
ON THE UPPER BOUND OF THE NUMBER OF LIMIT
CYCLES OBTAINED BY THE SECOND ORDER

AVERAGING METHOD I

JAUME LLIBRE1 AND JIANG YU2

Abstract. For ε small we consider the number of limit cycles of the
system ẋ = −y(1+x)+εF (x, y), ẏ = x(1+x)+εG(x, y), where F and
G are polynomials of degree n starting with terms of degree 1. We
prove that at most 2n−1 limit cycles can bifurcate from the periodic
orbits of the unperturbed system (ε = 0) using the averaging theory
of second order.

1. Introduction

This paper is concerned with the number of limit cycles that can bifurcate
from the periodic orbits of a class of planar quadratic systems under small
polynomial perturbation of degree n ∈ N. We assume that the unperturbed
system is the linear center with a straight line of singular points. More
explicitly, we consider the two dimensional polynomial differential system

(1)
ẋ = −y(1 + x) + εF (x, y),
ẏ = x(1 + x) + εG(x, y),

where F and G are polynomials of degree n starting with terms of degree
1. We note that system (1) for ε = 0 is not Hamiltonian.

One often analyze the number of limit cycles bifurcating from a center
by the first return map,

P(h, ε)− h = εM1(h) + ε2M2(h) + · · ·+ εkMk(h) + · · · ,

where Mk(h) is called the k–order Poincaré–Pontryagin function (also called
Melnikov function). If Mk 6≡ 0, and Mi ≡ 0 for i = 1, 2, · · · , k − 1 in
some open segments, then the maximum number of simple zeros of Mk(h)
give an upper bound of the number of limit cycles up to k order. For
example, many authors give using the first Poincaré–Pontryagin function
see [6], (i.e. the Abelian integral) linear estimations in n on the number
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of limit cycles of degree n polynomial perturbations of different class of
polynomial differential systems. Also many authors give the exact upper
bound for some degree 2 or 3 perturbations of some systems, see [1], [5]
and the references therein. In [3] the authors study degree n polynomial
perturbations of quadratic reversible Hamiltonian systems with one center
and one saddle point using the second Poincaré–Pontryagin function, and
obtain that the exact upper bound is 2(n−1). But there are few results for
degree n polynomial perturbations.

Another method used often is the averaging theory, see [2] and [7]–[12].
There are many works involved in the averaging method of first order, for
example in [8] the authors obtain for system (1) that at most n limit cycles
can bifurcate from the periodic orbits of the center with the averaging theory
of first order, and that this number is realizable for convenient polynomial
F and G of degree n.

Using the averaging theory, if the first averaged function vanishes, the
number of limit cycles of perturbed systems depends on the second averaged
function. In general, the number of limit cycles will increase double for such
more degenerate case.

In this paper we study system (1) by the averaging method of second
order, and we have the following result.

Theorem 1. Applying the averaging theory of second order to system (1)
with F and G polynomials of degree n, we can obtain at most 2n − 1 limit
cycles bifurcating from the periodic orbits of the center of system (1) for
ε = 0.

In [10] which is a natural continuation of this paper, applying again
the averaging method of second order, the authors prove that the exact
upper bound on the number of limit cycles of system (1) vanishing the first
averaged function zero is 2n− 1 if the degree of the perturbation is n = 4,
while the number are 0, 1 and 3 for n = 1, 2 and 3, respectively. So the
upper bound given in Theorem 1 is, in general, the best possible.

This paper is organized as follows. In Section 2 first we recall some
fundamental results on averaging theory. After we give some basic results.
The main results of this paper is to find the expression of the second order
averaged function (introduced in Section 2) and to bound the number of
its zeros. In Section 3 we compute the averaged function. In Section 4 we
prove Theorem 1 and we do some remarks.

2. Basic results

This section is divided into
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2.1. The averaging theory. In this section we summarize the main results
on the theory of averaging that we will apply to systems (1). The next
theorem provides a first order approximation for the periodic solutions of
a periodic differential system, for a proof see Theorem 2.6.1 of Sanders
Verhulst [11] and Theorems 11.5 and 11.6 of Verhulst [12]. The original
theorems are given for a system of differential equations, but since we will
use them only for one differential equation we state them in this case.

Theorem 2. We consider the following two initial value problems

(2) ẋ = εf(t, x) + ε2g(t, x, ε) , x(0) = x0 ,

and

(3) ẏ = εf0(y) , y(0) = x0 ,

x, y, x0 ∈ D an open subset of R, t ∈ [0,∞), ε ∈ (0, ε0], f and g are
periodic of period T in the variable t, and

(4) f0(y) =
1
T

∫ T

0

f(t, y)dt .

Suppose
(i) f , ∂f/∂x, ∂2f/∂x2, g and ∂g/∂x are defined, continuous and

bounded by a constant independent on ε in [0,∞)×D and ε ∈ (0, ε0];
(ii) T is independent on ε;

(iii) y(t) belongs to D on the time–scale
1
ε
.

Then the following statements hold.

(a) On the time scale
1
ε

we have that

x(t)− y(t) = O(ε) ,

as ε → 0.
(b) If p is an equilibrium point of the averaged system (3) such that

(5)
∂f0

∂y

∣∣∣∣
y=p

6= 0 ,

then there exists a T–periodic solution φ(t, ε) of equation (2) which
is close to p such that φ(t, ε) → p as ε → 0.

(c) If (5) is negative, then the corresponding periodic solution φ(t, ε) of
equation (2) in the space (t, x) is asymptotically stable for ε suffi-
ciently small. If (5) is positive, then it is unstable.

