LIMIT CYCLES FOR A CLASS OF THREE DIMENSIONAL POLYNOMIAL DIFFERENTIAL SYSTEMS

JAUME LLIBRE ${ }^{1}$ AND JIANG YU ${ }^{2}$

Abstract

Perturbing the system $\dot{x}=-y(1+x), \dot{y}=x(1+x), \dot{z}=0$, inside the family of polynomial differential systems of degree n in \mathbb{R}^{3}, we obtain at most n^{2} limit cycles using averaging theory of first order. Moreover, there are such perturbed system having at least n^{2} limit cycles.

1. Introduction and statement of the main results

We perturb the system $\dot{x}=-y(1+x), \dot{y}=x(1+x), \dot{z}=0$ inside the class of polynomial differential systems of degree n in \mathbb{R}^{3}. The unperturbed system has the straight line $x=0, y=0$ and the plane $x=-1$ fulfilled of singular points, and on each plane $z=\bar{z}=$ constant the flow is invariant. In fact, on every plane $z=\bar{z}$ the singular point $(0,0, \bar{z})$ is a center.

Theorem 1. We consider the family of systems

$$
\begin{align*}
\dot{x} & =-y(1+x)+\varepsilon(a x+F(x, y, z)), \\
\dot{y} & =x(1+x)+\varepsilon(a y+G(x, y, z)), \tag{1}\\
\dot{z} & =\varepsilon(c z+R(x, y, z)),
\end{align*}
$$

where $F(x, y, z), G(x, y, z)$ and $R(x, y, z)$ are polynomials of degree n starting with terms of degree 2. Then there exists an $\varepsilon_{0}>0$ sufficiently small such that for $|\varepsilon|<\varepsilon_{0}$ there are systems (1) having at least n^{2} limit cycles bifurcating from the periodic orbits of the system $\dot{x}=-y(1+x), \dot{y}=x(1+x)$, $\dot{z}=0$.

Theorem 1 improves the results of [1] where perturbing the system $\dot{x}=$ $-y, \dot{y}=x, \dot{z}=0$ inside the same class of polynomial vector fields the averaging method up to first oder only can obtain at most $n(n-1) / 2$ limit cycles. Preliminary results in this direction where obtained by Żoła̧dek in $[5,6,7]$. His main result is that the number of limit cycles that he can

[^0]obtain from the periodic orbits of the center at the origin of the invariant plane $z=0$ is of the order a constant $\cdot n$. But we study the limit cycles bifurcating from the periodic orbits at any plane $z=$ constant, not only from the plane $z=0$. In this way we get that the number of limit cycles is n^{2}.

2. Limit cycles via averaging theory

In few words we can say that the averaging method [3, 4] gives a quantitative relation between the solutions of some non-autonomous periodic differential system and the solutions of its averaged differential system, which is an autonomous one. The next theorem provides a first order approximation in ε for the limit cycles of a periodic differential system, for a proof see Theorem 2.6.1 of Sanders and Verhulst [3] and Theorem 11.5 of Verhulst [4].
Theorem 2. We consider the following two initial value problems

$$
\begin{equation*}
\dot{x}=\varepsilon f(t, x)+\varepsilon^{2} g(t, x, \varepsilon), \quad x(0)=x_{0} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{y}=\varepsilon f^{0}(y), \quad y(0)=x_{0} \tag{3}
\end{equation*}
$$

where $x, y, x_{0} \in D$ an open subset of $\mathbb{R}^{n}, t \in[0, \infty),|\varepsilon| \leq \varepsilon_{0}, f$ and g are periodic of period T in the variable t, and $f^{0}(y)$ is the averaged function of $f(t, x)$ with respect to t, i.e.,

$$
f^{0}(y)=\frac{1}{T} \int_{0}^{T} f(t, y) d t
$$

Suppose: (i) f, its Jacobian $\partial f / \partial x$, its Hessian $\partial^{2} f / \partial x^{2}, g$ and its Jacobian $\partial g / \partial x$ are defined, continuous and bounded by a constant independent on ε in $[0, \infty) \times D$ and $|\varepsilon| \leq \varepsilon_{0}$; (ii) T is a constant independent of $|\varepsilon|$; and (iii) $y(t)$ belongs to D on the interval of time $[0,1 /|\varepsilon|]$. Then the following statements hold.
(a) On the time scale $1 /|\varepsilon|$ we have that $x(t)-y(t)=O(\varepsilon)$, as $\varepsilon \rightarrow 0$.
(b) If p is a singular point of the averaged system (3) such that the determinant of the Jacobian matrix $\partial f^{0} /\left.\partial y\right|_{y=p}$ is not zero, then there exists a limit cycle $\phi(t, \varepsilon)$ of period T for the system (2) which is close to p and such that $\phi(t, \varepsilon) \rightarrow p$ as $\varepsilon \rightarrow 0$.
(c) The stability or instability of the limit cycle $\phi(t, \varepsilon)$ is given by the stability or instability of the singular point p of the averaged system (3). In fact, the singular point p has the stability behavior of the Poincaré map associated to the limit cycle $\phi(t, \varepsilon)$.

3. Preliminary results

To prove Theorem 1 we shall need the following three lemmas which are proved in [2].

