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Abstract. In this paper we present a new method to study limit
cycles’ hyperbolicity. The main tool is the function ν = ([V, W ] ∧
V )/(V ∧W ), where V is the vector field under investigation and W
a transversal one. Our approach gives a high degree of freedom for
choosing operators to study the stability. It is related to the diver-
gence test, but provides more information on the system’s dynamics.
We extend some previous results on hyperbolicity and apply our re-
sults to get limit cycles’ uniqueness. Liénard systems and conserva-
tive+dissipative systems are considered among the applications.

1. Introduction

In this paper we are concerned with plane differential systems,

z′ = V (z), z ∈ Ω ⊂ IR2, (1)

with Ω open connected, V (z) = (P (z), Q(z)) ∈ C2(Ω, IR2), z = (x, y) ∈ Ω.
We denote by φV (t, z) the local flow defined by (1). We say that γ is a limit
cycle of (1) if it is an isolated periodic orbit.

It is well-known that not every stable (unstable) limit cycle is structurally
stable; that is, not every stable (unstable) limit cycle remains and preserves
stability (unstability) under any small perturbation. For a limit cycle to
be structurally stable in a general sense, it needs to be hyperbolic; in other
words, it needs that each of its characteristic multipliers is different from 1.
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In IR2, the hyperbolicity of a limit cycle γ = {(x(t), y(t)), t ∈ [0, T ) ⊂ IR}
is usually characterized as some integral of type

∫ T

0
Ψ(V )(x(t), y(t)) dt being

not zero, where Ψ belongs to a short list of well-known operators like the
divergence of V or the curvature of V ⊥ (see [4] for a survey and discussion
of methods). Since γ is, in general, unknown explicitly, it turns out that
a practical way to prove hyperbolicity is proving that γ belongs to some
region Ω ⊂ IR2 where a suitable Ψ(V ) does not change sign.

As far as we know, the most recent way to find a Ψ(V ) has been given
in [4] in case that there exists a vector field W transversal to V such that
[W,V ] = µW for some function µ. Then, Ψ(V ) = µ. The main obstruction
of the method of [4] is that it is necessary to find a vector field W for which
V is an infinitesimal generator. In this paper, following this line and the
ideas used in [11] for the period function of centres, we show how to manage
to obtain a candidate for Ψ with the unique restriction that W is transversal
to V . This fact implies that our new Ψ is as easy to compute as div V , thus
eliminating the main handicap of the method given in [4]. Let us denote by
[V,W ] is the Lie bracket of V and W , and by V ∧W the determinant of the
matrix having V and W as rows. Defining

ν =
[V,W ] ∧ V

V ∧W
,

the main result we present here consists in the equality
∫ T

0

div V (x(t), y(t)) dt =
∫ T

0

ν(x(t), y(t)) dt. (2)

We remark that if V normalizes W , that is if [W,V ] = µW for some function
µ, then ν = µ, so that our result reduces to that one presented in [4].

It is well-known that the divergence test has a degree of freedom: a
cycle’s hyperbolicity can be studied by replacing V with LV , where L is
a suitable non-vanishing function. The new system has the same orbits as
the old one, but div LV = ∂V L + L div V 6= div V , so that one can try to
find a function L such that div LV 6= 0 on a suitable region. When this
occurs, L is said to be a Dulac function. A common strategy for proving
hyperbolicity consists in looking for suitable Dulac functions, thus avoiding
integration. However, there are not algorithms for that and so methods to
obtain new operators Ψ are welcome. Our approach also allows to give a
new way to look for Dulac functions. In fact, if ν 6= 0 in a region, then the
function 1

V ∧W is a Dulac function for the system (1). This fact gives the
possibility to widen the range of “natural” candidates for Dulac functions
and turns out to be useful in several situations. Moreover, our approach
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also provides additional information about the location of limit cycles; in
fact, if [V, W ] ∧ V 6= 0 on a region, then a limit cycle cannot intersect the
curve V ∧W = 0.

Notice that the freedom to choose W looking for a ν that does not change
sign is equivalent to the freedom of choosing multiples of V when looking
for Dulac functions. This can be interesting also in relation to the different
limitations on the location of the limit cycles that different choices of W
provide.

