LARGE DEVIATION FOR BSDE WITH
SUBDIFFERENTIAL OPERATOR

E. H. ESSAKY !

ABSTRACT. In this paper we prove that the solution of a backward
stochastic differential equation, which involves a subdifferential op-
erator and associated to a family of reflecting diffusion processes,
converges to the solution of a deterministic backward equation and
satisfies a large deviation principle.

1. INTRODUCTION

Let X*®%¢ be the diffusion process that is the unique solution of the
stochastic differential equation

t t
(1) X7 = [ b0 r Ve o s, 0<s<ts<T,

where b : R — IR? is a uniformly Lipschitz continuous function, all
the elements of the diffusion matrix ¢ are bounded, uniformly lipschitz
continuous functions, and B is a standard Brownian motion in IR?. The
existence and uniqueness of the strong solution X*%¢ of (1) is standard
(see, for example, see Dembo and Zeitouni [4]). It is known, thanks to the
works of Freidlin and Wentzell [7], that X ®** converges in probability, as
€ goes to 0, to the solution x** of the following deterministic equation

t
(2) X =+ / bOG")dr, 0<s<t<T,

and satisfies a large deviation principle. This result has been generalized
recently by Rainero [15] to the case of backward stochastic differential equa-
tion (BSDE for short), related to the family of diffusion processes {X %€},
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of the form
T T
(3) Yrts,:v,e _ h(X;,w,E) +/ f(,,,’ Xﬁ,z,a7yrs,w,87zf,x,8)dr _/ Zﬁ,w,Ech
t t

0<s<t<T,
where h and f are a given functions and satisfy some appropriate assump-
tions. The author has proved that the solution (Y*¢, Z*¢) of equation (3)
converges, as £ goes to 0, to (Y*%,0) solution of the following backward
deterministic equation

T
Y = h(xg") + / P, Y2, 0)dr, 0<s<t<T,
t

and satisfies a large deviation principle.

Backward stochastic differential equations of type (3) have been first in-
troduced by Pardoux and Peng [12]. A solution for such equation is a couple
of adapted processes (Y, Z) with values in IR* x IRF*? which mainly satis-
fies equation (3). The aim of Pardoux and Peng was to give a probabilistic
interpretation of a solution of second order quasi-linear partial differential
equation. Since then, those equations have been intensively investigated
due to their connections with financial mathematics, optimal control and
stochastic game, non-linear PDEs and homogenization (see, for example,
[5, 6, 8,9, 14, 12, 2, 3, 10, 1] and the references therein).

In this paper, we are interested to the system of forward-backward sto-
chastic differential equations
(4)

Xt8,175 —

t t
=z + ﬁ)(Xfa$7E)dr+ﬁ/U(X:,%E)dBT_’_p?,I,E_pgyx,a’ OSSS 1 STa
5t s t
pf;wﬂf — /Vw(X;s,x,s>d|ps,x,a|r’ |ps,x,s|t _ /1{Xﬁ’1’5689}d|psw7a|r7
0 0

ths,x,e _
T T T

= h(X5%)+ /f(r, XSTE Y08 7508 ) dr — /Z;f’z’sdBr— /U;”“dr
t t t

T
(U €M and B [TV < o,
0

where 9 is C2(IR?) function and p is a bounded variation process such that
po = 0, II is a proper lower semicontinuous convex function and OII is
a subdifferntial operator. Equations of type (5) have been introduced by
Pardoux and Rascanu [13]. A solution of such equations is a triple of process
(Y, Z,U) with values in IR* x IRF*? x IR* and satisfies equation (5). Our aim
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is to prove that the solution (X®®¢ p%%e Y$%e 7858 [J5%€) of gystem
(4)-(5) converges, as € goes to 0, to the solution (x*7%, p**, Y Z%* [%T)
of the following system of forward-backward deterministic equation

t
X0t =wt / b ")dr + pi* — p*
S
t

) t 9
p% = [ETpE )l [, = / 1 e cooydlps
0

T T
Yem=h0G)+ [ gty e - [ uzar
t t

T
(Y,2*,U7") € 911, and E/ I(Y,>")dr < 400,
0

and that Y %% satisfies a large deviation principle. OQur paper is, in fact, a
generalization of the two works cited before.