Lemma 3. For $i, j \in \mathbb{N}$, we define

$$
I_{i, j}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\cos ^{i} \theta \sin ^{j} \theta}{1+r \cos \theta} d t .
$$

Then $I_{i, j} \neq 0$ if and only if j is even number.
Lemma 4. For $i, j \in \mathbb{N}$, and j even, $I_{i, j}=\sum_{\substack{s=0 \\ s \text { even }}}^{j}(-1)^{s / 2}\binom{j / 2}{s / 2} I_{i+s, 0}$.
Lemma 5. For $i \in \mathbb{N}$, we have

$$
\begin{align*}
I_{i, 0} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\cos ^{i} \theta}{1+r \cos \theta} d t . \\
& =\frac{(-1)^{i}}{r^{i} \sqrt{1-r^{2}}}+\sum_{\substack{l=1 \\
l \equiv i(\bmod 2)}}^{i}(-1)^{l-1} 2^{l-i}\binom{i-l}{(i-l) / 2} r^{-l} . \tag{4}
\end{align*}
$$

4. Proof of Theorem 1

Let

$$
\begin{aligned}
& F(x, y, z)=F_{2}(x, y, z)+F_{3}(x, y, z)+\cdots+F_{n}(x, y, z), \\
& G(x, y, z)=G_{2}(x, y, z)+G_{3}(x, y, z)+\cdots+G_{n}(x, y, z), \\
& R(x, y, z)=R_{2}(x, y, z)+R_{3}(x, y, z)+\cdots+R_{n}(x, y, z),
\end{aligned}
$$

be polynomials such that F_{i}, G_{i} and R_{i} are the homogeneous parts of F, G and R of degree i, respectively. In cylindrical coordinates $x=r \cos \theta$, $y=r \sin \theta, z=z$, system (1) in the region $r>0$ can be written as

$$
\begin{align*}
\dot{r} & =\varepsilon(a r+\cos \theta F+\sin \theta G), \\
\dot{\theta} & =1+r \cos \theta+\frac{\varepsilon}{r}(\cos \theta G-\sin \theta F), \tag{5}\\
\dot{z} & =\varepsilon(c z+R) .
\end{align*}
$$

Here and in what follows F, G and R will denote $F(r \cos \theta, r \sin \theta, z)$, $G(r \cos \theta, r \sin \theta, z)$ and $R(r \cos \theta, r \sin \theta, z)$, respectively. System (5) in the region $r>0$ is equivalent to system
(6)

$$
\frac{d r}{d \theta}=\varepsilon \frac{a r+\cos \theta F+\sin \theta G}{1+r \cos \theta}+O\left(\varepsilon^{2}\right)
$$

$$
\frac{d z}{d \theta}=\varepsilon \frac{c z+R}{1+r \cos \theta}+O\left(\varepsilon^{2}\right)
$$

Let D be an arbitrary ball of radius smaller than 1 centered at the origin of \mathbb{R}^{2} and ε_{0} be a positive number. Then, system (6) satisfies the assumptions of Theorem 2 if ε_{0} is sufficiently small and D is fixed. In order to apply the averaging theory to system (6) we have to compute the averaged functions

$$
\begin{align*}
& f=f(r, z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{a r+\cos \theta F+\sin \theta G}{1+r \cos \theta} d \theta \\
& g=g(r, z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{c z+R}{1+r \cos \theta} d \theta \tag{7}
\end{align*}
$$

For each $k=2, \cdots, n$ we write

$$
\begin{aligned}
F_{k}(x, y, z) & =\sum_{i+j+l=k} a_{i, j, l}^{k} x^{i} y^{j} z^{l} \\
G_{k}(x, y, z) & =\sum_{i+j+l=k} b_{i, j, l}^{k} x^{i} y^{j} z^{l} \\
R_{k}(x, y, z) & =\sum_{i+j+l=k} c_{i, j, l}^{k} x^{i} y^{j} z^{l}
\end{aligned}
$$

Now using the notation introduced in Lemma 3, the averaged functions write as
(8) $\quad f=a r+\sum_{k=2}^{n} \sum_{i+j+l=k} r^{i+j} z^{l}\left(a_{i, j, l}^{k} I_{i+1, j}+b_{i, j, l}^{k} I_{i, j+1}\right)$,
and
(9) $\quad g=g(r, z)=c z I_{0,0}+\sum_{k=2}^{n} \sum_{i+j+l=k} c_{i, j, l}^{k} r^{i+j} z^{l} I_{i, j}$.

Consequently, f and g are polynomials in the variables r, z of degree n. Now we obtain by the lemmas

$$
\begin{aligned}
g= & c z I_{0,0}+\sum_{k=2}^{n} \sum_{m=0}^{k} r^{m} z^{k-m} \sum_{\substack{i+j=m \\
j \text { even }}} c_{i, j, k-m}^{k} I_{i, j} \\
= & c z I_{0,0}+\sum_{m=0}^{n} r^{m} \sum_{k=m}^{n} z^{k-m} \sum_{\substack{i=0 \\
m-i \text { even }}}^{m} c_{i, m-i, k-m}^{k} I_{i, m-i}- \\
& \sum_{m=0}^{1} r^{m} \sum_{m \leq k<2} z^{k-m} \sum_{\substack{i=0 \\
m-i \text { even }}}^{m} c_{i, m-i, k-m}^{k} I_{i, m-i} \\
= & c z I_{0,0}+g_{1}(r, z)+g_{2}(r, z),
\end{aligned}
$$

with

$$
\begin{aligned}
& g_{1}=\sum_{m=0}^{n} r^{m} \sum_{k=m}^{n} z^{k-m} \sum_{\substack{i=0 \\
m-i \text { even }}}^{m} c_{i, m-i, k-m}^{k} \sum_{\substack{s=0 \\
s \text { even }}}^{m-i} d_{s, m-i} \frac{r^{-(i+s)}}{\sqrt{1-r^{2}}} \\
& g_{2}= \sum_{m=0}^{n} r^{m} \sum_{k=m}^{n} z^{k-m} \sum_{\substack{i=0 \\
m-i \text { even }}}^{m} c_{i, m-i, k-m}^{k} \sum_{\substack{s=0 \\
s \text { even }}}^{m-i} d_{s, m-i} \sum_{l=1}^{i+s} e_{i+s, l} r^{-l} \\
&
\end{aligned}
$$

where

$$
\begin{aligned}
d_{s, m-i} & =(-1)^{s / 2}\binom{(m-i) / 2}{s / 2} \\
e_{i+s, l} & =(-1)^{l-1} 2^{l-(i+s)}\binom{i+s-l}{(i+s-l) / 2} .
\end{aligned}
$$

