, Ii,j =
j∑

s = 0
s even

(−1)s/2

(
j/2
s/2

)
Ii+s,0.

Lemma 5. For i ∈ N, we have

Ii,0 =
1
2π

∫ 2π

0

cosi θ

1 + r cos θ
dt.

=
(−1)i

ri
√

1− r2
+

i∑

l = 1
l ≡ i(mod2)

(−1)l−12l−i

(
i− l

(i− l)/2

)
r−l.(4)

4. Proof of Theorem 1

Let

F (x, y, z) = F2(x, y, z) + F3(x, y, z) + · · ·+ Fn(x, y, z),
G(x, y, z) = G2(x, y, z) + G3(x, y, z) + · · ·+ Gn(x, y, z),
R(x, y, z) = R2(x, y, z) + R3(x, y, z) + · · ·+ Rn(x, y, z),

be polynomials such that Fi, Gi and Ri are the homogeneous parts of F ,
G and R of degree i, respectively. In cylindrical coordinates x = r cos θ,
y = r sin θ, z = z, system (1) in the region r > 0 can be written as

ṙ = ε (a r + cos θ F + sin θ G) ,

θ̇ = 1 + r cos θ +
ε

r
(cos θ G− sin θ F ) ,(5)

ż = ε (cz + R) .

Here and in what follows F , G and R will denote F (r cos θ, r sin θ, z),
G(r cos θ, r sin θ, z) and R(r cos θ, r sin θ, z), respectively. System (5) in the
region r > 0 is equivalent to system
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(6)

dr

dθ
= ε

ar + cos θ F + sin θ G

1 + r cos θ
+ O(ε2),

dz

dθ
= ε

cz + R

1 + r cos θ
+ O(ε2).

Let D be an arbitrary ball of radius smaller than 1 centered at the origin
of R2 and ε0 be a positive number. Then, system (6) satisfies the assump-
tions of Theorem 2 if ε0 is sufficiently small and D is fixed. In order to
apply the averaging theory to system (6) we have to compute the averaged
functions

(7)

f = f(r, z) =
1
2π

∫ 2π

0

a r + cos θ F + sin θ G

1 + r cos θ
dθ,

g = g(r, z) =
1
2π

∫ 2π

0

cz + R

1 + r cos θ
dθ.

For each k = 2, · · · , n we write

Fk(x, y, z) =
∑

i+j+l=k

ak
i,j,l x

iyjzl,

Gk(x, y, z) =
∑

i+j+l=k

bk
i,j,l x

iyjzl,

Rk(x, y, z) =
∑

i+j+l=k

ck
i,j,l x

iyjzl.

Now using the notation introduced in Lemma 3, the averaged functions
write as

f = ar +
n∑

k=2

∑

i+j+l=k

ri+jzl(ak
i,j,lIi+1,j + bk

i,j,lIi,j+1),(8)

and

g = g(r, z) = czI0,0 +
n∑

k=2

∑

i+j+l=k

ck
i,j,lr

i+jzlIi,j .(9)
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Consequently, f and g are polynomials in the variables r, z of degree n. Now
we obtain by the lemmas

g = czI0,0 +
n∑

k=2

k∑
m=0

rmzk−m
∑

i + j = m
j even

ck
i,j,k−m Ii,j

= czI0,0 +
n∑

m=0

rm
n∑

k=m

zk−m
m∑

i = 0
m− i even

ck
i,m−i,k−m Ii,m−i −

1∑
m=0

rm
∑

m≤k<2

zk−m
m∑

i = 0
m− i even

ck
i,m−i,k−m Ii,m−i

= czI0,0 + g1(r, z) + g2(r, z),

with

g1 =
n∑

m=0

rm
n∑

k=m

zk−m
m∑

i = 0
m− i even

ck
i,m−i,k−m

m−i∑

s = 0
s even

ds,m−i
r−(i+s)

√
1− r2

,

g2 =
n∑

m=0

rm
n∑

k=m

zk−m
m∑

i = 0
m− i even

ck
i,m−i,k−m

m−i∑

s = 0
s even

ds,m−i

i+s∑

l = 1
i− l even

ei+s,lr
−l,

where

ds,m−i = (−1)s/2

(
(m− i)/2

s/2

)
,

ei+s,l = (−1)l−12l−(i+s)

(
i + s− l

(i + s− l)/2

)
.

