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Abstract. For ε small we consider the number of limit cycles of the
system ẋ = −y(1+x)+εF (x, y), ẏ = x(1+x)+εG(x, y), where F and
G are polynomials of degree n starting with terms of degree 1. We
prove for n = 1, 2, 3, 4 that at most 2n− 1 limit cycles can bifurcate
from the periodic orbits of the unperturbed system (ε = 0) using the
averaging theory of second order, and that there are systems realizing
this upper bound for n = 4.

1. Introduction

In the research on the existence and distribution of the limit cycles of
planar polynomial differential systems one of the main tools is the study
of the limit cycles which can bifurcate from the periodic orbits of a center
when we perturb it. For example, for the system

ẋ = −y + εp(x, y),
ẏ = x + εq(x, y),

where p(x, y), q(x, y) are polynomials of degree n, it is well known that at
most [(n − 1)/2] limit cycles can bifurcate from the periodic orbits of the
linear center ẋ = −y, ẏ = x, using techniques of first order, see for instance
[2].

In [4] the authors perturb the quadratic center, formed by the linear
center and a straight line of singular points:

ẋ = −y(1 + x) + εp(x, y),
ẏ = x(1 + x) + εq(x, y).

They obtain at least n limit cycles bifurcating from the periodic orbits of
the center, using averaging theory of first order.
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Moreover, in [1] and [5] the authors extend these results to three di-
mensional systems, studying the perturbation of the systems ẋ = −y, ẏ =
x, ż = 0 and ẋ = −y(1 + x), ẏ = x(1 + x), ż = 0 inside the class of poly-
nomial vector fields of degree n, respectively. Thus they obtain that these
systems can have at least n(n− 1)/2 and n2 limit cycles, respectively, using
averaging theory of first order.

In this paper we consider the two dimensional polynomial differential
systems

(1) ẋ = −y(1 + x) + εF (x, y),
ẏ = x(1 + x) + εG(x, y),

where F (x, y) and G(x, y) are polynomials of degree n starting with terms of
degree 1. Using the averaging theory, if the first averaged function vanishes,
the number of limit cycles of system (1) depends on the second averaged
function. In [6] it is proved the following result.

Theorem 1. Applying the averaging theory of second order to system (1)
with F and G polynomials of degree n, we can obtain at most 2n − 1 limit
cycles bifurcating from the periodic orbits of the center of system (1) for
ε = 0.

We do not know if the upper bound on the number of limit cycles in
Theorem 1 can be reached. In general, this is a difficult problem. The main
goal of the present paper is to show that this upper bound is reached for
n = 4, instead of for n = 1, 2, 3. We describe the homogenous polynomials
F and G of system (1) as F = F1+F2+· · ·+Fn and G = G1+G2+· · ·+Gn,
where

Fk(x, y) =
∑

i+j=k

ai,j xiyj ,

Gk(x, y) =
∑

i+j=k

bi,j xiyj ,

for k = 1, · · · , n.

Theorem 2. For n = 1 system (1) has at most one limit cycle using
averaging theory of first order and there are systems (1) having one limit
cycle. Moreover, a1,0 = b0,1 = 0 if and only if the first order averaged
function is zero. If a1,0 = b0,1 = 0, then the origin of system (1) is a
center.

If n = 2 the conditions in order that the first averaged function vanishes
are

(2) a1,0 = a2,0, b0,1 = −a2,0, b1,1 = −(a2,0 + a0,2).
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Theorem 3. For n = 2 assume that (2) holds. Then system (1) can have
at most 1 limit cycles using averaging theory of second order. Moreover,
there are systems (1) satisfying (2) with 1 limit cycles.

If n = 3 the conditions in order that the first averaged function vanishes
are

(3) b0,3 = 0, a3,0 = a2,0−a1,0, b2,1 = b1,1+a0,2−a1,2+a1,0, b0,1 = −a1,0.

Theorem 4. For n = 3 assume that (3) holds. then system (1) can have at
most 3 limit cycles using averaging theory of second order. Moreover, there
are systems (1) satisfying (3) with 3 limit cycles.

If n = 4 the conditions in order that the first averaged function vanishes
are
(4)

a0,2 = b2,1 + a1,2 − b1,1 + 3b0,3 + 3a4,0 − a1,0, a0,4 = −b1,3 + b0,3,
b0,1 = −a1,0, a2,0 = −a4,0 + a1,0 + a3,0, a2,2 = −3b0,3 − 3a4,0 − b3,1.

Theorem 5. For n = 4 assume that (4) holds. then system (1) can have at
most 7 limit cycles using averaging theory of second order. Moreover, there
are systems (1) satisfying (4) with 7 limit cycles.

In short, the averaging theory of second order applied to systems (1) does
not provide a better number on their limit cycles when n = 1, 2 and n = 3.
But for n = 4, the results using the second order are clearly better than the
ones obtained using first order.