We note that $c_{i, j, k}^{k}=0$ for $k<2$.
We rearrange the order of r, z in g_{i} for $i=1,2$. Thus we have

$$
\begin{aligned}
g_{1} & =\frac{1}{\sqrt{1-r^{2}}} \sum_{m=0}^{n} r^{m} \sum_{\substack{v=0 \\
m-v \text { even }}}^{m} r^{-v} \sum_{k=m}^{n} z^{k-m} \sum_{\substack{s=0 \\
s \text { seven }}}^{v} c_{v-s, m-v+s, k-m}^{k} d_{s, m-v+s} \\
& =\frac{1}{\sqrt{1-r^{2}}} \sum_{\substack{w=0 \\
w \text { even }}}^{n} r^{w} \sum_{k=w}^{n} \sum_{v=0}^{k-w} z^{k-w-v} \sum_{\substack{s=0 \\
s \text { even }}}^{v} c_{v-s, w+s, k-w-v}^{k} d_{s, w+s}
\end{aligned}
$$

$$
=\frac{1}{\sqrt{1-r^{2}}} \sum_{\substack{w=0 \\ w \text { even }}}^{n} r^{w} \sum_{\alpha=w}^{n} z^{\alpha-w} \sum_{v=0}^{n-\alpha} \sum_{\substack{s=0 \\ s \text { even }}}^{v} c_{v-s, w+s, \alpha-w}^{\alpha+v} d_{s, w+s}
$$

In the previous first equality $v=i+s$, in the second one $w=m-v$, and finally in the third $\alpha=k-v$. Moreover,

$$
\begin{aligned}
& g_{2}=\sum_{m=0}^{n} r^{m} \sum_{k=m}^{n} z^{k-m} \sum_{\substack{i=0 \\
m-i \text { even }}}^{m} c_{i, m-i, k-m}^{k} \sum_{\substack{\delta=i \\
\delta-i \text { even }}}^{m} d_{\delta-i, m-i} \sum_{\substack{l>0 \\
\delta-l \text { even }}}^{\delta} e_{\delta, l} r^{-l} \\
& =\sum_{m=0}^{n} r^{m} \sum_{k=m}^{n} z^{k-m} \sum_{\substack{l>0 \\
m-l \text { even }}}^{m} r^{-l} \sum_{\substack{\delta=l \\
\delta-l \text { even } \delta-i \text { even }}}^{m} \sum_{\substack{i=0}}^{\delta} d_{\delta-i, m-i} e_{\delta, l} c_{i, m-i, k-m}^{k} \\
& =\sum_{\substack{w=0 \\
w \text { even }}}^{n} r^{w} \sum_{k=w}^{n} \sum_{l>0}^{k-w} z^{k-w-l} \sum_{\substack{\delta=l \\
\delta-l \text { even } \delta-i \text { even }}}^{w+l} \sum_{\substack{i=0 \\
\delta}} d_{\delta-i, w+l-i} e_{\delta, l} c_{i, w+l-i, k-w-l}^{k} \\
& =\sum_{\substack{w=0 \\
w \text { even }}}^{n} r^{w} \sum_{\alpha=w}^{n} z^{\alpha-w} \sum_{l>0}^{n-\alpha} \sum_{\substack{u=0 \\
u \text { even }}}^{w} \sum_{\substack{i=0 \\
l-i \text { even }}}^{u+l} u+l-i, w+l-i e_{u+l, l} c_{i, w+l-i, \alpha-w}^{\alpha+l} .
\end{aligned}
$$

In the previous first equality $\delta=i+s$, in the second one $w=m-l$, in the third $\alpha=k-l$, and finally in the fourth $u=\delta-l$.

Defining $t=\sqrt{1-r^{2}}$ we have

$$
\begin{aligned}
\sqrt{1-r^{2}} g_{1}(r, z) & =t g_{1}(t, z) \\
& =\sum_{\substack{w=0 \\
w \text { even }}}^{n}\left(1-t^{2}\right)^{\frac{w}{2}} \sum_{\alpha=w}^{n} z^{\alpha-w} g_{w, \alpha}^{1} \\
& =\sum_{\substack{w=0 \\
w \text { even }}}^{n} \sum_{\substack{\rho=0 \\
\rho \text { even } \\
n-\rho}}^{w}(-1)^{\frac{\rho}{2}}\binom{\frac{w}{2}}{\frac{\rho}{2}} t^{\rho} \sum_{\alpha=w}^{n} z^{\alpha-w} g_{w, \alpha}^{1} \\
& =\sum_{\substack{\rho=0 \\
\rho \text { even }}}^{n} t^{\rho} \sum_{\xi=0}^{n-\rho} z^{\xi} \sum_{\substack{w=\rho \\
w \text { even }}}^{n-\xi}(-1)^{\frac{\rho}{2}}\left(\begin{array}{c}
w \\
\frac{p}{2} \\
\frac{\rho}{2}
\end{array}\right) g_{w, w+\xi}^{1},
\end{aligned}
$$