We note that ck
i,j,k = 0 for k < 2.

We rearrange the order of r, z in gi for i = 1, 2. Thus we have

g1 =
1√

1− r2

n∑
m=0

rm
m∑

v = 0
m− v even

r−v
n∑

k=m

zk−m
v∑

s = 0
s even

ck
v−s,m−v+s,k−mds,m−v+s

=
1√

1− r2

n∑

w = 0
w even

rw
n∑

k=w

k−w∑
v=0

zk−w−v
v∑

s = 0
s even

ck
v−s,w+s,k−w−vds,w+s



6 J. LLIBRE AND JIANG YU

=
1√

1− r2

n∑

w = 0
w even

rw
n∑

α=w

zα−w
n−α∑
v=0

v∑

s = 0
s even

cα+v
v−s,w+s,α−wds,w+s.

In the previous first equality v = i + s, in the second one w = m − v, and
finally in the third α = k − v. Moreover,

g2 =
n∑

m=0

rm
n∑

k=m

zk−m
m∑

i = 0
m− i even

ck
i,m−i,k−m

m∑

δ = i
δ − i even

dδ−i,m−i

δ∑

l > 0
δ − l even

eδ,lr
−l

=
n∑

m=0

rm
n∑

k=m

zk−m
m∑

l > 0
m− l even

r−l
m∑

δ = l
δ − l even

δ∑

i = 0
δ−i even

dδ−i,m−ieδ,lc
k
i,m−i,k−m

=
n∑

w = 0
w even

rw
n∑

k=w

k−w∑

l>0

zk−w−l
w+l∑

δ = l
δ − l even

δ∑

i = 0
δ−i even

dδ−i,w+l−ieδ,lc
k
i,w+l−i,k−w−l

=
n∑

w = 0
w even

rw
n∑

α=w

zα−w
n−α∑

l>0

w∑

u = 0
u even

u+l∑

i = 0
l−i even

u+l−i,w+l−ieu+l,lc
α+l
i,w+l−i,α−w.

In the previous first equality δ = i + s, in the second one w = m− l, in the
third α = k − l, and finally in the fourth u = δ − l.

Defining t =
√

1− r2 we have
√

1− r2g1(r, z) = tg1(t, z)

=
n∑

w = 0
w even

(1− t2)
w
2

n∑
α=w

zα−wg1
w,α

=
n∑

w = 0
w even

w∑
ρ = 0

ρ even

(−1)
ρ
2

(
w
2
ρ
2

)
tρ

n∑
α=w

zα−wg1
w,α

=
n∑

ρ = 0
ρ even

tρ
n−ρ∑
ξ=0

zξ
n−ξ∑

w = ρ
w even

(−1)
ρ
2

(
w
2
ρ
2

)
g1

w,w+ξ,

in the last equality we have ξ = α− w, and

g2(r, z) = g2(t, z) =
n∑

ρ = 0
ρ even

tρ
n−ρ∑
ξ=0

zξ
n−ξ∑

w = ρ
w even

(−1)
ρ
2

(
w
2
ρ
2

)
g2

w,w+ξ,
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where

g1
w,w+ξ =

n−w−ξ∑
v=0

v∑
s = 0

s even

cw+ξ+v
v−s,w+s,ξds,w+s,

g2
w,w+ξ =

n−w−ξ∑
l>0

w∑
u = 0

u even

u+l∑
i = 0

l− i even

du+l−i,w+l−ieu+l,lc
w+ξ+l
i,w+l−i,ξ.