The next theorem provides a second order approximation for the solutions
of a periodic differential system, for a proof see Theorem 3.5.1 of Sanders
and Verhulst [11].
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Theorem 3. We consider the following two initial value problems

(6) ẋ = εf(t, x) + ε2g(t, x) + ε3R(t, x, ε) , x(0) = x0 ,

and

(7) ẏ = εf0(y) + ε2f10(y) + ε2g0(y) , y(0) = x0 ,

with f , g : [0,∞) × D → Rm, R : [0,∞) × D × (0, ε0] → Rm, D an open
subset of Rm, f , g and R periodic of period T in the variable t,

f1(t, x) =
∂f

∂x
y1(t, x)− ∂y1

∂x
f0(x) ,

where

y1(t, x) =
∫ t

0

(
f(s, x)− f0(x)

)
ds + z(x),

with z(x) a C1 function such that the averaged of y1 is zero. Of course,
f0, f10 and g0 denote the averaged functions of f , f1 and g, respectively,
defined as in (4). Suppose

(i) ∂f/∂x is Lipschitz in x, g and R are Lipschitz in x and all these
functions are continuous on their domain of definition;

(ii) |R(t, x, ε)| is bounded by a constant uniformly in [0, L/ε) × D ×
(0, ε0];

(iii) T is independent on ε;

(iv) y(t) belongs to D on the time–scale
1
ε
.

Then
x(t) = y(t) + εy1(t, y(t)) + O(ε2)

on the time–scale
1
ε
.

An easy corollary of Theorem 3 is the following one, see [7]

Corollary 4. Under the assumptions of Theorem 3 we assume that f0(y) ≡
0. Then the following statements hold.

(a) If p is an equilibrium point of the averaged system (7) such that

(8)
∂

∂y

(
f10(y) + g0(y)

)∣∣∣∣
y=p

6= 0 ,

then there exists a T–periodic solution φ(t, ε) of equation (6) which
is close to p such that φ(t, ε) → p as ε → 0.

(b) If (8) is negative, then the corresponding periodic solution φ(t, ε) of
equation (6) in the space (t, x) is asymptotically stable for ε suffi-
ciently small. If (8) is positive, then it is unstable.
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2.2. Second order averaged function for system (1). We write the
homogenous polynomials F and G appearing in (1) as F = F1+F2+· · ·+Fn

and G = G1 + G2 + · · ·+ Gn, where

Fk = Fk(x, y) =
∑

i+j=k

ai,j xiyj ,

Gk = Gk(x, y) =
∑

i+j=k

bi,j xiyj ,

for k = 1, · · · , n. By means of the change of variables x = r cos θ, y = r sin θ,
system (1) in the region r > 0 can be written as

(9)
ṙ = ε (cos θ F + sin θ G) ,

θ̇ = 1 + r cos θ +
ε

r
(cos θ G− sin θ F ) .

Here and in what follows F and G will denote F (r cos θ, r sin θ) and G(r cos θ,
r sin θ), respectively. System (9) in the region r > 0 is equivalent to the sys-
tem

(10) dr

dθ
= εf(θ, r) + ε2g(θ, r) + O(ε3),

where

f(θ, r) =
cos θ F + sin θ G

1 + r cos θ
,

g(θ, r) = − (cos θF + sin θG)(cos θG− sin θF )
r(1 + r cos θ)2

.

In this paper, we consider the case, when the first averaged function
vanishes. So applying the averaging theory to system (10), we must assume
that,

(11) f0(r) =
1
2π

∫ 2π

0

f(θ, r)dθ ≡ 0,

which naturally implies that
∫ 2π

0

∂f(θ, r)
∂r

dθ ≡ 0. Then the averaging sys-

tem associated to system (10) becomes

(12)
d r

d θ
= ε2f10(r) + ε2g0(r),
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where g0 =
1
2π

∫ 2π

0

g(θ, r)dθ and

f10 =
1
2π

∫ 2π

0

∂f(s, r)
∂r

(∫ s

0

f(θ, r)dθ

)
ds +

1
2π

∫ 2π

0

∂f(s, r)
∂r

z(r)ds,

=
1
2π

∫ 2π

0

∂f(s, r)
∂r

(∫ s

0

f(θ, r)dθ

)
ds +

z(r)
2π

∫ 2π

0

∂f(s, r)
∂r

ds,(13)

=
1
2π

∫ 2π

0

∂f(s, r)
∂r

(∫ s

0

f(θ, r)dθ

)
ds,

with z(r) = − 1
2π

∫ 2π

0

(∫ s

0

f(θ, r)dθ

)
ds. We denote the second averaged

function by

(14) A2(r) = f10(r) + g0(r).

According with Corollary 4, every simple equilibrium point of (12), that is,
every simple zero point of the function A2 provides a limit cycle of system
(1). Hence, the main result of this paper is to compute the second averaged
function (see (32)), and to bound its number of simple zeros, (see Section
4).

2.3. Preliminary results for computing A2(r). We must compute the
averaged function of f(θ, r) and g(θ, r). First we start to analyze their
numerators.

Lemma 5. We consider
(15)

Mk(θ, r) = cos θFk + sin θGk = rkAk,0(cos θ) + rkAk,1(cos θ) sin θ,
Nk(θ, r) = cos θGk − sin θFk = rkBk,0(cos θ) + rkBk,1(cos θ) sin θ.