in the last equality we have $\xi=\alpha-w$, and

$$
g_{2}(r, z)=g_{2}(t, z)=\sum_{\substack{\rho=0 \\ \rho \text { even }}}^{n} t^{\rho} \sum_{\xi=0}^{n-\rho} z^{\xi} \sum_{\substack{w=\rho \\ w \text { even }}}^{n-\xi}(-1)^{\frac{\rho}{2}}\binom{\frac{w}{2}}{\frac{\rho}{2}} g_{w, w+\xi}^{2},
$$

where

$$
\begin{aligned}
g_{w, w+\xi}^{1} & =\sum_{v=0}^{n-w-\xi} \sum_{\substack{s=0 \\
s \text { even }}}^{v} c_{v-s, w+s, \xi}^{w+\xi+v} d_{s, w+s} \\
g_{w, w+\xi}^{2} & =\sum_{l>0}^{n-w-\xi} \sum_{\substack{u=0 \\
u \text { even }}}^{w} \sum_{\substack{i=0 \\
l-i \text { even }}}^{u+l} d_{u+l-i, w+l-i} e_{u+l, l} c_{i, w+l-i, \xi}^{w+\xi+l}
\end{aligned}
$$

We have $g(r, z)=(t, z)=\frac{1}{t} P(t, z)$, where $P(t, z)=c z+\sum_{\rho=0}^{n+1} P_{\rho}(z) t^{\rho}$ and
(10) $P_{\rho}(z)= \begin{cases}\sum_{\xi=0}^{n-\rho} z^{\xi} \sum_{\substack{w=\rho \\ w \text { even }}}^{n-\xi}(-1)^{\frac{\rho}{2}}\binom{\frac{w}{2}}{\frac{\rho}{2}} g_{w, w+\xi}^{1} & \text { if } \rho \text { even, } \\ \sum_{\xi=0}^{n-\rho+1} z^{\xi} \sum_{\substack{w=\rho-1 \\ w \text { even }}}^{n-\xi}(-1)^{\frac{\rho-1}{2}}\binom{\frac{w}{2}}{\frac{\rho-1}{2}} g_{w, w+\xi}^{2} & \text { if } \rho \text { odd. }\end{cases}$

In fact $P(t, z)$ is a polynomial of degree n in the variables t and z, respectively, which can be written as
(11) $P= \begin{cases}c z+P_{n}^{0}+\hat{P}_{n-1}^{1} t+P_{n-2}^{2} t^{2}+\hat{P}_{n-3}^{3} t^{3}+\cdots+P_{0}^{n} t^{n} & n \text { even, } \\ c z+P_{n}^{0}+\hat{P}_{n-1}^{1} t+P_{n-2}^{2} t^{2}+\hat{P}_{n-3}^{3} t^{3}+\cdots+\hat{P}_{0}^{n} t^{n} & n \text { odd, }\end{cases}$
where the polynomials $P_{\zeta}^{\rho}=P_{\zeta}^{\rho}(z)$ or $\hat{P}_{\zeta}^{\rho}=\hat{P}_{\zeta}^{\rho}(z)$ of degree ζ denote the coefficient of t^{ρ}. Then, we expand it and arrange the coefficients of $z^{m} t^{\rho}$ into the following table:

n	$n-1$	$n-2$	$n-3$	$n-4$	\cdots	0	m / ρ
$P_{n, n}^{0}$	$P_{n, n-1}^{0}$	$P_{n, n-2}^{0}$	$P_{n, n-3}^{0}$	$P_{n, n-4}^{0}$	\cdots	$P_{n, 0}^{0}$	0
$\hat{P}_{n, n}^{1}$	$\hat{P}_{n, n-1}^{1}$	$\hat{P}_{n, n-2}^{1}$	$\hat{P}_{n, n-3}^{1}$	$\hat{P}_{n, n-4}^{1}$	\cdots	$\hat{P}_{n, 0}^{1}$	1
		$P_{n-2, n-2}^{2}$	$P_{n-2, n-3}^{2}$	$P_{n-2, n-4}^{2}$	\cdots	$P_{n-2,0}^{2}$	2
		$\hat{P}_{n-2, n-2}^{3}$	$\hat{P}_{n-2, n-3}^{3}$	$\hat{P}_{n-2, n-4}^{3}$	\cdots	$\hat{P}_{n-2,0}^{3}$	3
				\cdots	\cdots	\cdots	\vdots

where

$$
\begin{aligned}
& P_{n-\rho, \xi}^{\rho}=\sum_{\substack{w=\rho \\
w \text { even }}}^{n-\xi} \sum_{v=0}^{n-\xi-w} \sum_{\substack{s=0 \\
\text { seven }}}^{v} * c_{v-s, w+s, \xi}^{\xi+w+v} \\
& =\sum_{\substack{w=\rho \\
w \text { even }}}^{n-\xi} \sum_{v=0}^{n-\xi-w} \sum_{\substack{i=0 \\
v-i \text { even }}}^{v} * c_{i, w+v-i, \xi}^{\xi+w+v}, \\
& \hat{P}_{n-\rho, \xi}^{\rho+1}=\sum_{\substack{w=\rho \\
w \text { even }}}^{n-\xi} \sum_{l>0}^{n-\xi-w} \sum_{\substack{u=0 \\
u \text { even }}}^{w} \sum_{\substack{i=0 \\
l-i \text { even }}}^{u+l} * c_{i, w+l-i, \xi}^{\xi+w+l} \\
& =\sum_{\substack{w=\rho \\
w \text { even }}}^{n-\xi} \sum_{l>0}^{n-\xi-w}\left(\sum_{\substack{i=0 \\
l-i \text { even }}}^{l} c_{i, w+l-i, \xi^{2}}^{\xi+w+l} * \sum_{\substack{i>l \\
i-l \text { even }}}^{l+w} c_{i, w+l-i, \xi^{*}}^{\xi+w+l},\right.
\end{aligned}
$$