This paper is organized as follows. In Section 2 and 3 we present the
first averaged function and some degenerated conditions. In Section 4 we
present the proof of the results for n = 3 (i.e. Theorem 4 and examples).
In Section 5, we give the proof of Theorems 2 and 3. Finally, in Section 6,
we show that for n = 4 there are 7 limit cycles in system (1) by averaging
theory of second order (i.e. Theorem 5).

2. Preliminary results

Here we use the notation on the averaging theory of the first and second
order introduced in Subsection 2.1 of [6]. By means of the change of variables
x = r cos θ, y = r sin θ, system (1) in the region r > 0 can be written as

(5)
ṙ = ε (cos θ F + sin θ G) ,

θ̇ = 1 + r cos θ +
ε

r
(cos θ G− sin θ F ) ,
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Here and in what follows F and G will denote F (r cos θ, r sin θ) and G(r cos θ,
r sin θ), respectively. System (5) in the region r > 0 is equivalent to the sys-
tem

(6) dr

dθ
= εf(θ, r) + ε2g(θ, r) + O(ε3),

where

f(θ, r) =
cos θ F + sin θ G

1 + r cos θ
,

g(θ, r) = − (cos θF + sin θG)(cos θG− sin θF )
r(1 + r cos θ)2

.

In this paper we consider system (6), when the first averaged function
vanishes. So applying the averaging theory to system (6), we must assume
that,

(7) f0(r) =
1
2π

∫ 2π

0

f(θ, r)dθ ≡ 0,

which naturally implies that
∫ 2π

0

∂f(θ, r)
∂r

dθ ≡ 0. Then we have the second

averaging system associated with system (6)

(8)
d r

d θ
= ε2f10(r) + ε2g0(r),

where g0 =
1
2π

∫ 2π

0

g(θ, r)dθ and

f10 =
1
2π

∫ 2π

0

∂f(s, r)
∂r

(∫ s

0

f(θ, r)dθ

)
ds +

1
2π

∫ 2π

0

∂f(s, r)
∂r

z(r)ds,(9)

=
1
2π

∫ 2π

0

∂f(s, r)
∂r

(∫ s

0

f(θ, r)dθ

)
ds,

with z(r) = − 1
2π

∫ 2π

0

(∫ s

0

f(θ, r)dθ

)
ds. We denote the second averaged

function by

A2 = f10 + g0.

According with Corollary 4 in [6], every simple equilibrium point of system
(8), that is, a simple zero of the function A2 implies a limit cycle of system
(1).

To prove Theorem 3 we shall need the following Lemma.
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Lemma 6. The following equalities hold.

I1 =
1
2π

∫ 2π

0

1
(1 + r cos θ)2

dθ =
1

(1− r2)3/2
,

I2 =
1
2π

∫ 2π

0

1
1 + r cos θ

dθ =
1√

1− r2
,

I3 =
1
2π

∫ 2π

0

cos θ ln(1 + r cos θ) dθ =
1−√1− r2

r
,

I4 =
1
2π

∫ 2π

0

cos3 θ ln(1 + r cos θ) dθ =
3r2 + 2− 2

√
1− r2(1 + 2r2)
6r3

,

I5 =
1
2π

∫ 2π

0

cos 2θ ln(1 + r cos θ) dθ =
2
√

1− r2 + r2 − 2
2r2

,

I6 =
1
2π

∫ 2π

0

cos 4θ ln(1 + r cos θ)dθ=− (4r2 − 8)
√

1− r2 + r4 − 8r2 + 8
4r4

.

Proof : The integrals can be computed by the Residue Theorem. See Lemma
8 in [6]. ¤

3. The averaged function of second order for n = 3

First we consider the case n = 3. We obtain easily the first averaged
function

f0 =
p(r)

√
1− r2 + q(r)

2r
√

1− r2
=

φ(r)
2r
√

1− r2
,

where
p(r) = (η − ξ + 3b0,3)r2 − 2e0,
q(r) = 2r4b0,3 + 2(a1,0 − η − e0 − b0,3)r2 + 2e0,
e0 = a0,2 − a2,0 + b1,1 + b0,3 − b2,1 − a1,2 + a3,0 + a1,0 − b0,1,
η = a2,0 − a3,0, ξ = −a0,2 − b1,1 + a1,2 + b2,1.

The number of zeros of f0(r) = 0 is the same as for φ(r). Let ρ =
√

1− r2,
we get φ(r) = φ̂(ρ), where

φ̂ = (ρ−1)(2ρ3b0,3−(η−ξ+b0,3)ρ2+(2e0+ξ+η−3b0,3−2a1,0)ρ+2(η−a1,0)).