We have g(r, z)=(t, z)= 1
t P (t, z), where P (t, z)=cz+

∑n+1
ρ=0 Pρ(z)tρ and

(10) Pρ(z) =





n−ρ∑
ξ=0

zξ
n−ξ∑

w = ρ
w even

(−1)
ρ
2

(
w
2
ρ
2

)
g1

w,w+ξ if ρ even,

n−ρ+1∑
ξ=0

zξ
n−ξ∑

w = ρ− 1
w even

(−1)
ρ−1
2

(
w
2

ρ−1
2

)
g2

w,w+ξ if ρ odd.

In fact P (t, z) is a polynomial of degree n in the variables t and z, respec-
tively, which can be written as

(11) P =
{

cz + P 0
n + P̂ 1

n−1t + P 2
n−2t

2 + P̂ 3
n−3t

3 + · · ·+ Pn
0 tn n even,

cz + P 0
n + P̂ 1

n−1t + P 2
n−2t

2 + P̂ 3
n−3t

3 + · · ·+ P̂n
0 tn n odd,

where the polynomials P ρ
ζ = P ρ

ζ (z) or P̂ ρ
ζ = P̂ ρ

ζ (z) of degree ζ denote
the coefficient of tρ. Then, we expand it and arrange the coefficients of
zmtρ into the following table:

n n− 1 n− 2 n− 3 n− 4 · · · 0 m/ρ
P 0

n,n P 0
n,n−1 P 0

n,n−2 P 0
n,n−3 P 0

n,n−4 · · · P 0
n,0 0

P̂ 1
n,n P̂ 1

n,n−1 P̂ 1
n,n−2 P̂ 1

n,n−3 P̂ 1
n,n−4 · · · P̂ 1

n,0 1
P 2

n−2,n−2 P 2
n−2,n−3 P 2

n−2,n−4 · · · P 2
n−2,0 2

P̂ 3
n−2,n−2 P̂ 3

n−2,n−3 P̂ 3
n−2,n−4 · · · P̂ 3

n−2,0 3

· · · · · · · · · ...
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where

P ρ
n−ρ,ξ =

n−ξ∑
w = ρ

w even

n−ξ−w∑
v=0

v∑
s = 0

s even

∗cξ+w+v
v−s,w+s,ξ

=
n−ξ∑

w = ρ
w even

n−ξ−w∑
v=0

v∑
i = 0

v − i even

∗cξ+w+v
i,w+v−i,ξ,

P̂ ρ+1
n−ρ,ξ =

n−ξ∑
w = ρ

w even

n−ξ−w∑
l>0

w∑
u = 0

u even

u+l∑
i = 0

l− i even

∗cξ+w+l
i,w+l−i,ξ

=
n−ξ∑

w = ρ
w even

n−ξ−w∑
l>0

(
l∑

i = 0
l− i even

cξ+w+l
i,w+l−i,ξ ∗+

l+w∑
i > l

i− l even

cξ+w+l
i,w+l−i,ξ∗),

where ρ is even and the ∗’s denote some constants. From the formula of
P̂ ρ+1

n−ρ,ξ, it is easy to calculate that P̂ ρ+1
n−ρ,n−ρ = 0, which means that P (t, z)

is a polynomial in the variables of t and z of degree n, and of degree n in t
or z, respectively.

In the following we consider the function f = f(r, z). Taking G(x, y, z) ≡
0 we have

f = ar +
n∑

k=2

k∑
m=0

rmzk−m
∑

i + j = m
j even

ak
i,j,k−m Ii+1,j

= ar +
n∑

m=0

rm
n∑

k=m

zk−m
m∑

i = 0
m− i even

ak
i,m−i,k−m Ii+1,m−i

−
1∑

m=0

rm
∑

m≤k<2

zk−m
m∑

i = 0
m− i even

ak
i,m−i,k−m Ii,m−i

= ar + f1(r, z) + f2(r, z),

where

f1 =
n∑

m=0

rm
n∑

k=m

zk−m
m∑

i = 0
m− i even

ak
i,m−i,k−m

m−i∑

s = 0
s even

As,m−i
r−(i+s+1)

√
1− r2

,

f2 =
n∑

m=0

rm
n∑

k=m

zk−m
m∑

i = 0
m− i even

ak
i,m−i,k−m

m−i∑

s = 0
s even

As,m−i

i+s∑

l = 0
i− l even

Ei+s,lr
−l−1,
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where

As,m−i = (−1)s/2

(
(m− i)/2

s/2

)
,

Ei+s,l = (−1)l2l−(i+s)

(
i + s− l

(i + s− l)/2

)
.