where ρ is even and the $*$'s denote some constants. From the formula of $\hat{P}_{n-\rho, \xi}^{\rho+1}$, it is easy to calculate that $\hat{P}_{n-\rho, n-\rho}^{\rho+1}=0$, which means that $P(t, z)$ is a polynomial in the variables of t and z of degree n, and of degree n in t or z, respectively.

In the following we consider the function $f=f(r, z)$. Taking $G(x, y, z) \equiv$ 0 we have

$$
\begin{aligned}
f= & a r+\sum_{k=2}^{n} \sum_{m=0}^{k} r^{m} z^{k-m} \sum_{\substack{i+j=m \\
j \text { even }}} a_{i, j, k-m}^{k} I_{i+1, j} \\
= & a r+\sum_{m=0}^{n} r^{m} \sum_{k=m}^{n} z^{k-m} \sum_{\substack{i=0 \\
m-i \text { even }}}^{m} a_{i, m-i, k-m}^{k} I_{i+1, m-i} \\
& -\sum_{m=0}^{1} r^{m} \sum_{m \leq k<2} z^{k-m} \sum_{\substack{i=0 \\
m-i \text { even }}}^{m} a_{i, m-i, k-m}^{k} I_{i, m-i} \\
= & a r+f_{1}(r, z)+f_{2}(r, z),
\end{aligned}
$$

where

$$
\begin{aligned}
& f_{1}=\sum_{m=0}^{n} r^{m} \sum_{k=m}^{n} z^{k-m} \sum_{\substack{i=0 \\
m-i \text { even }}}^{m} a_{i, m-i, k-m}^{k} \sum_{\substack{s=0 \\
s \text { even }}}^{m-i} A_{s, m-i} \frac{r^{-(i+s+1)}}{\sqrt{1-r^{2}}}, \\
& f_{2}=\sum_{m=0}^{n} r^{m} \sum_{k=m}^{n} z^{k-m} \sum_{\substack{i=0 \\
m-i \text { even }}}^{m} a_{i, m-i, k-m}^{k} \sum_{\substack{s=0 \\
s \text { even }}}^{m-i} A_{s, m-i} \sum_{\substack{l=0 \\
i-l \text { even }}}^{i+s} E_{i+s, l} r^{-l-1},
\end{aligned}
$$

where

$$
\begin{aligned}
A_{s, m-i} & =(-1)^{s / 2}\binom{(m-i) / 2}{s / 2} \\
E_{i+s, l} & =(-1)^{l} 2^{l-(i+s)}\binom{i+s-l}{(i+s-l) / 2}
\end{aligned}
$$

Note that $A_{s, m-i}$ and $E_{i+s, l}$ are the same as $d_{s, m-i}$ and $e_{i+s, l}$, we also use them later on. Moreover, note that $a_{i, j, k}^{k}=0$ for $k<2$.

We rearrange the order of r, z in $f_{i}, i=1,2$, thus we have

$$
\begin{aligned}
f_{1} & =\frac{1}{r \sqrt{1-r^{2}}} \sum_{m=0}^{n} r^{m} \sum_{\substack{v=0 \\
m-v \text { even }}}^{m} r^{-v} \sum_{k=m}^{n} z^{k-m} \sum_{\substack{s=0 \\
s \text { even }}}^{v} a_{v-s, m-v+s, k-m}^{k} d_{s, m-v+s} \\
& =\frac{1}{r \sqrt{1-r^{2}}} \sum_{\substack{w=0 \\
w \text { even }}}^{n} r^{w} \sum_{k=w}^{n} \sum_{v=0}^{k-w} z^{k-w-v} \sum_{\substack{s=0 \\
s \text { even }}}^{v} a_{v-s, w+s, k-w-v}^{k} d_{s, w+s} \\
& =\frac{1}{r \sqrt{1-r^{2}}} \sum_{\substack{w=0 \\
w \text { even }}}^{n} r^{w} \sum_{\alpha=w}^{n} z^{\alpha-w} \sum_{v=0}^{n-\alpha} \sum_{\substack{s=0 \\
s \text { even }}}^{v} a_{v-s, w+s, \alpha-w}^{\alpha+v} d_{s, w+s},
\end{aligned}
$$

In the previous first equality $v=i+s$, in the second one $w=m-v$, and finally in the third $\alpha=k-v$. Moreover,