Since a1,0, ξ, η and b0,3 are arbitrary parameters, it is clear that there can
exist three zeros of φ̂(ρ) in (0, 1), which means that three is the upper bound
on the number of limit cycles in system (1) for n = 3, when we consider
the averaged function up to the first order. This result can be referred to
[4]. Moreover, we have the degenerated condition of (7) e0 = b0,3 = 0 and
η = ξ = a1,0, i.e.

b0,3 = 0, a3,0 = a2,0 − a1,0, b2,1 = b1,1 + a0,2 − a1,2 + a1,0, b0,1 = −a1,0,
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such that p(r) ≡ 0, q(r) ≡ 0. Therefore, system (1) is simplified into
(10)

ẋ = −y(1 + x) + ε(a1,0x + a0,1y + a2,0x
2 + a1,1xy + a0,2y

2+
(a2,0 − a1,0)x3 + a2,1x

2y + a1,2xy2 + a0,3y
3),

ẏ = x(1 + x) + ε(b1,0x− a1,0y + b2,0x
2 + b1,1xy + b0,2y

2+
b3,0x

3 + (a1,0 + a0,2 − a1,2 + b1,1)x2y + b1,2xy2).

In polar coordinates we have the corresponding function f(θ, r). If we write
sin2 θ = 1− cos2 θ, it can be written as

(11) f(θ, r) = q0 + q1(cos θ, r) + q2(cos θ, r) sin θ + q3(r)
sin θ

1 + r cos θ
,

where

q0 = a1,0r cos 2θ, q1 = r2(−N cos3 θ + M cos θ),
q2 = e2r

2 cos2 θ + e1r cos θ + (a2,1 + b3,0 − e2)r2 + e4,
N = 2a1,0 − a2,0 + a0,2 + b1,1, M = a0,2 + b1,1 + a1,0,
e1 = b2,0 + a1,1 − b0,2 + a0,3 − a2,1 − b3,0 + b1,2,
e2 = −a0,3 + a2,1 + b3,0 − b1,2, e4 = a0,1 + b1,0 − e1,

and
q3 = e3r

2 + e4, e3 = b0,2 − b1,2 − a0,3.

Since f0(r) = 0, we know that q1(cos θ, r) is always an odd function in the
variable cos θ. By calculation we have

∫ t

0

f(θ, r)dθ = q̄01(cos t, r) sin t + q̄2(cos t, r) + q3(r)I0,

where

I0 =
∫ t

0

sin θ

1 + r cos θ
dθ =

ln(1 + r)− ln(1 + r cos t)
r

,

q̄01 =
1

sin t

∫ t

0

(q0 + q1)dθ =
1
3
r2(N cos2 t− 2N + 3M) + a1,0r cos(t),

q̄2 =
∫ t

0

q2(cos θ, r) sin θdθ.

Hence, the first term appearing in the expression A2(r) is
(12)

f10 =
1
2π

∫ 2π

0

(
∂(q0+q1)

∂r
(q̄2+q3I0)+(

∂q2

∂r
+

∂

∂r
(

q3

1+r cos t
))q̄01 sin2 t

)
dt.

If q1(cos θ, r) ≡ 0, which implies N = M = a1,0 = 0, that is,

(13) a1,0 = 0, a2,0 = 0, a0,2 + b1,1 = 0,
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then f10 ≡ 0. Moreover, in this case we have

A2(r) =
1
2π

∫ 2π

0

g(θ, r)dθ.

Now, we assume that q1(cos θ, r) 6≡ 0. Noting that qi, q̄i, i = 1, 2 are trigono-
metric polynomials , we have by a direct calculation,

1
2π

∫ 2π

0

(
∂(q0 + q1)

∂r
q̄2 + q̄01

∂q2

∂r
sin2 t)dt =

1
4
(3N − 4M)e4r.

It is easy to know that the other integrals in f10 can be expressed as a
combination of five basic integrals Ii, i = 1, 2, · · · , 5 shown in Lemma 6.
Substituting them into f10, we can obtain

(14) f10 =
1

12r3
√

1− r2
(f1

√
1− r2 + g1),

where

f1 = m4r
4+m2r

2−24(2a1,0+N)e4, g1 = n6r
6+n4r

4+n2r
2+24(2a1,0+N)e4

with
m4 = 3(3e4 + 4e3)N − 12(e4 + 2e3)M,
m2 = 12(3e4 − 2e3)M + 4(10e3 − 3e4)N + 12a2,0(e4 + 2e3),
n6 = 4(2N − 3M)e3, n4 = 8(e3 − 3e4)N + 12(e3 + 3e4)M) + 12a2,0e3,
n2 = −12(e4 − 2e3)M − 4(10e3 + 6e4)N − 12a2,0(3e4 + 2e3).