Then Ak,0 and Bk,0 are the odd (even) polynomials of degree k + 1 in the
variable cos θ, respectively, if k is even number (odd number); while Ak,1

and Bk,1 are the even (odd) polynomials of degree k in the variable cos θ,
respectively,if k is even number (odd number). Moreover k−q ≥ −1 odd for
every term rk cosq θ in rkAk,0 and rkBk,0, while k − q ≥ 0 even for every
term rk cosq θ in rkAk,1 and rkBk,1.
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Proof : We consider

Mk = rk
∑

i+j=k

(ai,j cosi+1 θ sinj θ + bi,j cosi θ sinj+1 θ)

= rk
k∑

j = 0
j even

ak−j,j cosk−j+1 θ sinj θ + rk
k∑

j = 0
j odd

bk−j,j cosk−j θ sinj+1 θ+

rk
k∑

j = 0
j odd

ak−j,j cosk−j+1 θ sinj θ + rk
k∑

j = 0
j even

bk−j,j cosk−j θ sinj+1 θ

= M1k + M2k,

where M1k and M2k denote the first two sums of series and the last two
sums, respectively. Furthermore, writing sin2 θ = 1− cos2 θ, we have

M1k = rk
k∑

j = 0
j even

ak−j,j

j∑
m = 0

m even

dj,m cosk−j+1+m θ+

rk
k∑

j = 0
j odd

bk−j,j

j+1∑
m = 0

m even

dj+1,m cosk−j+m θ,

and
M2k

sin θ
= rk

k∑
j = 0
j odd

ak−j,j

j−1∑
m = 0

m even

dj−1,m cosk−j+1+m θ+

rk
k∑

j = 0
j even

bk−j,j

j∑
m = 0

m even

dj,m cosk−j+m θ,

where dj,m = (−1)m/2C
m/2
j/2 . We denote Ak,0(cos θ) and Ak,1(cos θ) as

M1k/rk and M2k/(rk sin θ) , respectively. Observing the power exponents
of r and cos θ in the above two formulas, we can easily get the first formula
of the lemma. The second formula can be obtained in the same way. ¤

The following results are easy to prove.

Lemma 6. The following equalities hold.

zk

1 + rz
=(−1)k 1

rk(1 + rz)
+

k∑
v=1

(−1)v−1 zk−v

rv
,

zk

(1 + rz)2
=(−1)k 1

rk(1 + rz)2
+(−1)k−1 k

rk(1 + rz)
+

k∑
v=2

(−1)v(v − 1)zk−v

rv
.

Lemma 7. We define

fk(θ, r) =
Mk(θ, r)

1 + r cos θ
.
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Then

(16) fk(θ, r) = qk,0 + qk,1 + qk,2 sin θ + qk,3
sin θ

1 + r cos θ
,

where qk,l = qk,l(r, cos θ) are polynomials in r and cos θ for l = 0, 1, 2, and
qk,3 = qk,3(r) is a polynomial in r. Additionally

(a) qk,1 is an even polynomial of degree k− 2 or k− 1 in the variable r
for k even or odd, while it is an odd polynomial of degree k − 1 or
k in the variable cos θ for k even or odd. Moreover for every term
of the form rp cosq θ in qk,1, we have that q − p ≤ 1.

(b) qk,2 is a polynomial of degree k − 1 in both variables r and cos θ.
Moreover for every term ri cosj θ, we have that i− j ≥ 0 is an even
number.

(c) qk,3 is an even polynomial of degree k or k− 1 in the variable r for
k even or odd.

(d) The function

qk,0 =
1
r
fe

k(cos θ, r) +
f̂e

k(r)
r(1 + r cos θ)

,

where

(d.1) fe
k is an even polynomial of degree k or k− 1 in the variables r and

cos θ for k even or odd. Moreover for every term rp cosq θ in fe
k , we

have that p− q ≥ 0.
(d.2) f̂e

k is an even polynomial of degree k or k + 1 in the variable r for
k even or odd.

Proof : Using Lemmas 5 and 6, we have

M1k

1 + r cos θ
=

1
r
fe

k(cos θ, r) +
f̂e

k(r)
r(1 + r cos θ)

+ fd
k (r, cos θ),

where

fe
k =

k∑
j = 0

j even

ak−j,j

j∑
m = 0

m even

dj,m

k+1−ξ∑
v = 1

k − v odd

(−1)v−1rk−v+1 cosk−v+1−ξ θ+

k∑
j = 0
j odd

bk−j,j

j+1∑
m = 0

m even

dj+1,m

k+1−η∑
v = 1

k − v odd

(−1)v−1rk−v+1 cosk−v+1−η θ,
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fd
k =

k∑
j = 0

j even

ak−j,j

j∑
m = 0

m even

dj,m

k+1−ξ∑
v = 1

k − v even

(−1)v−1rk−v cosk−v+1−ξ θ+

k∑
j = 0
j odd

bk−j,j

j+1∑
m = 0

m even

dj+1,m

k+1−η∑
v = 1

k − v even

(−1)v−1rk−v cosk−v+1−η θ,

and

f̂e
k =

k∑
j = 0

j even

ak−j,j

j∑
m = 0

m even

dj,m

k+1−ξ∑
v=1

(−1)k+1−ξrξ+

k∑
j = 0
j odd

bk−j,j

j+1∑
m = 0

m even

dj+1,m

k+1−η∑
v=1

(−1)k+1−ηrη,

with ξ = j −m and η = j −m + 1. Clearly, ξ and η in the above formulas
are even numbers. Denoting fd

k as qk,1 and observing the power exponents
of r and cos θ in the above formulas, we can easily get statements (a), (d.1)
and (d.2) of the lemma. Statements (b) and (c) can be obtained in the same
way. ¤

In the following lemma we list some useful results on integrals.

Lemma 8. The following equalities holds.

Ek =
1
2π

∫ 2π

0

cosk θ dθ =
{

0 if k odd,

C
k/2
k 2−k if k even.