$$
\begin{aligned}
& f_{2}=\frac{1}{r} \sum_{m=0}^{n} r^{m} \sum_{k=m}^{n} z^{k-m} \sum_{\substack{i=0 \\
m-i \text { even }}}^{m} a_{i, m-i, k-m}^{k} \sum_{\substack{\delta=i \\
\delta-i \text { even }}}^{m} d_{\delta-i, m-i} \sum_{\substack{l=0 \\
\delta-l \text { even }}}^{\delta} e_{\delta, l} r^{-l} \\
& =\frac{1}{r} \sum_{m=0}^{n} r^{m} \sum_{k=m}^{n} z^{k-m} \sum_{\substack{l=0 \\
m-l \text { even } \delta-l \text { even } \\
\delta-i=0 \\
\delta-l}}^{m} \sum_{\substack{i=0}}^{\delta} d_{\delta-i, m-i} e_{\delta, l} a_{i, m-i, k-m}^{k} \\
& =\frac{1}{r} \sum_{\substack{w=0 \\
w \text { even }}}^{n} r^{w} \sum_{k=w}^{n} \sum_{l=0}^{k-w} z^{k-w-l} \sum_{\substack{\delta=l \\
\delta-l \text { even } \delta-i \text { even }}}^{w+l} \sum_{\substack{i=0}}^{\delta} d_{\delta-i, w+l-i} e_{\delta, l} a_{i, w+l-i, k-w-l}^{k} \\
& =\frac{1}{r} \sum_{\substack{w=0 \\
w \text { even }}}^{n} r^{w} \sum_{\alpha=w}^{n} z^{\alpha-w} \sum_{l=0}^{n-\alpha} \sum_{\substack{u=0 \\
u \text { even }}}^{w} \sum_{\substack{i=0 \\
l-i \text { even }}}^{u+l} d_{u+l-i, w+l-i} e_{u+l, l} a_{i, w+l-i, \alpha-w}^{\alpha+l},
\end{aligned}
$$

In the previous first equality $\delta=i+s$, in the second one $w=m-l$, in the third $\alpha=k-l$, and finally in the fourth $u=\delta-l$. Taking $t=\sqrt{1-r^{2}}$ we
obtain

$$
\begin{aligned}
r \sqrt{1-r^{2}} f_{1}(r, z) & =r t f_{1}(t, z) \\
& =\sum_{\substack{w=0 \\
w=\text { even }}}^{n}\left(1-t^{2}\right)^{\frac{w}{2}} \sum_{\alpha=w}^{n} z^{\alpha-w} f_{w, \alpha}^{1} \\
& =\sum_{\substack{w=0 \\
w \text { even }}}^{n} \sum_{\substack{\rho=0 \\
\rho \text { even }}}^{w}(-1)^{\frac{\rho}{2}}\binom{\frac{w}{2}}{\frac{\rho}{2}} t^{\rho} \sum_{\alpha=w}^{n} z^{\alpha-w} f_{w, \alpha}^{1} \\
& =\sum_{\substack{\rho=0 \\
\rho \text { even }}}^{n} t^{\rho} \sum_{\xi=0}^{n-\rho} z^{\xi} \sum_{\substack{w=\rho \\
w \text { even }}}^{n-\xi}(-1)^{\frac{\rho}{2}}\binom{\frac{w}{2}}{\frac{\rho}{2}} f_{w, w+\xi}^{1},
\end{aligned}
$$

in the last equality we have $\xi=\alpha-w$, and

$$
r f_{2}(r, z)=r f_{2}(t, z)=\sum_{\substack{\rho=0 \\ \rho \text { even }}}^{n} t^{\rho} \sum_{\xi=0}^{n-\rho} z^{\xi} \sum_{\substack{w=\rho \\ w \text { even }}}^{n-\xi}(-1)^{\frac{\rho}{2}}\binom{\frac{w}{2}}{\frac{\rho}{2}} f_{w, w+\xi}^{2}
$$

where

$$
\begin{aligned}
f_{w, w+\xi}^{1} & =\sum_{v=0}^{n-\xi-w} \sum_{\substack{s=0 \\
s \text { even }}}^{v} a_{v-s, w+s, \xi}^{\xi+w+v} d_{s, w+s} \\
& =\sum_{v=0}^{n-\xi-w} \sum_{\substack{i=0 \\
v-i \text { even }}}^{v} a_{i, w+v-i, \xi}^{\xi+w+v} d_{v-i, w+v-i}, \\
f_{w, w+\xi}^{2} & =\sum_{l=0}^{n-\xi-w} \sum_{\substack{u=0 \\
u=0 \text { even }}}^{w} \sum_{\substack{i=0 \\
l-i \text { even }}}^{u+l} d_{u+l-i, w+l-i} e_{u+l, l} a_{i, w+l-i, \xi}^{\xi+w+l} \\
& =\sum_{l=0}^{n-\xi-w}\left(\sum_{\substack{i=0 \\
l-i \text { even }}}^{l} * a_{i, w+l-i, \xi}^{\xi+w+l}+\sum_{\substack{i>l \\
l-i \text { even }}}^{l+w} * a_{i, w+l-i, \xi}^{\xi+w+l}\right)
\end{aligned}
$$

where the ${ }^{*}$'s denote some constants. We have $f(r, z)=f(t, z)=$ $\frac{1}{t \sqrt{1-t^{2}}} Q(t, z)$, where $Q(t, z)=a\left(1-t^{2}\right)+\sum_{\rho=0}^{n+1} Q_{\rho}(z) t^{\rho}$ and (12)

$$
Q_{\rho}(z)= \begin{cases}\sum_{\xi=0}^{n-\rho} z^{\xi} \sum_{\substack{w=\rho \\ w \text { even }}}^{n-\xi}(-1)^{\frac{\rho}{2}}\binom{\frac{w}{2}}{\frac{\rho}{2}} f_{w, w+\xi}^{1} & \text { if } \rho \text { even } \\ \sum_{\xi=0}^{n-\rho+1} z^{\xi} \sum_{\substack{w=\rho-1 \\ w \text { even }}}^{n-\xi}(-1)^{\frac{\rho-1}{2}}\binom{\frac{w}{2}}{\frac{\rho-1}{2}} f_{w, w+\xi}^{2} & \text { if } \rho \text { odd. }\end{cases}
$$