Next we consider the function g(θ, r). We write sin2 θ = 1 − cos2 θ, and
denote

(15) g(θ, r) =
1
r
H1(θ, r)H2(θ, r),

where

H1 =
cos θF + sin θG

(1 + r cos θ)2
=

f(θ, r)
1 + r cos θ

= Q1(cos θ, r) sin θ + Q0(cos θ, r)

=
(

q10(cos θ, r) +
q11(r)

1 + r cos θ
+

q12(r)
(1 + r cos θ)2

)
sin θ+

q00(cos θ, r) +
q01(cos θ, r)
1 + r cos θ

,

with
q00 = −rN cos2 θ + (N + 2a1,0) cos θ + rM − (N + 2a1,0)/r,
q01 = −(M + a1,0)r + (N + 2a1,0)/r,
q10 = e2r cos θ − e2 + e1,
q11 = (b0,2 − e3)r2 + e4 + e2 − e1,
q12 = e3r

2 − e4,
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and

H2 = sin θF − cos θG = P0(cos θ, r) + P1(cos θ, r) sin θ,

where

P0 = e2r
3 cos4 θ+(e1 + e2)r2 cos3 θ+a1 cos2 θ−e5r

2 cos θ − a0,
P1 = Nr3 cos3 θ+(N − 2a1,0)r2 cos2 θ−(a1,2r

3+2a1,0r) cos θ−a0,2r
2,

with

a0 = a0,3r
3 + a0,1,

a1 = e6r
3 + (e1 + e4)r,

e6 = b3,0 + a0,3 − e2,
e5 = a1,1 − b0,2.

Hence from (8) the average of the function g(θ, r) is

(16) g0 =
1
2π

∫ 2π

0

g(θ, r)dθ =
1

2πr

∫ 2π

0

(P0Q0 + P1Q1 sin2 θ)dθ.

The function g0 can be expressed as a combination of the basic integrals
I1 and I2 shown in Lemma 6. Substituting them into g0 and taking into
account the parity of Pi, Qi, i = 0, 1 in the variable cos θ, we can obtain

(17) g0 = − 1
8r3

√
1− r2

(f2(r)
√

1− r2 + g2(r)) =
1

8r3
√

1− r2
φ(r),

where

f2 = (t6mM + t6nN + t60)r6 + (t4mM + t4nN + t40)r4+
(8Me4 + t2nN + t2aa1,0 + t20)r2 − 16(2a1,0 + N)e4

t6m = (3e2 − 8a0,3 + 4e6),
t6n = (−e3 − 2e2 − 3e6 + 4a0,3 + b0,2),
t60 = −(4b0,2 − 4e3 + e2)a1,2,
t4m = (4e4 + 8e5 − 8a0,1 + 8e6),
t4n = (−2e4 − 4e3 + 4a0,1 − 4e5 + 8a0,3 − 4e6),
t40 = (−8e3 + 16a0,3)a1,0 + (16e3 − 8b0,2 + 4e2 − 4e1)a0,2 + 4a1,2t4a,
t4a = (−6e3 + 2b0,2 + e1 − e4 − e2),
t2n = (8a0,1 − 8e5 + 8e3 − 8e6),
t2a = (−16e6 − 16e5 + 8e4 + 16a0,1 + 16e3),
t20 = (−16e4 + 8e1 − 8e2)a0,2 − 8a1,2(e1 − e2 − 3e4),
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and

g2 = (8Ma0,3 + s60)r6 + (s4mM + s4nN + s40)r4+
(−8Me4 + s2nN + s2aa1,0 + s20)r2 + 16(a1,0 + N)e4

s60 = 8a1,0a0,3 + (8e3 − 8b0,2)a0,2 + 8a1,2(−2e3 + b0,2),
s4m = (8a0,1 − 8e6 − 8e5),
s4n = −8a0,3 + 8e3

s40 = s4aa1,0 + s4ba0,2 − 8a1,2(e1 − 3e3 + b0,2 − 2e4 − e2),
s4a = (8a0,1 + 16e3 − 8e5 − 8e6 − 16a0,3),
s4b = (8e1 − 8e4 + 8b0,2 − 8e2 − 16e3),
s2n = (−8e4 − 8a0,1 + 8e5 − 8e3 + 8e6),
s20 = (8e2 − 8e1 + 16e4)a0,2 + 8a1,2(e1 − e2 − 3e4),
s2a = (16e6 − 16a0,1 − 16e3 + 16e5 − 24e4).

The functions f2 and g2 are two even polynomials of degree 6 in the variable
r. In the view of (14) and (17), we get

(18) A2 =
(2f1 + 3f2)

√
1− r2 + 2g1 + 3g2

24r3
√

1− r2
=

Φ(r)
24r3

√
1− r2

.