I1 =
1
2π

∫ 2π

0

1
(1 + r cos θ)2

dθ =
1

(1− r2)3/2
,

I2 =
1
2π

∫ 2π

0

1
1 + r cos θ

dθ =
1√

1− r2
,

I3 =
1
2π

∫ 2π

0

cos 2t ln(1 + r cos t) dt =
2
√

1− r2 + r2 − 2
2r2

,

I2k,m =
1
2π

∫ 2π

0

cos2m−1(2kt) ln(1 + r cos t)dt =
ϕ(r)

√
1− r2 + ψ(r)

r2k(2m−1)
,

J2k−1 =
1
2π

∫ 2π

0

cos2k−1(t) ln(1 + r cos t) dt =
p(r)

√
1− r2 + q(r)
r2k−1

,

where k, m ∈ N. The functions ϕ(r) and ψ(r) are even polynomials of degree
2k(2m − 1) − 2 and 2k(2m − 1), respectively. The functions p(r) and q(r)
are even polynomials of degree 2k − 2.
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Proof : We can deal with I1 and I2 in the complex plane by the transfor-
mation z = eiθ, i.e.

Ik = −2ki

2π

∫

|z|=1

zk−1

(rz + 2z + 2)k
dz, i = 1, 2.

Then applying the Residue Theorem, we get the results of the statement of
the lemma for Ik, k = 1, 2. Again Ek can be also obtained by applying the
Residue Theorem.

Now we compute J2k−1. We first derivate it with respect to the variable
r,

dJ2k−1

d r
=

1
2π

∫ 2π

0

cos2k(t)
1 + r cos t

dt.

Using Lemma 6, we get

dJ2k−1

d r
=

∫ 2π

0

2k∑
v=1

((−1)v−1 cos2k−v(t)
rv

+
r−2k

1 + r cos t
)dt

= −
2k∑

v = 1
v even

E2k−v
1
rv

+
1

r2k
√

1− r2
.

Hence integrating it with respect to r from ε > 0 to r, we obtain using
integration by parts that

(17) J2k−1(r) =
2k∑

v = 1
v even

E2k−v

v − 1
1

rv−1
− φ0(ε) + h2k,

where

h2k =
∫ r

ε

1
r2k
√

1− r2
dr =

∫ r

ε

√
1− r2

r2k
dr +

∫ r

ε

1
r2(k−1)

√
1− r2

dr

= − 1
2k − 1

√
1− r2

r2k−1
+ (1− 1

2(k − 1)
)h2(k−1) + φk(ε),

with h2 = −√1− r2/r − φ1(ε). Noting that J2k−1(0) = 0, it implies that∑
φk(ε) → 0, as ε → 0. Hence, from (17), it follows the expression of J2k−1,

which appears in the statement of the lemma.
Now I3 can be obtained in a similar way.
Finally, we compute I2k,m. We just prove the case I2k,1. The other

cases can be proved as we did for J2k−1. Derivate I2k,1 with respect to the
variable r, we have

I ′2k,1 =
1
2π

∫ 2π

0

cos 2kt cos t

1 + r cos t
dt = − 1

2π

∫ 2π

0

cos 2kt

r(1 + r cos t)
dt.
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In fact, I2,1 = I3. By induction, the formula of I2k holds for k = v. Then
noting

∫ 2π

0
cos(2vt)dt = 0 for v ∈ N, we have using Lemma 6 and integration

by parts that

I ′2v+2,1 = − 1
2π

∫ 2π

0

cos 2vt(2 cos2 t− 1)− 2 sin 2vt cos t sin t

r(1 + r cos t)
dt

= −I ′2v,1 −
2

2πr

∫ 2π

0

cos 2vt

(
cos t

r
− 1

r2
+

1
r2(1 + r cos t)

)
dt +

4v

2πr

∫ 2π

0

cos 2vt

(
cos t

r
− ln(1 + r cos t)

r2

)
dt.

Hence we get a recurrence formula

(18) I ′2v+2,1 = (
2
r2
− 1)I ′2v,1 −

4v

r3
I2v,1.

Since I2k+2,1(0) = 0, we integrate both sides of formula (18) with respect
to r from ε > 0 to r. Then, taking ε → 0, it is easy to obtain the formula
for I2k with for k = v + 1. ¤

3. The averaged function of seconder order

Since
∫ 2π

0
cosi θdθ = 0 for i odd, we obtain easily the first averaged

function from Lemmas 7 and 8,

f0 =
1
2π

∫ 2π

0

n∑

k=1

fk(θ, r)dθ =
1
2π

∫ 2π

0

n∑

k=1

qk,0(cos θ, r)dθ(19)

=

n∑
k=1

(f̄e
k(r)

√
1− r2 + f̂e

k(r))

r
√

1− r2
=

φ(r)
2r
√

1− r2
,

where

f̄e
k(r) =

∫ 2π

0

fe
k(cos θ, r)dθ.

The number of zeros of f0(r) = 0 is the same as that of φ(r). Take ρ =√
1− r2, we get a polynomial of degree n + 1 in the variable ρ, φ̂(ρ) =

φ(r). In the view of the definition of f(θ, r), we know f0(0) = 0 implies
φ(0) = 0. Hence, if the first averaged function vanishes, we get n + 1
conditions vanishing the coefficients of the polynomial φ̂(ρ). Every one of
these conditions is a linear combination of some coefficients of system (1).

In the following we consider the second averaged function and still we
denote by system (1) the system for which the first averaged function van-
ishes.
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In the polar coordinates, we have the corresponding function f(θ, r). If
we write sin2 θ = 1− cos2 θ, it can be denoted by

(20) f(θ, r) = q0(cos θ, r)+q1(cos θ, r)+q2(cos θ, r) sin θ+q3(r)
sin θ

1 + r cos θ
,

where

q0(cos θ, r) =
n∑

k=1

fk(θ, r) =
n∑

k=1

qk,0(cos θ, r),

and

qi =
n∑

k=1

qk,i, i = 1, 2, 3.