In fact $Q(t, z)$ is a polynomial in the variables of t and z of degree $n+1$, of degree n in z, which can be written as

$$
Q= \begin{cases}a\left(1-t^{2}\right)+Q_{n}^{0}+\hat{Q}_{n}^{1} t+Q_{n-2}^{2} t^{2}+\cdots+\hat{Q}_{0}^{n+1} t^{n+1} & n \text { even }, \tag{13}\\ a\left(1-t^{2}\right)+Q_{n}^{0}+\hat{Q}_{n}^{1} t+Q_{n-2}^{2} t^{2}+\cdots+\hat{Q}_{1}^{n} t^{n} & n \text { odd },\end{cases}
$$

where the polynomials $Q_{\zeta}^{\rho}=Q_{\zeta}^{\rho}(z)$ or $\hat{Q}_{\zeta}^{\rho}=\hat{Q}_{\zeta}^{\rho}(z)$ of degree ζ denote the coefficient of t^{ρ}.

Moreover, from (7), we have $f(0, z)=0$ which implies $Q(1, z)=0$, i.e. $Q(t, z)=(t-1) \bar{Q}(t, z)$, where $\bar{Q}(t, z)$ is a polynomial in the variables of t and z of degree n, and of degree at most n in t or z, respectively. Hence, by Bezout's Theorem the maximum number of the common solution of $P(t, z)$ and $Q(t, z)$ is at most n^{2} for $0<t<1$, because $P(t, z)$ and $\bar{Q}(t, z)$ are the polynomials in the variables of t and z of degree at most n, respectively. Thus, by Theorem (2), the maximum number of limit cycles bifurcating form system (1) is n^{2}.

Next, we shall provide a system having n^{2} limit cycles. Here, we just consider n even, and we take $G(x, y, z)=0$ and

$$
\begin{align*}
& F(x, y, z)=\sum_{k=2}^{n} a_{0,0, k}^{k} z^{k}+a_{1,0,1}^{2} x z, \\
& R(x, y, z)=\sum_{\substack{k=2 \\
k \text { even }}}^{n}\left(c_{k, 0,0}^{k} x^{k}+c_{0, k, 0}^{k} y^{k}\right) . \tag{14}
\end{align*}
$$

Computing the averaged functions and taking $t=\sqrt{1-r^{2}}$, we have

$$
\begin{aligned}
r \sqrt{1-r^{2}} f(r, z) & =a r^{2}+\left(a_{1,0,1}^{2} z-\sum_{k=2}^{n} a_{0,0, k}^{k} z^{k}\right)\left(1-\sqrt{1-r^{2}}\right) \\
& =(1-t)\left(a(1+t)+a_{1,0,1}^{2} z-\sum_{k=2}^{n} a_{0,0, k}^{k} z^{k}\right) \\
& =(1-t)(a(1+t)-\bar{Q}(z)),
\end{aligned}
$$

where $\bar{Q}(z)$ is an arbitrary polynomial in z of degree n, such that $\bar{Q}(0)=0$. At the same time, the averaged function corresponding to $R(x, y, z)$ satisfies

$$
\sqrt{1-r^{2}} g(r, z)=c z+\sum_{\substack{k=2 \\ k \text { even }}}^{n} r^{k}\left(c_{k, 0,0}^{k} I_{k, 0}+c_{0, k, 0}^{k} I_{0, k}\right) .
$$

Using (4) we obtain that $\sqrt{1-r^{2}} g(r, z)=c z+g_{1}(r)+g_{2}(r)$, where

$$
\begin{aligned}
& g_{1}=\sum_{\substack{k=2 \\
k \text { even }}}^{n} c_{k, 0,0}^{k}-\sqrt{1-r^{2}} \sum_{\substack{m=0 \\
m \text { even }}}^{n-1} r^{m} \sum_{\substack{k=m+1 \\
k \text { even }}}^{n} c_{k, 0,0}^{k} 2^{-m}\binom{m}{\frac{m}{2}}, \\
& g_{2}=\sum_{\substack{m=0 \\
m \text { even }}}^{n} A_{m} r^{m}+\sqrt{1-r^{2}} \sum_{\substack{m=0 \\
m \text { even }}}^{n-1} B_{m} r^{m}
\end{aligned}
$$

with

$$
A_{m}=\sum_{\substack{k=m \\ k \text { even }}}^{n} c_{0, k, 0}^{k} d_{k-m, k}, \quad B_{m}=\sum_{\substack{k=m \\ k \text { even }}}^{n} c_{0, k, 0}^{k} d_{k-m, k} \sum_{\substack{l>0 \\ l \text { even }}}^{n} e_{k-m, l}
$$

Writing $t=\sqrt{1-r^{2}}$ from the definition (7) the polynomials $P_{i}(t)=g_{i}(r)$, $i=1,2$, satisfy $P_{i}(1)=g_{i}(0)=0$. Then we can define a polynomial in t of degree $n, \bar{P}(t)=P_{1}(t)+P_{2}(t)=(t-1) \tilde{P}(t)$. We claim that $\bar{P}(t)$ is an arbitrary polynomial such that $\bar{P}(1)=0$. It is obvious to know that g_{1}, g_{2} have $n / 2$ parameters, respectively, where the $n / 2$ coefficients $c_{0, k, 0}^{k}$ allow to choose the first term of g_{2} arbitrarily but the term with $m=0$, implying that the even terms of $\bar{P}(t)$ are arbitrary but the constant term; while another $n / 2$ coefficients $c_{k, 0,0}^{k}$ allow to choose the second term in g_{1} arbitrarily, implying that the odd terms of $\bar{P}(t)$ are arbitrary. So, the polynomial $\bar{P}(t)$ of degree n satisfies $\bar{P}(1)=0$, and has n arbitrary coefficients, which completes our claim. (see also [2])

In short, the number of the solutions of $f(r, z)=0, g(r, z)=0$ is equal to the number of the intersection points of the curves

$$
\begin{equation*}
\ell_{1}: \quad c z+\bar{P}(t)=0, \quad \ell_{2}: \quad a(1+t)-\bar{Q}(z)=0 \tag{15}
\end{equation*}
$$

Proposition 6. System (15) has at least n^{2} common solutions (t, z) in $(0,1) \times\left(0, z^{*}\right)$ for any given positive number z^{*}.