In Section 2, the main result (Theorem 1) is presented and related to
results (mainly [4]) and methods (Dulac functions, orthogonal curvatures)
already known. Theorem 1, then, is applied to obtain general formulas
for two big classes of vector fields: (1) those which admit a decomposition
V = AU + B W , being U a conservative vector field and W one of its
normalizers; and, (2) Liénard systems, expressed in several forms, for which
a list of “natural” operators is given.

In Section 3, we choose the more suitable operators studied in Section
2 to give some results on uniqueness of limit cycles for the two families
mentioned in the previous paragraph. The main result of this section is
Theorem 2, which enriches Theorem 1. The key point is an observation
that allows to use vector fields W that loss transversality with respect to
V on Jordan curves. This result enlarges the set of systems to which our
method can be applied. We also provide some specific examples to illustrate
these features.

2. The main result and computational strategies

If f is a function defined on an open subset of Ω, we denote by ∂V f the
derivative of f along the solutions of V , that is ∂V f = ∇f V . Similarly for
vector fields, that is ∂V W = DW V .

In connection to (1), we consider also a second vector system

z′ = W (z), z ∈ Ω ⊂ IR2, (3)

where W (z) ∈ C2(Ω, IR2), z = (x, y) ∈ Ω. We denote by φW (t, z) the local
flow defined by (3).
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We set V ∧W = det(V, W ). Denoting by [V, W ] = ∂V W − ∂W V the Lie
bracket of V and W , we set

ν =
[V,W ] ∧ V

V ∧W
. (4)

Theorem 1. Let V ∧ W 6= 0 at non-critical points of V . Let γ(t) be a
T -periodic non-trivial cycle of (1). Then one has

∫ T

0

ν(γ(t)) dt =
∫ T

0

div V (γ(t)) dt.

Proof. Without loss of generality, we may assume that V ∧W > 0. In [13],
Walcher proved that

[V, W ] = (−∂W ln(V ∧W ) + div W )V + (∂V ln(V ∧W )− div V )W.

Then one has

ν =
[V, W ] ∧ V

V ∧W
= −∂V ln(V ∧W ) + div V.

Integrating along γ, one has
∫ T

0

ν(γ(t)) dt =
∫ T

0

(−∂V ln(V ∧W ) + div V ) (γ(t)) dt =
∫ T

0

div V (γ(t)) dt.

♣

Remark 1. In the case that V is a normalizer of W , that is, [W,V ] = µW ,

then ν =
−µ W ∧ V

V ∧W
= µ and the result of Theorem 1 coincides with that of

[4, Theorem 2].

Remark 2. In the proof of Theorem 1, we have stated that ν = −∂V ln(V ∧
W ) + div V or, equivalently, that

ν = (V ∧W ) div
(

V

V ∧W

)
.

In other words: if ν does not vanish on a certain region Ω, then
1

V ∧W
is a Dulac function in Ω \ {Z}, where Z is the set of critical points of V
in Ω. Notice that, since V ∧W vanishes on Z, in general we cannot apply
Bendixson-Dulac criterion even if ν does not vanish at non-critical points.

Also, for the specific case that W =
V ⊥

||V || , the operator
ν

||V || coincides

with the curvature of the orthogonal vector field, which is another operator
used in the literature to study stability of orbits (see [1] or [14]).
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In the literature, Dulac functions have been found mostly by an algebraic
approach, looking for norms (e.g., 1/(x2+y2), xα yβ ,. . . ), co-factors or other
functions suggested by the analytic expression of the vector field. In this
paper we propose a more geometrical approach: we think of which will be
the optimal transversal vector fields to be tested according to the geometry
of the problem. For instance, a very natural choice would be taking the
orthogonal vector field, W = (−Q, P ). Then

ν =
(Qy − Px)P 2 − 2(Py + Qx)PQ− (Qy − Px)Q2

P 2 + Q2
,

where subscripts denote partial derivatives. The numerator we get is a
quadratic form in P and Q, which is obviously indefinite, since not all limit
cycles are hyperbolic.

Although the orthogonal vector field (equivalent to 1/(P 2 + Q2) being
candidate for Dulac function) can be a useful choice, our best experience
comes from writing V as the sum of a conservative vector field and a dissi-
pative one. Starting from the fact that every conservative vector field U has
a non-trivial normalizer W (see [11, Lemma 1]), that is [U,W ] = µU , the
computations needed to find ν get simpler. Since U and W are transversal,
every vector field V can be written in a unique way as a linear combination
of U and W : V = AU + BW , where A = V ∧W

U∧W and B = V ∧U
W∧U . If, addi-

tionally, V is transversal to W , then W can be used for the calculation of a
suitable ν. The form of ν is given by next corollary.