4. Proof of Theorems 4

Using the second averaging theory, it is easy from formula (18) to know
that the number of simple zeros of Φ(r) in (0, 1) is equal to the number
of limit cycles bifurcating form system (1) considering up to second order
averaging function.

Proof of statement (a) of Theorem 4 : Condition (13) implies that a2,0 =
M = N = 0. So, f10 ≡ 0 and we have the function

A2 = g0 = − (ρ− 1)2

8ρ
√

1− ρ2
φ̂(ρ),

where

φ̂(ρ) = a1,2(4b0,2 − 4e3 + e2)ρ3 + (8(b0,2 − e3)a0,2+2(e2+4e3)a1,2)ρ2+
(4(2b0,2+e2 − e1)a0,2+(4e3 − 3e2 − 4e4 − 4b0,2+4e1)a1,2)ρ+
8(e3 − e4)a0,2 + 8(e4 − e3)a1,2.

Hence by the second averaging theory, system (1) has at most 3 limit cycles.
Moreover, note that the following facts,

(i) ei, i = 1, 2, 3, 4 and b0,2 can take arbitrary values because they are
formed by different coefficients ai,j and bi,j ;

(ii) a0,2 and a1,2 are not included in ei, i = 1, 2, 3, 4.
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Thus, b0,2, e2, e1 and e3 can allow to choose the coefficients of φ̂(ρ) arbitrar-
ily. Hence ϕ(r) can have at most 3 zeros in (0, 1). Hence system (1) can
have at most 3 limit cycles. This completes the proof of statement (a). ¤

For example we can take the system

ẋ = −y(1 + x) + ε(
1
2
y2 + xy2 +

43
6

y3),

ẏ = x(1 + x) + ε(−45
4

x2 − 1
2
xy − 13

4
y2 − 21

2
x3 − x2y),

which satisfies the degenerated condition (13), f0 = f10 = 0 and

φ̂(ρ) = 32(ρ− 1
4
)(ρ− 1

2
)(ρ− 3

4
).

Hence, this system has at least 3 limit cycles near ρ = 1/4, ρ = 1/2 and
ρ = 3/4 for ε small by the averaging theory of second order.

Proof of statement (b) of Theorem 4 : If we write
√

1− r2 = ρ, we can
know that

(19) A2 = f10 + g0 =
(ρ− 1)3(ρ + 1)
24ρ(1− ρ2)3/2

Φ̂(ρ),

where Φ̂(ρ) is a polynomial of degree 3 in the variable ρ. We are only
interested in the zeros of A2(ρ) with ρ ∈ (0, 1). Note that f10 and g0 are
given in (14) and (17), respectively. More exactly,

Φ̂(ρ) = (3c3,1a1,0 + 3c3,2a2,0 + 3c3,3(a0,2 + b1,1) + 3c3,4a1,2)ρ3 +

(c2,1a1,0 + c2,2a2,0 + c2,3a0,2 + c3,4a1,2 + 2c2,5b1,1)ρ2 +
(c1,1a1,0 + c1,2a2,0 + c1,3a0,2 + c1,4a1,2 + c1,5b1,1)ρ +
24(2a1,0 − a2,0)c0,1 + (a1,2 − a0,2)c0,2,
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where

c3,1 = −a0,3 + b1,2 + a2,1 − b3,0,

c3,2 = −a2,1 + 2b3,0 − a0,3,

c3,3 = −2a0,3 + b1,2 + b3,0,

c3,4 = −a2,1 − 3b1,2 − 3a0,3 − b3,0,

c2,1 = 50a0,3 + 14b1,2 − 8b0,2 + 6a2,1 − 6b3,0,

c2,2 = −6a2,1 + 16b0,2 − 16b1,2 − 22a0,3 + 12b3,0,

c2,3 = 8b0,2 − 20a0,3 − 26b1,2 + 6b3,0,

c2,5 = 2a0,3 + 4b0,2 + 3b3,0 − b1,2,

c2,4 = −24b0,2 + 30b1,2 − 6a2,1 + 30a0,3 − 6b3,0,

c1,1 = 3a2,1 − 47a0,3 + 12b1,0 + 44b0,2 − 41b1,2 + 9b3,0 − 12b2,0 − 12c0,1,

c1,2 = 12c0,1 − 3a2,1+25a0,3−24b1,0−18b3,0 − 16b0,2+24b2,0+16b1,2,

c1,3 = −33b3,0+24b2,0+26a0,3−24a2,1−32b0,2 + 12a1,1−12b1,0 + 23b1,2,

c1,4 = 24b0,2−24b2,0+33a2,1−24a1,1 − 21a0,3+33b3,0 − 21b1,2+12m0,

m0 = a0,1 + b1,0,

c1,5 = −b1,2 + 2a0,3 − 12b1,0 + 4b0,2 + 12b2,0 − 9b3,0,

c0,1 = a1,1 − a2,1 − a0,1,

c0,2 = a1,1 + b2,0 − a0,1 − a2,1 − b1,0 − b3,0.