Since f0(r) ≡ 0, we know that q1(cos θ, r) is always an odd function in the
variable cos θ. And q0(cos θ, r) have the following property.

Lemma 9. The function rq0(cos θ, r) can be denoted as a polynomial in the
variables r and cos 2kθ for k ∈ N, and is an even function in r of degree n or
n−1 if n is even or odd, respectively. While it is an odd function in cos 2kθ.
Moreover for every term rξ cosη 2kθ in rq0, we have that ξ − 2kη > 0.

Proof : From [8], we know that φ̂(ρ) is a polynomial of degree n+1 and which
can have at most n zeros in (0, r). It is also shown in our paper that the
first averaged function f0(r) has n + 2 coefficients, one of them depending
on the others n + 1 coefficients. That is, φ̂(ρ) has n + 2 coefficients, which
are linear combinations of some coefficients of system (1). However from
φ̂(ρ) ≡ 0, we can get only n + 1 independent equations.

In fact, from (19), we know that f̄e
k(r)

√
1− r2 corresponds to the odd

terms of φ̂(ρ), while f̂e
k(r) corresponds to the even ones. The function

q0(cos θ, r) is even in cos θ and satisfies that its integration from 0 to 2π
vanishes. So it can be written as an odd function of cos 2kθ, k ∈ N. Then
φ̂(ρ) ≡ 0 implies that f̂e

k(r) ≡ 0 and

(21) q0 =
1
r

n∑

k=0

fe
k(cos θ, r) =

1
r

∑

2kη≤n

∗rξ cosη 2kθ,

where ξ is even, η is odd and ∗ denotes linear combinations of some co-
efficients of system (1). Since cos 2kθ can be expressed as a homogenous
polynomial in cos θ and sin θ, the other properties of the function q0 of this
lemma can be obtained directly from statement (d.1) in Lemma 7. ¤

By calculation we have
∫ t

0

f(θ, r)dθ = q̄0(cos t, r) sin t + q̄1(cos t, r) sin t + q̄2(cos t, r) + q3(r)I0,
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where

(22)

I0 =
∫ t

0

sin θ

1 + r cos θ
dθ =

ln(1 + r)− ln(1 + r cos t)
r

,

q̄0 =
1

sin t

∫ t

0

q0(cos 2kθ, r)dθ =
1

r sin t

∑
∗rξ cos2kη−1 t,

q̄1 =
1

sin t

∫ t

0

q1(cos θ, r)dθ, q̄2 =
∫ t

0

q2(cos θ, r) sin θdθ.

We know that q̄1 is an even polynomial of degree n − 2 or n − 1 in the
variables r and cos t, if n even or odd, respectively. Hence, the first term
appearing in the expression of A2(r) is

f10 =
1
2π

∫ 2π

0

(
∂q1

∂r
(q̄2 + q3I0) + (

∂q2

∂r
+

∂

∂r
(

q3

1 + r cos t
))q̄1 sin2 t

)
dt+f̂10,

where

f̂10 =
1
2π

∫ 2π

0

(
∂q0

∂r
(q̄2 + q3I0) + (

∂q2

∂r
+

∂

∂r
(

q3

1 + r cos t
))q̄0 sin2 t

)
dt.

Theorem 10. Considering the second averaged function of system (1), we
have

(23) f10 =
1

r3
√

1− r2
(f1

√
1− r2 + g1),

where f1 and g1 are even polynomials of degree at most 2n in the variable
r.

Proof : In the following we denote the degree of a polynomial f(r) by
deg(f). We assume that n is an odd number, and using Lemma 7 we list
some properties of qi for i = 1, 2, 3 in Table 1.

First, noting that qi, q̄i for i = 1, 2 are trigonometric polynomials, we
consider

J1(r) =
1
2π

∫ 2π

0

(
∂q1

∂r
q̄2 + q̄1

∂q2

∂r
sin2 t)dt = J11(r) + J12(r),

and we claim that J1(r) is an odd polynomial of degree at most 2n− 3. For
example, we assume

(24)
∂q1

∂r
=

∑
cp,qr

p cosq t, q̄2 =
∑

ei,jr
i cosj t, q3 =

∑
lkrk.

Since
∫ 2π

0
cosk tdt = 0 for k odd, then we have the following polynomial

J11 =
∫ 2π

0

∂q1

∂r
q̄2dt =

∑ ∑

q+j even

cp,qei,jr
p+i

∫ 2π

0

cosq+j tdt.
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It is easy to get from Table 1 that 0 ≤ p + i ≤ 2n− 3 and p + i is odd from
the facts that p, q and i + j are odd, and q + j is even. Hence, the claim is
true for J11, and can be proved for J12 in the same way.

q1 q̄1
∂q1

∂r
q2 q̄2

∂q2

∂r
r n− 1, even n− 1, even n− 2, odd n− 1 n− 1 n− 2

cos t n, odd n− 1, even n, odd n− 1 n n− 1
ξ + η odd even even even odd odd

Table 1: Here ξ and η are the power exponents of rξ cosη t. Every box of
the second and third line describes the degree and parity in the variables r
and cos t of the functions given in the top of every column. The fourth line

describes the parity of ξ + η appearing in every term of the form rξ cosη t.

Second, we claim that

(25) J2 =
1
2π

∫ 2π

0

∂q1

∂r
q3I0dt =

1
r3

(P (r)
√

1− r2 + Q(r)),

where P (r) and Q(r) are two even polynomials of degree at most 2n − 2.
In fact, we know from Lemma 7 that q − p ≤ 2 in (24). Then

J2 =
∑∑

lkcp,qr
k+p−1 1

2π

∫ 2π

0

cosq t(ln(1 + r)− ln(1 + r cos t))dt

=
∑∑

lkcp,qr
k+p−1−q(p(r)

√
1− r2 + q(r)).