2. ASSUMPTIONS AND PROBLEM FORMULATION

Let (2, F, (Fi)i<1)) be a stochastic basis such that F; contains all P-null

sets of F, Fry = ﬂ Fire = Fi, YVt < 1, and suppose that the filtration is

e>0
generated by a d-dimensional Brownian motion (By)<i.

On the other hand, let

e O be an open connected bounded subset of IR?, which is such that for a
function ¢ € C2(IRY), © = {¢p > 0}, 90 = {¢ = 0}, and | V¢(z) |= 1,
x € 90. Note that at any boundary point € 90, Vi(x) is a unit normal
vector to the boundary, pointing towards the interior of ©. The above
assumptions imply that there exists a constant § > 0 such that for all
r€00, ' cO

(6) 2(z’ — 2, V() + 6|z — 2'|> > 0.

eb:0 — R 0:0 — R be functions such that :
(A1) There exists a constant C' > 0 such that

|b(z)| + |o(z)] < C,Vx € ©

lb(x) — b(z)| + |o(z) — o(z))| < Clo — 2|, Vz,2" € ©.
(A2) The matrix a = oo* is uniformly elliptic, that is, there exists a con-
stant v > 0 such that
a(z) > v|z|?, Vz € ©.
e h € C(6;IRF), f €C([0,1] x © x IRF x IR¥*?; IR*) be functions satisfying
the following assumptions :
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(A3) There exist constants a € IR, K >0, ¢> 0, u > 0 such that

(i) Vt, Y, Yy, V(z, 2'),

| f(t,m,y,2) = f(t, 2,9, 2") [Su(lz =2 |+ ]z —2" )
(1) Vt, YV, V2, ¥ (y, '),

<y_y/, f(t,x,y,z) —f(t,x,y’,z)) S « | y_y, |2
(i31) Vo, Vo', |h(z) — h(z")| < clx — 2],
(Vi) Vt,Va,Vy,Vz, | f(t,2,y,2) [S KA+ |y |+ ] 2])
(v)Vz, |h(z)] < K(1+ |z).

o I : IR¥ —] — 00, +00|, be a proper lower semicontinuous convex function
such that
(A4) There exists a constant C' > 0 such that

(h(z)) < C(1+ |z]), Vze®,

M(y) > T(0) = 0, Vy € R*.

We need also the following notations :

e C[0,T] denotes the space of continuous functions @ : [0,T] — IR such
that f(0) € ©.

e C[0,T] denotes the space of continuous functions ¥ : [0,7] — ©.

e V[0,T] denotes the space of functions p : [0,7] — IR? with bounded
variation and p(0) = 0.

For p € V[0, T], |p|: denotes the total variation of p in the interval [0, ¢].
Consider the system of forward-backward stochastic differential equations
(7)

th,x,s _

¢ ¢
= x—|—/b(Xf.’x’€)dT+ﬁ/a(Xf.’m’E)dB,«—i—pf"r’s—pj*’”’e, 0<s<t<T,

S

t
t
pfﬂﬂﬁ — fO V¢(Xf’m’€)d|ps’x’€|r, ‘ps,z,s‘t — / 1{Xﬁ‘m’568®}d|p87m’€|r
0

'S?I!E p—
Yt =

T T T
— h(X3™%)+ /f(r, X Y 0E, 750 dr — / Z3"<dB, — / U™ dr
t t t

T
(V74 075) € Ol and I [ 1Y) < 4o,
0

where

Oll(u) = {u* € R* : (u*,v —u) +II(u) < II(v),Vv € R*}
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Note that the subdifferential operator 91T : R¥ — 2B is a maximal
monotone operator, that is

(W —v'u—v)y>0. Y(u,u'),(v,v") € Ol

The existence and uniqueness of the strong solution X% under assump-
tion (A1), for equation (7) is standard (see, for example, Lions and Sznit-
man [11] or Saisho [16]). It follows also from the result of Pardoux and
Rascanu [13] that, under assumptions (A3) and (A4), there exists a unique
triple (V%€ Z%% [U%%<) for equation (8).