Hence the second averaged function can have at most 3 zeros in (0, 1). Next,
we take a1,0 = a2,0 = a1,2 = b1,1 = 0. Then we have

(20) Φ̂(ρ) = a0,2(3c3,3ρ
3 + c2,3ρ

2 + c1,3ρ− c0,2).

It is easy to check that there are enough coefficients ai,j and bi,j such that
the coefficients c3,3, c2,3, c1,3 and c0,2 of function (20) are arbitrary. ¤

For example we can take the system

ẋ = −y(1 + x) + ε(
937
24

y + y2 + 14y3),

ẏ = x(1 + x) + ε(−467
6

x + x2y +
116
3

x3).

Then formula (19) becomes

Φ̂(ρ) = 32(ρ− 1
4
)(ρ− 1

2
)(ρ− 3

4
).

Hence, this system has at least 3 limit cycles near ρ = 1/4, ρ = 1/2 and
ρ = 3/4 for ε small by the averaging theory of second order.
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5. Proofs of Theorems 2 and 3

Proof of Theorem 2 : For n = 1 we can obtain easily the first averaged
function

f0 =
(b0,1 − a1,0)

√
1− r2 + b0,1r

2 + a1,0 − b0,1

r
√

1− r2
.

Writing ρ =
√

1− r2, we have

f0 =
1− ρ

ρ
√

1− ρ2
(b0,1ρ + a1,0).

It is clear that f0 has a unique root in (0, 1), when we consider the averaging
theory of first order. Then if b0,1 = a1,0 = 0, we need to consider the second
averaged function A2(r). We say A2(r) ≡ 0, because the singular point
(0, 0) is a center having the first integral
H(x, y) =

=
x2+y2

2
+ε(a0,1+b1,0)x+ε(εa2

0,1+εa0,1b1,0 − b1,0 − a0,1) ln(1 + x− εa0,1).

In fact Theorem 2 is proved. ¤
For n = 2 the first averaged function is

f0 =
(r2ξ + 2(β − ξ + 2α))

√
1− r2 + 2(β − ξ + α)r2 + 2(ξ − β − 2α)

2r
√

1− r2
,

where α = a2,0 − a1,0, β = b0,1 + a1,0 and ξ = a0,2 + a2,0 + b1,1. Taking√
1− r2 = ρ, we have

f0 =
1− ρ

2ρ
√

1− ρ2
(ξρ2 + (2β − ξ + 2α)ρ− 2α).

Since α, β and ξ are arbitrary parameters, it is obvious that f0 can have
at most 2 zeros in (0, 1), which means that system (1) for n = 2 can have
at most two limit cycles by averaging theory of first order. Moreover, we
consider the averaged function up to second order. From the degenerated
condition of (7), we have α = β = ξ = 0, i.e.

a1,0 = a2,0, b0,1 = −a2,0, b1,1 = −(a2,0 + a0,2).

Hence, system (1) is simplified into
(21)

ẋ = −y(1 + x) + ε(a2,0x + a0,1y + a2,0x
2 + a1,1xy + a0,2y

2)
ẏ = x(1 + x) + ε(b1,0x− a2,0y + b2,0x

2 − (a0,2 + a2,0)xy + b0,2y
2).

Proof of statement of Theorem 3 : From (11) we get the function f(θ, r)
with

q0 = a1,0r cos 2θ, q1 = 0, q2 = ηr cos θ − γ, q3 = b0,2r
2 + γ
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where
η = a1,1 + b2,0 − b0,2, δ = b1,0 + a0,1, γ = η − δ.

Then, by formula (12), we can obtain

f10 =
a2,0

r3
√

1− r2
(((2b0,2−γ)r2 +4γ)

√
1− r2 +r4b0,2 +(3γ−2b0,2)r2−4γ).

If q1(cos(θ, r) ≡ 0, i.e. a2,0 = 0, we have f10 ≡ 0 . Then A2 = g0. In the
same way as before, we have rg(θ, r) = H1H2, where

H1 =
f(θ, r)

1 + r cos θ
= Q0(cos θ, r) + Q1(cos θ, r) sin θ,

with
Q0 =

q0 + q1

1 + r cos θ
, Q1 = η − η + γ

1 + r cos θ
+

q3

(1 + r cos θ)2
,

and
H2 = cos θG− sin θF = P0(θ, r) + P1(θ, r) sin θ

with
P0 = ηr2 cos3 θ + δr cos2 θ + (b2,0 − η)r2 cos θ + (b1,0 − δ)r,
P1 = −(2a2,0r

2 cos2 θ + 2a2,0r cos θ + a0,2r
2).