Corollary 1. Let W be a normalizer of U , [U,W ] = µU . Let V be transver-
sal to W at non-critical points, and A, B be such that

V = AU + BW.

Then

ν = B

(
µ− ∂W A

A

)
+ ∂W B. (5)

Proof. From the transversality of V and W one has

A =
V ∧W

U ∧W
6= 0.

Then one can write
[V,W ] = [AU + BW,W ]

= A[U,W ]− (∂W A)U − (∂W B)W
= (Aµ− (∂W A)) U − (∂W B)W.
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Hence

[V, W ] ∧ V =
(

(Aµ− (∂W A))U − (∂W B)W
)
∧

(
AU + BW

)

=
(

B(Aµ− (∂W A)) + A(∂W B)
)

U ∧W.

Concluding,

ν =

(
B(Aµ− (∂W A)) + A(∂W B)

)
U ∧W

(AU + BW ) ∧W
= B

(
µ− ∂W A

A

)
+ ∂W B.

♣

One practical way to read the above corollary is that every Hamiltonian
system with a known normalizer is a suggestion for a family of systems to
obtain a suitable ν.

Remark 3. Denote by σ = U∧W the wedge product among the conservative
and the dissipative part. From Walcher’s formula (see [13]), we know that

µ = σ div
(

W

σ

)
.

On the other hand, as in Remark 7.1 in [3], we know that W is also a
normalizer of U/σ. In fact,

[U/σ,W ] = div (W ) (U/σ).

So, decomposing V = (σ A) (U/σ) + B W and applying Corollary 1 to
this new decomposition, we have that

ν = B

(
div (W )− ∂W (Aσ)

Aσ

)
+ ∂W B = B

(
(Aσ)div

(
W

Aσ

))
+ ∂W B

= A σ div
(

B

Aσ
W

)
.

In general, since A 6= 0, one can divide V by A and consider the new ν.
As written in the introduction, replacing V with V

A leads to replace the old
ν with ν

A . Equivalently, one can consider A ≡ 1, that is V = U + B
A W =:

U + BW . Then,

ν = B µ + ∂W B =
B

A
µ + ∂W

(
B

A

)
.
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Another strong reason to use the approach “conservative + dissipative”
is that there are already some results on the literature providing normaliz-
ers for some families of Hamiltonian vector fields. In Section 2.1 we take
advantage of this fact.

2.1. Conservative part with separable variables. We obtain a remark-
able class of examples by taking a Hamiltonian system with separable vari-
ables as the conservative system U ,

x′ = E′(y), y′ = −C ′(x), (6)

where E and C are C1 functions with E(0) = E′(0) = C(0) = C ′(0) = 0,
xC(x) > 0 for x 6= 0, y E(y) > 0 for y 6= 0, so that C(x)

C′(x) ,
E(y)
E′(y) exist on all

of Ω.

Such a system has the following system W as a normalizer (see [3]):

x′ =
C(x)
C ′(x)

, y′ =
E(y)
E′(y)

. (7)

Hence, the vector field V = AU + BW is

x′ = A(x, y)E′(y) +
B(x, y)C(x)

C ′(x)
, y′ = −A(x, y)C ′(x) +

B(x, y)E(y)
E′(y)

.

(8)
The normalizing function µ, as proved in [3], has the form

µ(x, y) =
(

E(y)
E′(y)

)′
+

(
C(x)
C ′(x)

)′
− 1.

Hence one has

ν = B

((
E

E′

)′
+

(
C

C ′

)′
− 1− ∂W A

A

)
+ ∂W B. (9)

One natural question arising from considering this special class of con-
servative systems is which systems in the plane can be written in form (8).
Straightforward linear algebra and adaptation of (9) give that any planar
system (1) can be written in form (8), being (C, E) any pair of one variable
functions satisfying the hypotheses after formula (6).

In this notation, ν is given by formula (9) with
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A(x, y) =
P (x, y) E(y)/E′(y)−Q(x, y)C(x)/C ′(x)

C(x) + E(y)
,

B(x, y) =
P (x, y) C ′(x) + Q(x, y)E′(y)

C(x) + E(y)
.