Note that As,m−i and Ei+s,l are the same as ds,m−i and ei+s,l, we also use
them later on. Moreover, note that ak

i,j,k = 0 for k < 2.
We rearrange the order of r, z in fi, i = 1, 2, thus we have

f1 =
1

r
√

1− r2

n∑
m=0

rm
m∑

v = 0
m− v even

r−v
n∑

k=m

zk−m
v∑

s = 0
s even

ak
v−s,m−v+s,k−mds,m−v+s

=
1

r
√

1− r2

n∑

w = 0
w even

rw
n∑

k=w

k−w∑
v=0

zk−w−v
v∑

s = 0
s even

ak
v−s,w+s,k−w−vds,w+s

=
1

r
√

1− r2

n∑

w = 0
w even

rw
n∑

α=w

zα−w
n−α∑
v=0

v∑

s = 0
s even

aα+v
v−s,w+s,α−wds,w+s,

In the previous first equality v = i + s, in the second one w = m − v, and
finally in the third α = k − v. Moreover,

f2 =
1
r

n∑
m=0

rm
n∑

k=m

zk−m
m∑

i = 0
m− i even

ak
i,m−i,k−m

m∑

δ = i
δ − i even

dδ−i,m−i

δ∑

l = 0
δ − l even

eδ,lr
−l

=
1
r

n∑
m=0

rm
n∑

k=m

zk−m
m∑

l = 0
m− l even

r−l
m∑

δ = l
δ−l even

δ∑

i = 0
δ−i even

dδ−i,m−ieδ,la
k
i,m−i,k−m

=
1
r

n∑

w = 0
w even

rw
n∑

k=w

k−w∑

l=0

zk−w−l
w+l∑

δ = l
δ−l even

δ∑

i = 0
δ−i even

dδ−i,w+l−ieδ,la
k
i,w+l−i,k−w−l

=
1
r

n∑

w = 0
w even

rw
n∑

α=w

zα−w
n−α∑

l=0

w∑

u = 0
u even

u+l∑

i = 0
l−i even

du+l−i,w+l−ieu+l,la
α+l
i,w+l−i,α−w,

In the previous first equality δ = i + s, in the second one w = m− l, in the
third α = k − l, and finally in the fourth u = δ − l. Taking t =

√
1− r2 we
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obtain

r
√

1− r2f1(r, z) = rtf1(t, z)