Applying formula (16) and the integrals I1, I2 and I5 of Lemma 6, we get

g0 = − 1
4r3

√
1− r2

((t4r4 + t2r
2 + t0)

√
1− r2 + s4r

4 + s2r
2 + s0),

where
t4 = (2b0,2 − η)a0,2 − 2b0,2a2,0,
t2 = (6γ + 2δ)a0,2 − 2a2,0(3γ − 2b0,2 + 2b1,0 − 2b2,0)),
s4 = (2δ + 4γ − 2b0,2)a0,2 − 2a2,0(b1,0 − 2b0,2 − b2,0),
s2 = −(6γ + 2δ)a0,2 + 2a2,0(2b1,0 − 2b0,2 − 2b2,0 + 5γ),
t0 = −s0 = 8a2,0γ.

If a2,0 = 0, taking ρ =
√

1− r2 we easily get

(22) A2 = g0 =
a0,2(ρ− 1)2

2ρ
√

1− ρ2
((2b0,2 − η)ρ + 2(γ + b0,2)).

Since b0,2, η and γ can be chosen arbitrarily, the function A2 may have at
most 1 zeros in (0, 1). If a2,0 6= 0, the second averaged function becomes

A2 =
(ρ− 1)2

2ρ
√

1−ρ2
((a0,2(2b0,2−η)−2b0,2a2,0)ρ−2(a1,1+b1,0)a2,0+2a0,2(γ+b0,2)).

It is easy to check that a2,0, b0,2, η and γ are arbitrary parameters. Hence
A2 can have also at most one zeros in (0, 1). ¤
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6. Proofs of Theorem 5

For n = 4 we can obtain easily the first averaged function

f0 =
p4(r)

√
1− r2 + q4(r)

8r
√

1− r2
=

φ(r)
8r
√

1− r2
,

where p4 and q4 are two even polynomials in r of degree 4. Writing ρ =√
1− r2, we get φ(r) = φ̂(ρ), where

φ̂ = (ρ− 1)(c0ρ
4 + c1ρ

3 + c2ρ
2 + c3ρ− c4),

c0 = 3a0,4 + a2,2 + 3a4,0 + b3,1 + 3b1,3,

c1 = a2,2 − 5b1,3 + b3,1 + 8b0,3 − 5a0,4 + 3a4,0,

c2 = 4b2,1 + 4a1,2 − 4b1,1 − 5b3,1 + b1,3 − 4b0,3 − 4a2,0 −
7a4,0 + 4a3,0 + a0,4 − 5a2,2 − 4a0,2,

c3 = (−4b0,3 − 4b2,1 + b1,3 − 7a4,0 + 3a2,2 + 3b3,1 − 8b0,1 +
4b1,1 + 4a0,2 + a0,4 − 4a2,0 − 4a1,2 + 4a3,0),

c4 = 8a1,0 + 8a2,0 − 8a3,0 + 8a4,0.

Since the coefficients ci are arbitrary for i = 0, 1, · · · , 4, the function φ̂(ρ)
can have at most 4 zeros in (0, 1), which means that system (1) for n = 4 can
have at most four limit cycles by averaging theory of first order. Moreover,
if the first averaged function vanishes, we get the degenerated condition (4)
from φ̂(ρ) ≡ 0. Using (4) system (1) can be simplified into
(23)

ẋ = −y(1 + x) + ε(a1,0x + a0,1y + (b2,1 + (−a4,0 + a1,0 + a3,0)x2+
a1,1xy + a1,2 − b1,1 + 3b0,3 + 3a4,0 − a1,0)y2 + a3,0x

3+
a1,2xy2 + a2,1x

2y + a0,3y
3 + (−b1,3 + a4,0x

4 + a1,3xy3+
(−3b0,3 − 3a4,0 − b3,1)x2y2 + a3,1x

3y + b0,3)y4),
ẏ = x(1 + x) + ε(b1,0x− a1,0y + b2,0x

2 + b1,1xy + b0,2y
2 + b3,0x

3+
b1,2xy2 + b2,1x

2y + b0,3y
3 + b4,0x

4 + b1,3xy3 + b2,2x
2y2+

b3,1x
3y + b0,4y

4).

From (11) the function f(θ, r) is given by

q0 =
1
2
(b0,3 + a4,0)r3 cos 4θ +

1
2
(a4,0 − b0,3)r3 cos 2θ + a1,0r cos 2θ,

q1 = (a3,0 − a4,0 − n5)r2 cos3 θ + n5r
2 cos θ,

q2 = n3r
3 cos3 θ + (n0 + n4)r2 cos2 θ +

(n1r
3 + (b1,0 + a0,1 − n0)r) cos θ + n2r

2 + n0,

q3 = b0,4r
4 + (b0,2 − n2)r2 − n0,
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where

n0 = a2,1 − a0,3 − b1,2 + b3,0 − n3 − n4,

n1 = a1,3 − 2b0,4 + b2,2,

n2 = b1,2 − a1,3 − b2,2 + a0,3 + 2b0,4,

n3 = −a1,3 + a3,1 − b2,2 + b4,0 + b0,4,

n4 = a1,1 − b0,2 + b2,0 − a0,1 − b1,0,

n5 = 3b0,3 + b2,1 + a1,2 + 3a4,0.