(10)

Unfortunately, this expression of ν gives little information for general P
and Q. It is only when we restrict ourselves to special families of systems
when we can obtain operators ν easier to handle, as the next examples show.

Example 1. If we choose E(y) = y2/2 and take A and B depending only
on x, then we are restricting to a class of systems equivalent to second order
differential equations. For the corresponding system,

x′ = yA(x) + B(x)
C(x)
C ′(x)

, y′ = −A(x)C ′(x) + B(x)
y

2
, (11)

one obtains that the function ν is independent of y,

ν = B

((
C

C ′

)′
− 1

2
− A′C

AC ′

)
+ B′ C

C ′
=

(
BC

C ′

)′
− A′

A

BC

C ′
− B

2
.

In this case using ν may be more convenient than using the divergence of
(11), which depends on both variables,

div V (x, y) = yA′(x) +
(

B(x)
C(x)
C ′(x)

)′
+

B(x)
2

.

Taking A ≡ 1 and computing ν gives

ν = B

((
C

C ′

)′
− 1

2

)
+ B

′ C
C ′

=
(

B C

C ′

)′
− B

2
.

In this case also the divergence is independent of y, and is related to ν by a
simple relationship,

div V =
(

BC

C ′

)′
+

B

2
= ν + B.

Example 2. In general, the system (11) is equivalent to a second order
differential equation of the type

x′′ + f(x)x′ + h(x)x′2 + g(x) = 0, (12)
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where 



f = −B

2
+

A′BC

AC ′
−

(
BC

C ′

)′

g = C ′A2 +
B2C

2C ′

h = −A′

A
,

(13)

It would be useful to compute A,B, C starting from f, g, h, in order to study
the equation (12) by means of the system (11), but we were not able to do
that. On the other hand, the above equalities can be used to reduce the system
to a class of equations whose qualitative properties have been widely studied.
This is the case for boundedness properties, that can be used together with
some repelling property of a critical point in order to prove the existence of
limit cycles. Comparing the above expression of f with that one obtained
for ν, we see that

ν = −f −B.

Example 3. When A ≡ 1, that is when h ≡ 0, equation (12) becomes of
Liénard type: consider the system

x′ = y +
C(x)B(x)

C ′(x)
, y′ = −C ′(x) +

yB(x)
2

, (14)

where B(x), C(x) are functions of class C1 on a suitable interval. In order
to have monodromy of the solutions close to the origin, we assume that
xC ′(x) > 0 for x 6= 0 in a neighbourhood of x = 0. As a consequence,
we have C(x) > 0 for x 6= 0, in a neighbourhood of x = 0. The equation
equivalent to (14) is then

x′′ +

[
−B

2
−

(
BC

C ′

)′]
x′ + C ′ +

B2C

2C ′
= 0.

Here again we were not able to express f and g as functions of B and C.

Choosing W =
(

C(x)
C ′(x)

,
y

2

)
, one has

ν =
(−2BCC ′′ + BC ′2 + 2B′CC ′)y2 − 4C2C ′′B + 4B′C2C ′ + 2BCC ′2

4C ′2(y2

2 + C)
.

Transversality holds for C ′2(y2

2 + C) > 0. The function ν is positive for

(−2BCC ′′ + BC ′2 + 2B′CC ′)(−4C2C ′′B + 4B′C2C ′ + 2BCC ′2) > 0.
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Example 4. As an example, taking A(x) = 1, B(x) = 2(1−x2), C(x) = x2

2 ,
we obtain the system

x′ = y + x(1− x2), y′ = −x + y(1− x2), (15)

equivalent to the Liénard equation

x′′ + (4x2 − 2)x′ + x(x4 − 2x2 + 2) = 0.

Its divergence, 2− 4x2, is independent of y but does not have constant sign.
A limit cycle of (15) has to encircle the unique critical point (0, 0), and
cannot be contained in the region of positive divergence. On the other hand,
one has ν = −2x2 ≤ 0, so that every limit cycle is attracting and hyperbolic.
This also gives the uniqueness of the limit cycle, that will be considered in
greater detail in Section 3.

In Section 2.2, we explore other possibilities for the Liénard equation.