The objective of this work is to prove that the solution of forward-backward
stochastic differential equation (7)-(8) converges and satisfies a large devia-
tion principle.

For the sake of simplicity, we put, in general, s = 0. Of course, the
results hold true for all s € [0,7]. We denote then by X®¢ := X0:%:¢
Y(],z,a = YI’E,...

3. LARGE DEVIATION PRINCIPLE AND CONVERGENCE OF THE SOLUTION
OF THE FORWARD EQUATION

Before giving a large deviation principle for the reflecting diffusion process
X#%e we recall the following

Definition 3.1. The family of processes (X;,0 < ¢t < T) which depends
on a parameter € is said to satisfy a large deviation principle with a rate
function S(U) if the following condition hold for every Borel set A C C[0,T]

1. limsupeln(P(X® € A)) < inf S(¥)

e—0 WEA
2. liminfeln(P(X® € A)) > — inf S(¥),
&0 TeA

where A is the closure of A and A the interior of A.

Let ® € C[0,T], ¥ € C[0,T], p € V[0, T] such that
WD) = B(t) + plt), t

©) = 3 TO ol 1ol = [ Lgaiorcondil,

For ® and U defined as above, let ¥ = F(®). It is known from Lions and
Sznitman [11] or Saisho [16] that F is continuous. We have the following
theorem
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Theorem 3.1. The process X™¢ given by equation (7) satisfies a large
deviation principle with rate function S(V) defined by

Sqf—l inf T<iu b(U *a (T P b(U(s)))d
()75 in (‘1’)/0 (@(s) —b(¥(s)))"a™ " (V(s))(P(s) — b(¥(s)))ds,

PeF—1

with the fact that S(V) = oo if F~Y(1)) =0 or ® is not absolutely continu-
ous.

Proof. The result follows by using the contraction principle (see Dembo
and Zeitouni [4]) and a large deviation principle for diffusion processes (see
Stroock [18] or [4], see also Sheu [17] for other assumptions on ©).
Remark 3.1. The function S(U) has the following properties

1. S(W) is lower semi-continuous in V.
2. If S(¥) < oo, then there exists ® € C[0,T] such that F(®) =¥ and

S() = 5/0 (@(s) = b(V(s)))*a™ (T(s))(D(s) — b(¥(s)))ds.

Let (x*%*, p**) be the solution of the following deterministic equation

t
X0t =a+ / b ")dr + pp* — p3*
S

t
t
pi" = fo VOO )d|p** |, 1057 =/ Lixereoord p™ -
0

We get the following

Lemma 3.1. For all € €]0,1], there exists a constant C > 0, independent
of x and e, such that

(10) E sup |X7°— i < Ce=.
0<t<T

Proof. Applying It6’s formula to

676<w<Xf*5>+w<xf))|th,e P
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where 4 is given by the inequality (6), we get a.s for all ¢ € [0,T]
(11)
SO PO X2 — P
-9 eI (X ) +2 (X)) [<X7ﬂf,€ — X%, VEr (XP9)dB, )+
0
D~ BOXE) — D]
42 [T OO (X2 — 2, (XNl
0
— (X0 =X Vi (xi))dlp®|,]
+E/ DTV | (X7 2
0
t
b [[ ORI e (VX)) VRSN
0
5t (DX oo™ (XP9) 4 (VH(XEE),H(XE))+
t
HVHOE) G Jdr 8 [ oo ot e
0
P (IVHCeE |, + Ve P, )
t
o [T IO X o (X)) VX Pl
0
t
—9¢6 6*5(w(Xf's)+¢(Xf))<Xf’5 —Xr o (X2 (o (X5 V(X2 )dr.
0
Since |V¢| =1 for all € 90, by inequality (6) we have

t
2 [ eSO (2 V(X
a2l
5 [ eI e V() Pl <

0

and

t
—2/ e MWETIHVOGD (X0 — V(X))o
(13) t ,
_5/ e ST HVOD) | X8 12| Ty(XT) 2d]p%), < 0.
0

The result is then a consequence of the boundeness of b, o, v, Vi, D%,
inequalities (12)—(13) and Burkholder-Davis-Gundy inequality.