From Lemma 8, we get that deg(r−qp(r)) and deg(r−qq(r)) are odd, and

−q ≤ deg(r−qp(r)), deg(r−qq(r)) ≤ −1.

According with the properties listed in Table 1, we have 0 ≤ k ≤ n− 1 and
−2 ≤ p− q ≤ n− 2. Then we obtain

−3 ≤ k − 1 + p + deg(r−qp(r)) ≤ 2n− 5,

−3 ≤ k − 1 + p + deg(r−qq(r)) ≤ 2n− 5,

both of which are odd because k is even and p is odd by Lemma 7. Hence
J2 can be written as in (25).

Third, we claim that

(26) J3 =
1
2π

∫ 2π

0

∂

∂r
(

q3

1 + r cos t
)q̄1 sin2 tdt =

P
√

1− r2 + Q

r3
√

1− r2
,
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where P (r) and Q(r) are even polynomials of degree at most 2n. Here, we
denote

J3 = J31 + J32 =
1
2π

∫ 2π

0

q′3(r)q̄1 sin2 t

1 + r cos t
dt +

1
2π

∫ 2π

0

q3q̄1 cos t sin2 t

(1 + r cos t)2
dt,

and assume that q̄1 has also the form q̄1 =
∑

cp,qr
p cosq t, with p and q even

and q ≤ p. Hence

J31 =
∑ ∑

k≥2

klkcp,qr
k+p−1 1

2π

∫ 2π

0

(
cosq t

1 + r cos t
− cosq+2 t

1 + r cos t
)dt.

For example, we consider the second term of J31. Using Lemma 6, we have

rk+p−1 1
2π

∫ 2π

0

cosq+2 t

1 + r cos t
dt = −

q+2∑

v = 1
v even

Eq+2−vrk+p−v−1 +
rk+p−1−(q+2)

√
1− r2

.

Since, from Table 1, we have that 2 ≤ k ≤ n − 1, 0 ≤ p, q ≤ n − 1 and
0 ≤ p − q are even. Due to the fact that 2 ≤ v ≤ q + 2 is even, we have
−1 ≤ k + p − q − 3 ≤ 2n − 5 and −1 ≤ k + p − v − 1 ≤ 2n − 5 are odd.
In the same way we know that the first term in J31 is an odd function of r
with power exponents between 1 and 2n − 3. Thus, J31 can be written as
in (25).

Now we compute J32. We have

J32 =
∑∑

lkcp,qr
k+p 1

2π

∫ 2π

0

cosq+1 t sin2 t

(1 + r cos t)2
dt,

and we claim that J32 can be written as in (26) with P and Q of degree at
most 2n. Since

(27)
sin2 t

(1 + r cos t)2
=

2
r2(1 + r cos t)

− 1
r2

+
r2 − 1

r2(1 + r cos t)2
,

we here just consider the last term denoted by J̃32, i.e.

J̃32 =
∑∑

lkcp,qr
k+p 1

2π

∫ 2π

0

(r2 − 1) cosq+1 t

r2(1 + r cos t)2
dt.
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the others can be studied as before. For every term in J̃32, applying Lemmas
6 and 8, we obtain

T (r) =

= rk+p−2(r2 − 1)
1
2π

∫ 2π

0

cosq+1 t

(1 + r cos t)2
dt

=
q+1∑

v = 2
v odd

Eq+1−vrk+p−2−v(r2 − 1) + (q + 1)
rk+p−q−3(1− r2)√

1− r2
− rk+p−q−3

√
1− r2

.

Since 0 ≤ k ≤ n− 1, 0 ≤ p, q ≤ n− 1 and 0 ≤ p− q are even, while 3 ≤ v ≤
q+1 odd, we have −3 ≤ k+p−q−3 ≤ 2n−5 and −3 ≤ k+p−v−2 ≤ 2n−7
are odd, which implies that T (r) can be written as in (26).

In short, we can easily rearrange J1 + J2 + J3 into the form (23).
Finally, it can be proved that f̂10 can be written as in (23). For example,

we consider the first integral of f̂10,

Ĵ1 =
1
2π

∫ 2π

0

∂q0

∂r
(q̄2 + q3I0)dt.

Since for any k, m ∈ N, if η ∈ N or m is odd, then
∫ 2π

0

cosη kt cosm tdt = 0.

Hence the first integral of Ĵ1 vanishes. Take q0 as in (21), then we get from
Lemma 8

Ĵ1 =
1
2π

∫ 2π

0

∂q0

∂r
q3I0dt

=
∑∑

∗lkrk+ξ−3 1
2π

∫ 2π

0

cosη 2kt(ln(1 + r)− ln(1 + r cos t))dt

=
∑∑

∗lkrk+ξ−3−2kη(ϕ(r)
√

1− r2 + ψ(r)).

From the properties of q0 and q3, we have for n odd that 0 ≤ k, ξ ≤ n − 1
and deg(ϕ),deg(ψ) are even, and

−2kη ≤ deg(r−2kηϕ),deg(r−2kηψ) ≤ 0.

Hence
−3 ≤ k − 1 + p + deg(r−2kηϕ(r)) ≤ 2n− 5,

−3 ≤ k − 1 + p + deg(r−2kηψ(r)) ≤ 2n− 5,

both of which are odd. This implies that Ĵ1 can be written as in (25).
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Next, we compute

Ĵ3 =
1
2π

∫ 2π

0

∂

∂r
(

q3

1 + r cos t
)q̄0 sin2 tdt,

=
1
2π

∫ 2π

0

q′3(r)q̄0 sin2 t

1 + r cos t
dt +

1
2π

∫ 2π

0

q3q̄0 cos t sin2 t

(1 + r cos t)2
dt.