2.2. Liénard equation. As it is well-known, the Liénard equation x′′ +
f(x) x′ + g(x) = 0 is usually transformed into the two following forms:

• Phase plane form:{
x′ = y,
y′ = −g(x)− y f(x). (16)

• Liénard plane form:{
x′ = y − F (x),
y′ = −g(x), (17)

where F ′(x) = f(x). For special purposes, it has also been considered
(see [10]) the form: {

x′ = y − x S(x),
y′ = −R(x)− y S(x), (18)

R(x) and S(x) are continuous functions such that, setting I(x) =
∫ x

0
sf(s)ds,

for x 6= 0 one has

S(x) =
I(x)
x2

, R(x) = g(x)− xS(x)2.

In this section we just give different options for ν corresponding to different
“natural” transversal vector fields: the trivial radial vector field, the or-
thogonal one, the orthogonal to the conservative part and others obtained
from different choices of the “conservative + dissipative” structure explored
above. We summarize them in Table 1.
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V (x, y) W (x, y) ν(x, y)

(17) (x, y)
(g − xg′)y − xfg + xg′F

y2 − yF + xg

(17) (g(x), y)
(−2g′g+2g)y−gF +2gg′F−fg2

y2−yF +g2

(17) (g(x), y − F (x))
α2(x) y2 + α1(x) y + α0(x)

(y − F )2 + g2

α2 = f, α1 = −2g′g − 2fF + 2g,
α0 = −2gF + 2gg′F − fg2 + fF 2.

(17)
(

G(x)
g(x)

,
y

2

)
g(x) F (x)− 2 f(x)G(x)

y2 − yF (x) + 2 G(x)
, G(x) =

∫ x

0
g(s) ds

(18) (x, y)
α0(x) + α1(x) y + α2(x) y2

y2 + xR(x)

α0(x) = x3 S(x)2
(

R(x)
xS(x)

)′
,

α1(x) = −x2
(

R(x)
x

)′
,

α2(x) = −xS′(x).

Table 1. Choice of transversal vector fields for two of the
three forms of the Liénard equation: (17) and (18). For
the sake of conciseness we do not consider equation (16) in
this table. The function ν (third column) is obtained from
the vector fields V (first column) and W (second column)
through ν = [V,W ]∧V

V ∧W . Observe that the transversality con-
ditions are the denominators of ν(x, y) being different from
zero.
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For all the cases, the transversality conditions are the denominators of
ν(x, y) being different from zero. In all the above cases, taking g(x) = κx,
κ 6= 0, simplifies the expressions, since all the terms g − xg′, −2g′g + 2g
vanish.

The choice of W being the orthogonal vector field (the sixth row in Table
1), for instance, turns out to be disappointing. Although it gives transversal-
ity for free, the numerator of ν(x, y) is an indefinite form. In fact, computing
the discriminant ∆ of the numerator, thought as a quadratic polynomial in
y, one has

∆=(−2g′g−2fF +2g)2−4f(−2gF+2gg′F−fg2+fF 2)=4g2((g′−1)2 +f2).

On the other hand, the last but one option of the list has shown to be
the most appropriate to ensure transversality and non-vanishing of ν simul-
taneously. This fact will be exploited in Section 3 to provide hypotheses for
proving the uniqueness of limit cycles.

We would like to emphasize that each of the options for W considered in
Table 1 gives a different Dulac function in the regions where the numerator
does not vanish.

3. Applications to uniqueness of limit cycles

As observed in the previous section, if ν has constant sign, then every
limit cycle is hyperbolic, with the same stability character. In this section
we apply such a principle in order to give some applications of the results
proved in Section 2 to limit cycles’ uniqueness. First, we take advantage of
the decompositions and operators obtained in Section 2.1. Second, we use
suitable transversal vector fields to obtain results for the Liénard equations.

A key issue when applying Theorem 1 is the control of the vanishing set
of the denominator of ν, that is, the set Γ := {(x, y) : (V ∧W )(x, y) = 0}.
It is obvious that ν is not defined on Γ and that Γ is the locus of the plane
where V and W are not transversal. In next theorem we show that, actually,
such curves are not an obstacle for giving results on limit cycles. We denote
by Γc the complement of Γ, Γc := {(x, y) : (V ∧W )(x, y) 6= 0}.
Theorem 2. Consider a couple of C1 vector fields, V and W , defined in
R2. Suppose that the set Γ0 = Γ\{(x, y) : V (x, y) = 0} is a union of Jordan
curves.
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(1) Then,
∂V (V ∧W )|Γ = − [V,W ] ∧ V |Γ .