Remark 3.2. As a consequence of Lemma 3.1, the solution of the reflecting
diffusion process X™¢ converges to the deterministic path x* in L.
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4. CONVERGENCE AND LARGE DEVIATION PRINCIPLE FOR THE SOLUTION
OF THE BACKWARD EQUATION

Let (x(®%), p**, V(%) 0, U%)) be the solution of the following deter-
ministic equations
t
Xy =+ / b(x; " )dr + pi" = p3®

’ t
- t
it = Jo VoOG)dlp™ |, |7l = /0 Lixieeooydlp™”|r

T T
Yer =G+ [ foar v o - [ Uz
t t

(14) T
(Y%, US%) € O11, and IE / TH(Y**)dr < +o0.
0

We have the following theorem

Theorem 4.1. Ve €]0,1], there exists a constant C' > 0, independent of s,
x and €, such that

T
E[ iltlET |Y;S’w’5 _ Y;s,w|2 +/ |Z$,o;,e
(15) sStS -
< CUBEOG™ — Xy ) + B [ (X = e ar).

2dr]

Proof. Applying Itd’s formula to |V, — Y,>%|?, we get
T
By P |2
< BCXG) - MG
+2E /<YTS7J;,E - Y’I”S7J;7 f(/r'7 X’f"’l:’E’ K’S7I787 Z::’J;’E) - f(’r'7 X’f’,‘/L‘7 YTS’J;7 0)>dr'

T
dr+2IE / (Y0 e =Y 2" U™ —U" )dr

But (V,>*¢ =Y, >* U —U>") >0, dP x dr a.e and f satisfies conditions
A3(i) — (i), then

T
]En/ts,a:,s - }/ts,a:‘z + ]E/|Zﬁ’m’5|2d7"
s T
< B(hOG™) ~ hOG7) + 208 [[¥ = veear

T T
I [V X s 2 [ [V | 2
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Henceforth
T
e R R

T
< CUBOG™ — )+ B [ X3 e ar),

where C' is a positive constant. The result then follows from Burkholder-
Davis-Gundy inequality.

Remark 4.1. As a consequence of Theorem 4.1 and Lemma 3.1, we get

T
(16) Bl sup Y77 - v2o Py [z < ce

s<t<T

where C' is a positive constant and then the solution of the BSDE (8) con-
verges to the deterministic solution of the equation (14).

We now consider the BSDE in the case £k = 1. We want to prove that
the process Y ®%° satisfies a large deviation principle. For that reason, we
recall the link between Variational Inequality (VI, for short) and BSDE. For
all € > 0, we consider the following VI

O (t) + Lo (L2) +

+f (t,x,u"E (t, ), ((Vus)* ﬁa) (t,x)) € Il (u® (t,x)),
(17) te)o,T[,zc0

ain(t,x) € Il (u® (t,x)), x € 0O

u® (T,x) = h(x), = €06,

where L£%¢ is the second order partial differential operator

- d 82 d 8

ij=1
and at point x € 00
d
0 oY 0
on ; Bxl( oz;’
then we have, for each (t,2) € [0,T] x ©,
(18) uf(t,x) = Y08,

t,x,e

both in the sense that any classical solution of the VI (17) is equal to Y, ",
and Ytt’l"e is, in the case where all coefficients are continuous, a viscosity
solution of the VI (17) (see Pardoux and Rascanu [13]). Moreover, we have
also that

}/tS,I,E — uE(t’ X,;S,ZE,E).
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Let s € [0,T] and € > 0, we define the following applications :
FE(U) := [t — u®(t, )], t € [s,T], ¥ € C[s, T) satisfying equation (9).

Hence Y;>™ = F¢(X5%¢)(t), for all t € [0,T], and Y5%° = F&(X5%F).
For e =0, v and F stand for u° and F°. We have the following theorem

Theorem 4.2. Y*¢ satisfies a large deviation principle with a rate function
S (V') = inf{S(V)|V; = F(V)(t) = u(t, V), Vt € [0,T]}.