=
n∑

w = 0
w even

(1− t2)
w
2

n∑
α=w

zα−wf1
w,α

=
n∑

w = 0
w even

w∑
ρ = 0

ρ even

(−1)
ρ
2

(
w
2
ρ
2

)
tρ

n∑
α=w

zα−wf1
w,α

=
n∑

ρ = 0
ρ even

tρ
n−ρ∑
ξ=0

zξ
n−ξ∑

w = ρ
w even

(−1)
ρ
2

(
w
2
ρ
2

)
f1

w,w+ξ,

in the last equality we have ξ = α− w, and

rf2(r, z) = rf2(t, z) =
n∑

ρ = 0
ρ even

tρ
n−ρ∑
ξ=0

zξ
n−ξ∑

w = ρ
w even

(−1)
ρ
2

(
w
2
ρ
2

)
f2

w,w+ξ,

where

f1
w,w+ξ =

n−ξ−w∑
v=0

v∑
s = 0

s even

aξ+w+v
v−s,w+s,ξds,w+s

=
n−ξ−w∑

v=0

v∑
i = 0

v − i even

aξ+w+v
i,w+v−i,ξdv−i,w+v−i,

f2
w,w+ξ =

n−ξ−w∑
l=0

w∑
u = 0

u even

u+l∑
i = 0

l− i even

du+l−i,w+l−ieu+l,la
ξ+w+l
i,w+l−i,ξ

=
n−ξ−w∑

l=0

(
l∑

i = 0
l− i even

∗aξ+w+l
i,w+l−i,ξ +

l+w∑
i > l

l− i even

∗aξ+w+l
i,w+l−i,ξ),

where the *’s denote some constants. We have f(r, z) = f(t, z) =
1

t
√

1−t2
Q(t, z), where Q(t, z) = a(1− t2) +

∑n+1
ρ=0 Qρ(z)tρ and

(12)

Qρ(z) =





n−ρ∑
ξ=0

zξ
n−ξ∑

w = ρ
w even

(−1)
ρ
2

(
w
2
ρ
2

)
f1

w,w+ξ if ρ even,

n−ρ+1∑
ξ=0

zξ
n−ξ∑

w = ρ− 1
w even

(−1)
ρ−1
2

(
w
2

ρ−1
2

)
f2

w,w+ξ if ρ odd.
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In fact Q(t, z) is a polynomial in the variables of t and z of degree n + 1, of
degree n in z, which can be written as

(13) Q =
{

a(1− t2) + Q0
n + Q̂1

nt + Q2
n−2t

2 + · · ·+ Q̂n+1
0 tn+1 n even,

a(1− t2) + Q0
n + Q̂1

nt + Q2
n−2t

2 + · · ·+ Q̂n
1 tn n odd,

where the polynomials Qρ
ζ = Qρ

ζ(z) or Q̂ρ
ζ = Q̂ρ

ζ(z) of degree ζ denote the
coefficient of tρ.

Moreover, from (7), we have f(0, z) = 0 which implies Q(1, z) = 0, i.e.
Q(t, z) = (t − 1)Q̄(t, z), where Q̄(t, z) is a polynomial in the variables of t
and z of degree n, and of degree at most n in t or z, respectively. Hence, by
Bezout’s Theorem the maximum number of the common solution of P (t, z)
and Q(t, z) is at most n2 for 0 < t < 1, because P (t, z) and Q̄(t, z) are the
polynomials in the variables of t and z of degree at most n, respectively.
Thus, by Theorem (2), the maximum number of limit cycles bifurcating
form system (1) is n2.

Next, we shall provide a system having n2 limit cycles. Here, we just
consider n even, and we take G(x, y, z) = 0 and

(14)

F (x, y, z) =
n∑

k=2

ak
0,0,kzk + a2

1,0,1xz,

R(x, y, z) =
n∑

k = 2
k even

(ck
k,0,0x

k + ck
0,k,0y

k).

Computing the averaged functions and taking t =
√

1− r2, we have

r
√

1− r2f(r, z) = ar2 + (a2
1,0,1z −

n∑
k=2

ak
0,0,kzk)(1−√1− r2)

= (1− t)(a(1 + t) + a2
1,0,1z −

n∑
k=2

ak
0,0,kzk)

= (1− t)(a(1 + t)− Q̄(z)),

where Q̄(z) is an arbitrary polynomial in z of degree n, such that Q̄(0) = 0.
At the same time, the averaged function corresponding to R(x, y, z) satisfies

√
1− r2g(r, z) = cz +

n∑

k = 2
k even

rk(ck
k,0,0Ik,0 + ck

0,k,0I0,k).
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Using (4) we obtain that
√

1− r2g(r, z) = cz + g1(r) + g2(r), where

g1 =
n∑

k = 2
k even

ck
k,0,0 −

√
1− r2

n−1∑

m = 0
m even

rm
n∑

k = m + 1
k even

ck
k,0,02

−m

(
m
m
2

)
,

g2 =
n∑

m = 0
m even

Amrm +
√

1− r2

n−1∑

m = 0
m even

Bmrm,

with

Am =
n∑

k = m
k even

ck
0,k,0dk−m,k, Bm =

n∑

k = m
k even

ck
0,k,0dk−m,k

n∑

l > 0
l even

ek−m,l.