(2) If [V,W ]∧ V does not vanish at non-critical points, then every limit
cycle is contained in a connected component of Γc.

(3) If [V,W ] ∧ V does not vanish at non-critical points, and a simply
connected component of Γc

0 contains no more than one critical point,
then it contains at most one limit cycle.

(4) If [V,W ]∧ V does not vanish at non-critical points, and an annular
region of Γc

0 does not contain any critical point, then it contains at
most one limit cycle.

Proof of Theorem 2.

(1) One has that

∂V (V ∧W ) = (∂V V ) ∧W + V ∧ (∂V W )

= (∂V V ) ∧W + V ∧ ([V, W ] + ∂W V )

= V ∧ [V,W ] + (∂V V ) ∧W + V ∧ (∂W V )

= −[V, W ] ∧ V + div V (V ∧W ).

The result follows immediately.
(2) Assume, by absurd, that an orbit γ of system (1) intersects two

different adjacent connected components Ω1 and Ω2 of the comple-
ment, Γc, of Γ. Call p one of the corresponding intersection points
on Γ. Since ∂V (V ∧W ) = −[V, W ]∧ V 6= 0 on Γ, the vector field V
is transversal to Γ. Without loss of generality we may suppose that
V points onto Ω1 and so, that γ enters into Ω1 through p.

However, since the component of Γ containing p is a Jordan curve
and the orbit γ is closed, there must exist another point q ∈ Γ ⊂ γ,
with q 6= p, through which the cycle leaves from Ω1 to Ω2. This is a
contradiction with the fact that ∂V (V ∧W ) does not change sign.

(3) Assume, by absurd, that Ω1, a simply connected component of Γc
0,

contains two distinct limit cycles γ1, γ2. Since there is only one
critical point p in Ω1, γ1 and γ2 are concentric. They have the
same stability character, because ν does not change sign, hence in
the annular region bounded by γ1 and γ2 there should exist either
another limit cycle, with opposite stability character, or a critical
point. This contradicts the fact that ν does not change sign.

(4) The same argument as in point 3 works in this case.
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♣

When the system has a unique critical point O, the above theorem gives
also some information about the limit cycle location. It is contained in the
connected component of Γc containing O. This kind of information cannot
be obtained via a Dulac function.

We consider now some applications to the systems of Table 1. We start
with the last but one normalizer.

Corollary 2. Consider the vector field (17), where F and g are C1 func-

tions, with x g(x)>0 everywhere but at zero. Suppose that
(
F (x)/

√
G(x)

)′
>

0 (< 0) for all x ∈ R \ {0}. Then, the system (17) has at most one limit
cycle, which is hyperbolic and stable (unstable). If it exists, such a cycle is
contained in the connected component of

{
(x, y) : y2 − yF (x) + 2G(x) > 0

}
whose closure contains the origin.

Proof. Let us observe that ν’s numerator N = [V, W ] ∧ V satisfies

N (x) =
1
2
g(x)F (x)− f(x)G(x) = −G(x)3/2 d

dx

(
F (x)√
G(x)

)
> 0

for x 6= 0. Moreover, the components of the curve V ∧ W = 0, that is{
(x, y) : y2 − yF (x) + 2G(x) = 0

}
, are Jordan curves because every line x =

const meets such a curve at 0, 1 or 2 points according to the sign of F (x)2−
8 G(x). Then, applying point 3 of Theorem 2 we get the thesis. ♣

As for the uniqueness, such a result has been already proved in [2, Th.
C]. On the other hand, in such a paper no information about the limit cycle
location was given.

Corollary 3. Consider the vector field (17), where F and g are C1 func-
tions, with x g(x) > 0 for |x| > k, k ∈ R, and G(x) > 0 for every x 6= 0.

Suppose that
(
F (x)/

√
G(x)

)′
> 0 (< 0) for all x ∈ R \ {0}. Then, every

annular region free of critical points contains at most one limit cycle of sys-
tem (17), which is hyperbolic. If it exists, such a cycle does not intersect
the curve

{
(x, y) : y2 − yF (x) + 2G(x) = 0

}
and it is stable (unstable) if

(
F (x)/

√
G(x)

)′
(V ∧W ) > 0 (< 0).