Proof We know that the point $(t, z)=(-1,0)$ lies on the curve ℓ_{2}. Hence, we can choose some suitable coefficients in (14), such that for any given positive number $z^{*}>0, \ell_{2}$ intersects the line $t=0 n$ times in the interval $\left(0, z^{*}\right)$, and the smallest maximum,

$$
\hat{t}=\min \left\{t=\bar{Q}(z) / a-1 \mid \bar{Q}^{\prime}(z)=0, \bar{Q}^{\prime \prime}(z) / a<0, z \in\left(0, z^{*}\right)\right\}
$$

is larger than 1. Hence, there are n intersection points between ℓ_{2} and $t=\bar{t}$ for all $\bar{t} \in(0,1)$.

On the other hand, we know that the point $(1,0)$ lies on the curve ℓ_{1}. Hence, we take ℓ_{1}, such that it intersects the line $z=0 n$ times in the interval $(0,1]$ and the smallest maximum,

$$
\hat{z}=\min \left\{z=-\bar{P}(t) / c \mid \bar{P}^{\prime}(z)=0,-\bar{P}^{\prime \prime}(t) / c<0, t \in(0,1)\right\},
$$

is larger than z^{*}. Hence, there are n^{2} intersection points between ℓ_{1} and ℓ_{2} contained in the rectangle $(0,1) \times\left(0, z^{*}\right)$.

We can consider the case n odd in a similar way. Provided that we take in (14),

$$
R(x, y, z)=c_{n, 0,0}^{n} x^{n}+\sum_{\substack{k=2 \\ k \text { even }}}^{n}\left(c_{k, 0,0}^{k} x^{k}+c_{0, k, 0}^{k} y^{k}\right),
$$

we can get the same curves (15) and the same result.
The proof of Proposition 6 implies that for any integer $n>2$, we can find n^{2} intersection points on $f(r, z)=0$ with $g(r, z)=0$ for $r \in\left(r_{0}, 1\right)$, $0<r_{0} \ll 1$, which (using the averaging theory , see Theorem 2) give rise to n^{2} limit cycles bifurcating from the periodic orbits of the system $\dot{x}=-y(1+x), \dot{y}=x(1+x), \dot{z}=0$.

Furthermore, if $G(x, y, z) \not \equiv 0$, then we can know that $Q(t, z)$ in (13) is also a polynomial in the variables t and z of degree $n+1$, and of degree at most n in z. And we also have $Q(1, z)=0$, which implies $Q(t, z)=$ $(t-1) \bar{Q}(t, z)$, where $\bar{Q}(t, z)$ is a polynomial in the variables t and z of degree n. Hence, by Bezout's Theorem the maximum number of the common solution of $P(t, z)$ and $Q(t, z)$ is at most n^{2} for $0<t<1$. Thus, the maximum number of limit cycles bifurcating form system (1) is n^{2}, if we use the averaging theory up to first order in ε.

Acknowledgements

The first author is partially supported by a DGICYT grant number MTM2005-06098-C02-01 and by a CICYT grant number 2005SGR 00550. The second author has been supported partly by Grants NSFC-10371072 of China, and Grant G63009138 of Spain. He thanks to CRM and to Department of Mathematics of the Universitat Autònoma de Barcelona for their support and hospitality.

References

[1] A. Cima, J. Llibre and M.A. Teixeira, Limit cycles of some polynomial differential systems in dimension 2, 3 and 4 via averaging theory, preprint, 2005.
[2] J. Llibre, J.S. Río and J.A. Rodríguez, Averaging analysis of a perturbated quadratic center, Nonlinear Anal. 46 (2001), 45-51.
[3] J.A. Sanders and F. Verhulst, Averaging methods in nonlinear dynamical systems, Applied Mathematical Sci., Vol. 59, Springer-Verlag, New York, 1985.
[4] F. Verhulst, Nonlinear differential equations and dynamical systems, Universitext. Springer-Verlag, Berlin, 1996.
[5] H ŻO乇A̧DEK, Limit cycles appearing after perturbation of certain multidimensional vector fields, J. Dynam. Differential Equations 13 (2001), 689-709.
[6] H ŻOŁA̧DEK, Limit cycles for multidimensional vector fields. The elliptic case, J. Dynam. Control Systems 9 (2003), 265-310.
[7] H ŻOॄA̧DEK, Limit cycles of three-dimensional polynomial vector fields, Nonlinearity 18 (2005), 175-209.
${ }^{1}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

E-mail address: jllibre@mat.uab.es
2 Department of Mathematics, Shanghai Jiaotong University, Shanghai, 200240, China

E-mail address: jiangyu@sjtu.edu.cn

[^0]: 1991 Mathematics Subject Classification. 37G15, 37D45.
 Key words and phrases. linear center, limit cycle, averaging theory, polynomial differential system.