Proof. In order to apply the contraction principle, we need to prove that
F¢, ¢ > 0 are continuous and {F*°} converges uniformly to F' on every com-
pact of C[0,T)]. Since u¢ is continuous, it is not hard to prove that F€ is also
continuous. The uniform convergence of {F*¢} is a consequence of Remark
4.1.

Acknowledgments. The author would like to thank the ”Centre de Re-
cerca Matematica” for their extraordinary hospitality and facilities for doing
this work. The author would like also to thank Prof. Youssef Ouknine for
various discussions on BSDEs.

REFERENCES

[1] K. Bahlali, E.H. Essaky, M. Hassani, E. Pardoux, LP-solutions to BSDEs with super-

linear growth coefficient. Application to degenerate semilinear PDEs, CRM Preprint

number 682, (2006).

R. Buckdahn, Y. Hu, Probabilistic approach to homogenizations of systems of quasi-

linear parabolic PDEs with periodic structures, Nonlinear Anal., 32, no. 5, pp.

609-619, (1998).

R. Buckdahn, Y. Hu, S. Peng, Probabilistic approach to homogenization of viscosity

solutions of parabolic PDEs, Nonlinear Differential Equations Appl., 6, no. 4, pp.

395411, (1999).

[4] A. Dembo, O. Zeitouni: Large Deviations Techniques And Applications, Springer
Verlag, New York, second edition, (1998).

[5] N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations
in finance, Mathematical Finance, 7, pp. 1-71, (1997).

[6] N.El-Karoui, C. Kapoudjian, E. Pardoux, S. Peng, M.C. Quenez, Reflected solutions
of backward SDE’s and related obstacle problems for PDE’s, Annals of Probability,
25, 2, pp. 702-737, (1997).

[7] M.I Freidlin, A.D. Wentzell, Random Perturbations of dynamical systems, Springer
Verlag, (1984).

[8] S, Hamadéne, Reflectd BSDE’s with discountinous barrier and application, Stochas-
tics and Stochastics reports, T4, 3-4, pp. 571-596, (2002).

[9] S, Hamadéne, J.P, Lepeltier, Zero-sum stochastic differential games and BSDEs,
Systems and control letteres, 24, 259-263, (1995).

[10] S. Hamadéne, Y. Ouknine, Reflected backward stochastic differential equation with
jumps and random obstacle, EJP, 8 pp. 1-20, (2003).

N

=



LARGE DEVIATION FOR BSDE WITH SUBDIFFERENTIAL OPERATOR 11

[11] P.L. Lions, A.S. Sznitman, Stochastic differential equations with reflecting boundary
conditions, Comm. Pure Appl. Math., 37, pp. 511-537, (1984).

[12] E. Pardoux, S. Peng, Adapted solutions of backward stochastic differential Equa-
tions, Systems and Control Letters 14, pp. 51-61, (1990).

[13] E. Pardoux and A. Rascanu, Backward SDE’s with maximal monotone operator,
Stoch. Proc. Appl. 76, (2), pp. 191-215, (1998).

[14] E. Pardoux, S. Peng, Backward stochastic differential equations and quasilinear
parabolic partial differential equations. Stochastic partial differential equations and
their applications (Charlotte, NC, 1991), Lecture Notes in Control and Inform. Sci.,
176, 200-217, Springer, Berlin, (1992).

[15] S. Rainero, Un principe de grandes déviations pour une équation différentielle
stochastique progressive rétrograde, Comptes Rendus Mathematique, 343, Issue 2,
pp. 141-144, (2006).

[16] Y. Saisho, Stochastic differential equations for multidimensional domains with re-
flecting boundary, Prob. Theory and Rel. Fields, 74, pp. 455-477, (1987).

[17] S. S. Sheu, Large deviation principle of reflecting diffusions, Taiwanese Journal of
Mathematics, 2, Issue 2, pp. 251-256, (1998).

[18] D. Stroock, An introduction to the theory of large deviations, Springer, New York,
(1984).

UNIVERSITE CADI AYYAD,, FACULTE POLY-DISCIPLINAIRE,, DEPARTEMENT DE
MATHEMATIQUES ET D’INFORMATIQUE,, B.P 4162, SAFI, MOROCCO.
E-mail address: essaky@ucam.ac.ma