Proof. All the critical points lie on y = 0. Moreover, V ∧W = 0 intersects
the line y = 0 only when G(x) = 0; that is, only at (0, 0), which is an
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isolated point of V ∧ W = 0. The proof, then, follows as in the previous
corollary, now applying point 4 of Theorem 2 to get the thesis. ♣

This result could be used in order to give other estimates of the number
of limit cycles in the line of the paper by Gasull and Giacomini (see [6]).

Adding to the theorem a set of hypotheses that ensure boundedness of
solutions (see Graef, [7]), we can get also a theorem that guarantees the
existence of limit cycles. It is necessary to introduce first the notion of
uniformly ultimately bounded system:

Definition 1. The solutions of a system are said to be uniformly ultimately
bounded if there exists a constant K > 0 such that for any solution, there
is a time T such that for all t > T we have ||(x(t), y(t))|| < K.

Corollary 4. If the hypothesis of corollary 2 are satisfied and, additionally,
F ′(0) < 0 and the following hold:

There exist positive constants k and c such that:
(a) xF (x) > 0 if |x| ≥ k;
(b) F (x) ≥ c > 0 if x ≥ k or F (x) ≤ c < 0 if x ≤ −k;

(c)
∫ ∞

0

(f(x) + |g(x)|) dx = ±∞;

then, there exists a unique limit cycle for system (17).

Proof. We only have to apply Theorem 3.1. given in [7]. In such a way, we
know that a sufficiently big neighbourhood of the origin will be positively
invariant. This fact, together with the repulsive character of the origin due
to F ′(0) < 0, allows to apply Poincaré-Bendixson theorem and ensure the
existence of the limit cycle. ♣

We consider now the last example of Table 1.

Corollary 5. Consider the vector field (18) where R and S are C1 functions,
with xR(x) > 0 everywhere but at zero. Suppose that

ψ(x) :=

((
R(x)

x

)′)2

+
4
3

(
S(x)3

)′( R(x)
xS(x)

)′
< 0

for all x ∈ R\{0}. Then, the system (18) has at most one limit cycle, which
is hyperbolic and stable (unstable) if x S′(x) > 0 (< 0) for all x 6= 0.
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Proof. It is sufficient to observe that ψ is the discriminant of the numerator
of ν (see Table 1). Since ν < 0 and its denominator y2 + x R(x) does
not vanish except at the origin, one can apply Theorem 2 (in this case,
Γ = {(0, 0)}) to get the thesis. To determine the stability character it
suffices to see that the leading term of the numerator of ν is (−xS′(x)). ♣

Next example is an application of Corollary 5.

Example 5. Consider system (18) with R(x) = x exp(−x2) and S(x) =
1−x2. It is equivalent to a Liénard equation, according to the formulas given
after systems (18). Graef’ hypotheses for boundedness in negative time are
satisfied, and the origin is a stable critical point, since f(0) = 2 > 0. Hence
a limit cycle exists.

The function ψ(x) in the statement of Corollary 5 is

ψ(x) = −4 x2
(
4 + 4 x2 exp(−x2)− exp(−2 x2)

)
,

which is negative for all x ∈ R2. So, there is at most one limit cycle in R2;
if it exists, is unstable because x S′(x) = −2 x2 < 0.

We now consider some vector fields in the form given in Corollary 1,
taking U = (y,−x), W = 1

2 (x, y). As seen in Section 2, every differential
system in the plane can be written as

x′=P (x, y)=yA(x, y)+xB(x, y), y′=Q(x, y)=−xA(x, y)+yB(x, y), (19)

where

A(x, y) =
yP (x, y)− xQ(x, y)

x2 + y2
, B(x, y) =

xP (x, y) + yQ(x, y)
x2 + y2

. (20)

.

If A(x, y) does not vanish on its domain, one can divide the vector field
by A(x, y), obtaining a new system,

x′ = P (x, y) = y + x
A(x, y)
B(x, y)

, y′ = Q(x, y) = −x + y
A(x, y)
B(x, y)

,

with constant angular speed. Such a system normalizes the vector field
(x, y), so that it can be treated as in [4]. On the other hand, if A(x, y)
vanishes somewhere, a different approach is required.