Writing t =
√

1− r2 from the definition (7) the polynomials Pi(t) = gi(r),
i = 1, 2, satisfy Pi(1) = gi(0) = 0 . Then we can define a polynomial in
t of degree n, P̄ (t) = P1(t) + P2(t) = (t − 1)P̃ (t). We claim that P̄ (t)
is an arbitrary polynomial such that P̄ (1) = 0. It is obvious to know
that g1, g2 have n/2 parameters, respectively, where the n/2 coefficients
ck
0,k,0 allow to choose the first term of g2 arbitrarily but the term with

m = 0, implying that the even terms of P̄ (t) are arbitrary but the constant
term; while another n/2 coefficients ck

k,0,0 allow to choose the second term
in g1 arbitrarily, implying that the odd terms of P̄ (t) are arbitrary. So,
the polynomial P̄ (t) of degree n satisfies P̄ (1) = 0, and has n arbitrary
coefficients, which completes our claim. ( see also [2])

In short, the number of the solutions of f(r, z) = 0, g(r, z) = 0 is equal
to the number of the intersection points of the curves

(15) `1 : cz + P̄ (t) = 0, `2 : a(1 + t)− Q̄(z) = 0.

Proposition 6. System (15) has at least n2 common solutions (t, z) in
(0, 1)× (0, z∗) for any given positive number z∗.

Proof We know that the point (t, z) = (−1, 0) lies on the curve `2. Hence,
we can choose some suitable coefficients in (14), such that for any given
positive number z∗ > 0, `2 intersects the line t = 0 n times in the interval
(0, z∗), and the smallest maximum,

t̂ = min{t = Q̄(z)/a− 1 | Q̄′(z) = 0, Q̄′′(z)/a < 0, z ∈ (0, z∗)},
is larger than 1. Hence, there are n intersection points between `2 and t = t̄
for all t̄ ∈ (0, 1).
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On the other hand, we know that the point (1, 0) lies on the curve `1.
Hence, we take `1, such that it intersects the line z = 0 n times in the
interval (0, 1] and the smallest maximum,

ẑ = min{z = −P̄ (t)/c | P̄ ′(z) = 0,−P̄ ′′(t)/c < 0, t ∈ (0, 1)},
is larger than z∗. Hence, there are n2 intersection points between `1 and `2
contained in the rectangle (0, 1)× (0, z∗).

We can consider the case n odd in a similar way. Provided that we take
in (14),

R(x, y, z) = cn
n,0,0x

n +
n∑

k = 2
k even

(ck
k,0,0x

k + ck
0,k,0y

k),

we can get the same curves (15) and the same result. ¤
The proof of Proposition 6 implies that for any integer n > 2, we can

find n2 intersection points on f(r, z) = 0 with g(r, z) = 0 for r ∈ (r0, 1),
0 < r0 ¿ 1, which (using the averaging theory , see Theorem 2) give
rise to n2 limit cycles bifurcating from the periodic orbits of the system
ẋ = −y(1 + x), ẏ = x(1 + x), ż = 0.

Furthermore, if G(x, y, z) 6≡ 0, then we can know that Q(t, z) in (13) is
also a polynomial in the variables t and z of degree n + 1, and of degree
at most n in z. And we also have Q(1, z) = 0, which implies Q(t, z) =
(t−1)Q̄(t, z), where Q̄(t, z) is a polynomial in the variables t and z of degree
n. Hence, by Bezout’s Theorem the maximum number of the common
solution of P (t, z) and Q(t, z) is at most n2 for 0 < t < 1. Thus, the
maximum number of limit cycles bifurcating form system (1) is n2, if we
use the averaging theory up to first order in ε.
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