Now we work with the first integral of Ĵ3. In a similar way, we can work
with the second integral of Ĵ3. Taking q̄0 and q′3 as in (22) and (24), we get

∑ ∑

k≥2

∗klkrk+ξ−2 1
2π

∫ 2π

0

(
cos2kη−1 t

1 + r cos t
− cos2kη+1 t

1 + r cos t
)dt.

Here we consider the first term of the above sum. Using Lemma 6, we have

rk+ξ−2 1
2π

∫ 2π

0

cos2kη−1 t

1 + r cos t
dt = −

2kη−1∑

v = 1
v odd

E2kη+1−vrk+ξ−v−2 +
rk+ξ−2kη−1

√
1− r2

.

From Table 1 and Lemma 9, we obtain that 2 ≤ k ≤ n − 1, 0 ≤ ξ ≤ n − 1
and ξ − 2kη ≥ 0 are even, while 1 ≤ v ≤ 2kη − 1 is odd, we have 1 ≤
k + ξ − 2kη − 1 ≤ 2n − 3 and 1 ≤ k + ξ − v − 2 ≤ 2n − 5 are odd. Hence
Ĵ3 can be written as in (25). In the same way we can consider the other
integrals of f̂10.

Up to now, we have completed the proof of the theorem for n odd. The
expression (23) still holds for n even using the same arguments, we omit
them here. ¤

Next, we consider the function g(θ, r). We write sin2 θ = 1− cos2 θ, and
denote rg(θ, r) = H1(r, θ)H2(r, θ), where

H1 =
cos θF + sin θG

(1 + r cos θ)2
=

f(θ, r)
1 + r cos θ

= Q0(cos θ, r) + Q1(cos θ, r) sin θ

with

Q0 =
q0(cos θ, r)
1 + r cos θ

+
n∑

k=1

qk,1

1 + r cos θ
, Q1 =

n∑

k=1

qk,2

1 + r cos θ
+

n∑

k=1

qk,3

(1 + r cos θ)2
,

and in the view of Lemma 5, we have

H2 = sin θF − cos θG = P0(cos θ, r) + P1(cos θ, r) sin θ,

where

P0 =
n∑

k=1

rkBk,0, P1 =
n∑

k=1

rkBk,1.



18 J. LLIBRE AND JIANG YU

Hence,

(28) g0 =
1
2π

∫ 2π

0

g(θ, r)dθ =
1

2πr

∫ 2π

0

(P0Q0 + P1Q1 sin2 θ)dθ.

Function g0 can be expressed as a combination of the basic integrals I1 and
I2 given in Lemma 8.

Theorem 11. Considering the second averaged function of system (1), we
have

(29) g0 =
1

r3
√

1− r2
(f2

√
1− r2 + g2),

where f2 and g2 are even polynomials of degree at most 2n in the variable
r.

Proof : Here we assume that n is odd. First, we consider

I1 =
1

2πr

∫ 2π

0

P0

n∑

k=1

qk,1

1 + r cos θ
dθ =

n∑

k=1

n∑

k=1

1
2πr

∫ 2π

0

rkBk,0qk,1

1 + r cos θ
dθ.

By Lemmas 5 and 7, we have that

qk,1 =
∑

cp,qr
p cosq t, Bk,0 =

∑
hl cosl t,

with

(30) −1 ≤ p− q ≤ n− 2, −1 ≤ k − l ≤ n,

and p even, q odd, while l odd if k even; l even if k odd. For every term in
I1, using Lemma 6 and 8, we have

1
2πr

∫ 2π

0

rkBk,0qk,1

1 + r cos θ
dθ =

∑∑
cp,qhl

1
2π

∫ 2π

0

rk+p−1 cosq+l θ

1 + r cos θ
dθ

=
∑∑

cp,qhl(
q+l∑

v = 1
l− v odd

(−1)v−1Eq+l−vrk+p−v−1 +
(−1)q+lrk+p−q−l−1

√
1− r2

).

It is easy to see that k + p− v− 1 and k + p− q− l− 1 are odd. From Table
1, Lemmas 5 and 7, we know that 0 ≤ p ≤ n − 1, 1 ≤ q ≤ n, 1 ≤ k ≤ n.
Therefore, by (30), we get

−3 ≤ k + p− v − 1 ≤ 2n− 3, −3 ≤ k + p− q − l − 1 ≤ 2n− 3.

Hence I1 can be written as in (29).
Second, we consider

I2 =
n∑

k=1

n∑

k=1

1
2πr

∫ 2π

0

rkBk,1qk,2 sin2 θ

1 + r cos θ
dθ.
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Note that
sin2 θ

1 + r cos θ
= −cos θ

r
+

1
r2

+
r2 − 1

r2(1 + r cos θ)
.

We claim that the last term of the previous equality substituted in I2, which
is

U1(r) =
1

2πr

∫ 2π

0

rkBk,1qk,2
r2 − 1

r2(1 + r cos θ)
dθ,

can be written as in (29). Again by Lemmas 5 and 7, we have that

qk,2 =
∑

cp,qr
p cosq t, Bk,1 =

∑
hl cosl t,

with

(31) 0 ≤ p− q ≤ n− 1, 0 ≤ k − l ≤ n− 1, 1 ≤ k ≤ n.

Hence

U1(r) =
∑∑

hlcp,q(r2 − 1)rk+p−3 1
2π

∫ 2π

0

cosq+l θ

1 + r cos θ
dθ.