Moreover, from (15) we rewrite the function g(θ, r) into the form rg(θ, r) =
H1H2, where

H1 =
f(θ, r)

1 + r cos θ
= Q1(cos θ, r) sin θ + Q0(cos θ, r)

=
(

q10 +
q11

1 + r cos θ
+

q12

(1 + r cos θ)2

)
sin θ + q00 +

q01

1 + r cos θ
,

H2 = cos θG− sin θF = P0(cos θ, r) + P1(cos θ, r) sin θ.

After computing, we have that

q00 = 4(b0,3 + a4,0)r2 cos3 θ + (ζ + 2a1,0)r cos2 θ −
((3a4,0 + 5b0,3)r2 + ζ) cos θ + (3a4,0 + 5b0,3 + n5)r +

ζ

r
,

q01 =
1
r
(b0,3r

4 − (3a4,0 + n5 + 5b0,3 + a1,0)r2 − ζ),

q10 = n3r
2 cos2 θ + σr cos θ + n1r

2 + b1,0 + a0,1 + σ − n0,

q11 = (n2 − n1)r2 + 2n0 + σ − b1,0 − a0,1,

q12 = b0,4r
4 + (b0,2 − n2)r2 − n0,

ζ = a3,0 − 5a4,0 − n5 − 4b0,3 − 2a1,0,

σ = n0 − n3 + n4,

and

P0 = (m3 + m2 − b4,0)r4 cos5 θ − (a0,3 + b3,0 + m4)r3 cos4 θ −
((m3 + 2m2)r4 + (m1 + b2,0)r2) cos3 θ + (r4m2 + r2m1) cos θ +

(m4r
3 − (a0,1 + b1,0)r) cos2 θ + a0,3r

3 + ra0,1

P1 = 4s0r
4 cos4 θ + s1r

3 cos3 θ + (s2r
4 + (s1 − 4s0 + 2a1,0)r2) cos2 θ +

(r3(a1,2 − b0,3) + 2a1,0r) cos θ + (−b1,3 + b0,3)r4 +

(a3,0 − s1 − b1,1 + b0,3 + 3s0 − a1,0)r2,
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where
s0 = b0,3 + a4,0,
s1 = a3,0 + b0,3 − a1,2 − b2,1,
s2 = b1,3 − b3,1 − 5b0,3 − 3a4,0,
m1 = a1,1 − b0,2,
m2 = a1,3 − b0,4,
m3 = b2,2 − a3,1,
m4 = a2,1 − b1,2 − 2a0,3.

Again applying formula (16) and the integrals I1, I2, I5 and I6 of Lemma
6, we obtain the averaged function of second order with respect to system
(23), more precisely

(24) A2 =
f3

√
1− r2 + g3

96r3
√

1− r2
=

Φ(r)
96r3

√
1− r2

,

where f3 and g3 are two even polynomials in r of degree 8. In order to
evaluate the number of zeros of function (24), we write r =

√
1− ρ2, and

have Φ(r) = φ̂(ρ), with

(25) φ̂ = (ρ− 1)2ϕ(ρ),

where ϕ is a polynomial in ρ of degree 7. Hence, system (23) can have
at most 7 limit cycles by averaging theory of second order. This number
coincides with the upper bound 2n− 1 given by n = 4 in [6]. The functions
Φ and ϕ can be computed by Maple, we omit them here because they are
very large. We claim that the upper bound 7 can be attained doing an
example.

For example we can take the system

ẋ = −y(1 + x) + ε(−x− 4052055
608 y − 2x2 + 831173039

20064 xy − 165746021
10032 y3

−6xy2 + x4 − 964825019
20064 x3y − 30137463

3344 xy3),

ẏ = x(1 + x) + ε(y + xy − 17206151
3344 y2 + 13712275

1672 x3 + y3 − 6x3y−
270361841

10032 x2y2 + xy3 − 65009403
6688 y4).

Then it is easy to check that function ϕ(ρ) in formula (23) is

ϕ = 131072(ρ− 1
8
)(ρ− 2

8
)(ρ− 3

8
)(ρ− 4

8
)(ρ− 5

8
)(ρ− 6

8
)(ρ− 7

8
).

Hence, this system has at least 7 limit cycles near ρ = 1/8, ρ = 2/8, · · · ,
and ρ = 7/8 for ε small by the averaging theory of second order.
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