Corollary 6. Consider the vector field (19), with A, B ∈ C1(R2,R). As-
sume every connected component of the set ΓA := {(x, y) : A(x, y) = 0}
to be a Jordan curve. Suppose (P (xQx + yQy)−Q(xPx + yPy)) < 0(> 0)
for all (x, y) ∈ R2. Then, every connected component of Γc

A :=



GEOMETRIC TOOLS TO DET. THE HYPERBOLICITY OF LIMIT CYCLES 17

{(x, y) : A(x, y) 6= 0} contains at most one limit cycle of the system (19),
which is hyperbolic and stable (unstable).

Proof. Computing ν gives

ν =
P (xQx + yQy)−Q(xPx + yPy)

yP − xQ
. (21)

Under the hypothesis’ assumption, ν’s numerator is negative. Then the
thesis comes from Theorem 2. ♣

Systems with A(x, y) 6= 0 appeared several times in the literature. In
this case one can write

ν = xBx + yBy −B [x(lnA)x + y(ln A)y] .

Such an expression might appear more complicated than the divergence of
(P, Q).

Px + Qy = yAx − xAy + xBx + yBy + 2B,

but it may have constant sign in some cases in which the divergence changes
sign (see Example 6 below). Also, it admits a nice geometric interpretation.
The numerator of the fraction in (21) has the same sign as

x

(
Q(x, y)
P (x, y)

)

x

+ y

(
Q(x, y)
P (x, y)

)

y

= r

(
Q(r cos θ, r sin θ)
P (r cos θ, r sin θ)

)

r

.

The ratio
Q

P
is the trigonometric tangent of the angle between the vector

V and the direction of the semi-axis x > 0. A sign condition on the radial

derivative of
Q

P
is equivalent to a condition on the rotation of V along rays.

Such a hypothesis was considered by Sansone ([12]) and Massera ([9]) in a
uniqueness theorem for limit cycles of Liénard equation. Their result, based
on a geometric argument, required g to be linear and f to be increasing on
(0,+∞), decreasing on (−∞, 0). The Corollary 6 is an extension of their
result.

Another special case arises when A and B depend only on x. Then (19)
is equivalent to the second order equation of type (12) with C(x) = x2/2.
From Example 2, we know that





f = −2B + xA′B
A − xB′,

g = x(A2 + B2),
h = −A′

A .

(22)
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In this special case it is possible to compute A and B starting from f, g, h,
but this can be done only if f, g, h satisfy a particular relationship. Setting
H(x) =

∫ x

0
h(s) ds, K(s) =

∫ x

0
sf(s) exp(H(s)) ds, the above equations lead

to
A(x) = H0 exp (−H(x)) , H0 ∈ IR,
B(x) = −K(x) exp(−H(x))/x2.

The functions H and K allow to express the relationship necessary for (2)
to be represented by a system of the form (19), that is

g(x) = x exp(−2H(x))
[
1 +

K(x)2

x4

]
.

In other words, every second-order differential equation of type (2) can
be written in the form (19) if and only if g(x) satisfies the above equality.

Example 6. As a particular example, taking A(x) = x2 +1, B(x) = 1−x4,
one has the system

{
x′ = y(x2 + 1) + x(1− x4) = x + y + x2y − x5,
y′ = −x(x2 + 1) + y(1− x4) = −x + y − x3 − x4y,

(23)

for which
ν = −2x4 − 2x2,

while the system’s divergence is 2 + 2xy − 6x4.
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[9] J. L. Massera, Sur un théorème de G. Sansone sur l’équation di Liénard, Boll. Un.
Mat. Ital. (3) 9 (1954), 367–369.

[10] M. Sabatini, On the period function of Liénard systems, J. Differential Equations
152 (1999), 467–487.

[11] M. Sabatini, On the period function of planar systems with unknown normalizers,
Proc. of the American Mathematical Society 134 (2006), 531 - 539.

[12] G. Sansone, Soluzioni periodiche dell’equazione di Liénard. Calcolo del periodo,
Rend. Sem. Mat. Univ. e Politecnico Torino 10 (1951), 155–171.

[13] S. Walcher, Plane polynomial vector fields with prescribed invariant curves, Proc.
Royal Soc. Edinburgh , 103A (2000), 633–649.

[14] Ye Yan-qian et al., Theory of limit cycles, Transl. of Math. Monographs 66, Amer.
Math. Soc., (1986).

Antoni Guillamon
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