Using Lemma 8, we calculate every term in U1(r) and we get

hlcp,q(r2− 1)(
q+l∑

v = 1
q + l− v even

(−1)v−1Eq+l−vrk+p−v−3 +
(−1)q+lrk+p−q−l−3

√
1− r2

).

Since k − l and p − q are even numbers according with Lemmas 5 and 7,
k + p− v − 3 and k + p− q − l − 3 are odd numbers. Moreover, from (31)
and 1 ≤ v ≤ q + l, we have that

−3 ≤ k + p− v − 3 ≤ 2n− 3, −3 ≤ k + p− q − l − 3 ≤ 2n− 3,

which completes our claim.
The other term of the function I2 has the form

U2(r) =
1

2πr

∫ 2π

0

rkBk,1qk,2(−cos θ

r
+

1
r2

)dθ =
∑∑

hlcp,qω(r),

where

ω(r) = rk+p−1 1
2π

∫ 2π

0

cosq+l θ(−cos θ

r
+

1
r2

)dθ

=
q+l∑

v = 1
q + l− v even

(−1)v−1Eq+l−vrk+p−v−3−
q+l+1∑

v = 1
q + l− v odd

(−1)v−1Eq+l+1−vrk+p−v−2.

Using the same arguments that in the case U1, we know that ω(r) is an odd
polynomial satisfying

−3 ≤ deg(ω) ≤ 2n− 3.

Hence I2 can be written as in (29).
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Third, we consider

I3 =
n∑

k=1

n∑

k=1

Ω(r) =
n∑

k=1

n∑

k=1

1
2πr

∫ 2π

0

rkBk,1qk,3 sin2 θ

(1 + r cos θ)2
dθ.

Recall q3 =
∑n−1

m=1 cmrm with m even. Then, from (27), we arrange Ω as

Ω =
∑∑

hlcmrk+m−1 1
2π

∫ 2π

0

(
2 cosl θ

r2(1 + r cos θ)
−cosl θ

r2
+

(r2 − 1) cosl θ

r2(1 + r cos θ)2
)dθ.

We just consider the last term denoted by Ω̃,

Ω̃ =
∑∑

hlcmrk+m−1 1
2π

∫ 2π

0

(r2 − 1) cosl θ

r2(1 + r cos θ)2
dt.

The other terms can be written as in (29) using the same method as before.
Applying Lemmas 6–8, we estimate the general term of Ω and we get

l∑

v = 2
l− v even

El−vrη−v(r2 − 1) + (−1)l−1l
rη−l(r2 − 1)√

1− r2
+ (−1)l rη−l

√
1− r2

,

where η = k + m− 3. Since k − l and m are even numbers according with
Lemmas 5 and 7, k+m−v−3 and k+m− l−3 are odd numbers. Moreover,
from (31) and 2 ≤ v ≤ l, we get

−3 ≤ k + m− v − 3 ≤ 2n− 3, −3 ≤ k + m− l − 3 ≤ 2n− 3,

which ensures that the function Ω̃ can be written as in (29).
Finally, we can easily prove that the integral I4 has the form (29) using

the same method as above, where

I4 =
1

2πr

∫ 2π

0

P0
q0(cos θ, r)
1 + r cos θ

dθ.

Up to now we affirm that g0 = I1 + I2 + I3 + I4 is of the form (29) if n is
odd. For n even, we can prove the theorem in the same way. ¤

4. The proof of theorem 1

Using the averaging theory, if the first averaged function f0 vanishes,
then we have to consider the second averaged function A2 = f10 + g0. It is
easy from (23) and (29) to see that

(32) A2(r) = f10 + g0 =
1

r3
√

1− r2
(f(r)

√
1− r2 + g(r)) =

Φ(r)
r3
√

1− r2
,

where f and g are even polynomials of degree at most 2n in the variable r.
Then according with Corollary 4(a) every simple zero of Φ(r) in the interval
(0, 1) provides a limit cycle bifurcating from system (1).



LIMIT CYCLES OBTAINED BY THE SECOND ORDER AVERAGING METHOD 21

Moreover, we have A2(0) = 0. It is clear from (10) that f(0, θ) ≡ 0 and
g(0, θ) ≡ 0, because F and G are polynomials in the variable r, starting
with terms of degree one. Since A2(r) is analytic at r = 0, then Φ(r) in
(32) has a quadruple root at r = 0. That is

Φ(r) = r4β(r), r ∈ (0, 1),

where β is an analytic function in (0, 1). Taking

Φ̄(r) = −f(r)
√

1− r2 + g(r),

we know that the following function

Φ̂ = ΦΦ̄ = −f2(r)(1− r2) + g2(r)

is an even polynomial in r of degree 4n + 2. And the polynomial Φ̂(r) has
at least the quadruple root r = 0, that is

Φ̂(r) = r4φ(r) where φ(r) = β(r)Φ̄(r),

where φ is an even polynomial of degree at most 4n − 2 in the variable r.
Hence φ(r) can have at most 2n−1 zeros in (0, 1). Then we know that Φ(r)
has at most 2n− 1 zeros in (0, 1), which completes the proof of Theorem 1.

Remark: In [10] we prove that the upper bounds of Theorem 1 are reached
for n = 4. By induction, when n increases up in one unity, the roots of
A2(r) increases in two units, if the highest terms of f and g have arbitrary
coefficients. At the same time, system (1) increase up to 2n + 1 arbitrary
coefficients. So, it is reasonable to believe that the two coefficients of the
highest terms are arbitrary. Then we can make the conjecture that for n ≥ 4
the number 2n− 1 is the lowest upper bound for the number of limit cycles
in system (1) which can be found using the averaging theory of second order.
However, the difficulty for proving such a conjecture lies in the complicated
form of the averaged function of second order obtained when f0 ≡ 0.
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