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Abstract. This work deals with limit cycles of real planar analytic
vector fields. It is well known that given any limit cycle Γ of an
analytic vector field it always exists a real analytic function f0(x, y),
defined in a neighbourhood of Γ, and such that Γ is contained in its
zero level set. In this work we introduce the notion of f0(x, y) being
an m-solution, which is a merely analytic concept. Our main result
is that a limit cycle Γ is of multiplicity m if and only if f0(x, y) is an
m-solution of the vector field. We apply it to study in some examples
the stability and the bifurcation of periodic orbits from some non
hyperbolic limit cycles.

1. Introduction and statement of the results

Consider a planar differential system of the form:

ẋ = P (x, y), ẏ = Q(x, y), (1)

where P (x, y) and Q(x, y) are real analytic functions with isolated singu-
larities and defined in some nonempty open set U ⊆ R2. The main goal
of this work is to exhibit the equivalence between the existence of a limit
cycle of multiplicity m with the existence of a function, which we will call
m-solution, defined and characterized below.
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Recall that a limit cycle for system (1) is an isolated periodic orbit in
the set of all periodic orbits. We assume that system (1) has a limit cy-
cle and we denote by (x, y) = γ(t) the equations corresponding to this
closed trajectory and by Γ the set of points in R2 which form it, that is,
Γ := {γ(t) | 0 ≤ t < T}, where T > 0 is the minimal period of the limit
cycle. Γ is said to be hyperbolic, or of multiplicity one, if the first deriva-
tive of the Poincaré map associated to it is different from one. Otherwise,
the limit cycle Γ is said to be of multiplicity m, with m ≥ 2, if the first
derivative of the Poincaré map is equal to 1, all its derivatives from order 2
to order m− 1 are zero and its mth derivative is different from zero. When
the vector field is analytic we can always find such an integer m. We give
a precise definition of the Poincaré map and the results related with this
notion of multiplicity in Section 2.

In the sequel we give some preliminaries to introduce the notion of
m−solution. Given a planar differential system (1) the explicit expression
of its limit cycles is usually not known. Nevertheless, as we will recall in
Lemma 4 of Section 2, for any given limit cycle Γ of system (1), it always
exists a real analytic curve given by f0(x, y) = 0 whose graphic has an oval
and such oval is Γ. Since Γ is an orbit for system (1), the curve f0(x, y) = 0
is indeed an invariant curve of the vector field. Recall that an invariant
curve for system (1) is described by a real analytic function f0 : U → R,
where U ⊆ R2 is a non empty open set, such that there exists an analytic
function k0 : U → R satisfying the following equation:

P (x, y)
∂f0

∂x
(x, y) + Q(x, y)

∂f0

∂y
(x, y) = k0(x, y) f0(x, y). (2)

The function k0(x, y) corresponds to the invariant curve f0(x, y) = 0 and it
is called its cofactor. As we will see, in our case the curve f0(x, y) = 0 can
always be chosen such that the vector ∇f0 is different from zero in all the
points of Γ.

Associated to invariant algebraic curves there is the notion of exponential
factors, see [5]. We extend this concept to analytic invariant curves as fol-
lows: a generalized exponential factor of order d associated to the invariant
curve f0(x, y) = 0 is a function of the form: Fd(x, y) =
exp

{
gd(x, y)/f0(x, y)d

}
such that:

- d is a positive integer number, d ≥ 1,
- gd : U → R is an analytic function in the open set U of definition of

f0(x, y),
- if p ∈ U is a point such that f0(p) = 0 but ∇f0(p) 6= 0, then

gd(p) 6= 0,



MULTIPLICITY OF LIMIT CYCLES AND ANALYTIC M-SOLUTIONS... 3

- there exists an analytic function kd : U → R such that the following
identity is satisfied:

P (x, y)
∂Fd

∂x
(x, y) + Q(x, y)

∂Fd

∂y
(x, y) = kd(x, y)Fd(x, y).

This function kd(x, y) is related to the generalized exponential factor
Fd(x, y) and it is called its cofactor. We note that the existence of such
a cofactor satisfying the last identity is equivalent to the existence of such
a function kd(x, y) satisfying:

P (x, y)
∂gd

∂x
(x, y)+Q(x, y)

∂gd

∂y
(x, y) = dk0(x, y) gd(x, y)+ kd(x, y)f0(x, y)d.

Classically, an exponential factor is given for polynomial systems (1) hav-
ing invariant algebraic curves. Moreover, the function gd(x, y) of an expo-
nential factor needs to be a polynomial. This notion is widely studied in the
works [4, 5] and the references therein. One of the main results stated and
proved in [5] is that a polynomial system (1) exhibits an exponential factor
of order d associated to an invariant algebraic curve f0(x, y) = 0 when this
curve is the result of the coalescence of d + 1 invariant algebraic curves of
nearby systems. As a consequence of the theorems given in our paper, we
are going to recover several results given in previous works but taking into
account analytic systems (1) and invariant curves and generalized exponen-
tial factors, which do not need to be algebraic.

Let us consider a system (1) with a limit cycle Γ = {γ(t) | 0 ≤ t < T}
and with an invariant curve f0(x, y) = 0 defined in a neighborhood U of Γ
and with associated cofactor k0(x, y). Assume also that Γ ⊆ {(x, y) ∈ U :
f0(x, y) = 0}. Given a positive integer m ≥ 1, we say that f0(x, y) = 0 is an
analytic m-solution of system (1) if there exist m−1 generalized exponential
factors F1(x, y), F2(x, y), F3(x, y), . . ., Fm−1(x, y) of consecutive orders
d = 1, 2, 3 . . . , m−1 and with associated cofactors k1(x, y), k2(x, y), k3(x, y),
. . ., km−1(x, y), and such that:

∫ T

0

kj(γ(t))dt = 0 for j = 0, 1, 2, . . . , m− 2 and
∫ T

0

km−1(γ(t))dt 6= 0.

In Section 3, we ensure that this is a good definition.

Our main result is:

Theorem 1. Let Γ be a limit cycle of system (1) and let f0(x, y) = 0 be an
analytic invariant curve of (1) defined in a neighbourhood U of Γ and such
that Γ ⊆ {(x, y) ∈ U : f0(x, y) = 0}. Then Γ has multiplicity m if and only
if f0(x, y) = 0 is an analytic m-solution of (1).
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In our proof of the above theorem, we use a local set of coordinates asso-
ciated to the limit cycle Γ, the so called curvilinear coordinates. However,
the “only if” part of the thesis of this theorem, could also be proved without
using them. When we want to show that the existence of m − 1 general-
ized exponential factors of subsequent orders 1, 2, 3, . . . ,m− 1 associated to
f0(x, y) = 0 implies that Γ has multiplicity m, we can use a similar argu-
ment as the one given in [6]. In that work, the authors define the notion
of infinitessimal multiplicity by means of the so-called generalized invari-
ant algebraic curve of order m. However, only polynomial systems with
invariant algebraic curves are considered there, so their definition should be
extended to the analytic case to be used in our context. The advantage of
their proof is that no change of coordinates is needed. We have not included
their arguments since the part of our proof corresponding to this direction
does not differ so much from theirs. On the other hand it seems no easy to
extrapolate, by the arguments given in [6], the implication that Γ being of
multiplicity m gives m− 1 exponential factors.

We also remark that in the same work [6], five notions of multiplicity
for invariant algebraic curves are defined and shown to be equivalent under
several assumptions. In particular in that work all the invariant curves, and
the functions involved in the exponential factors are algebraic, while as we
will see in Section 4 the functions involved in our computations are not.
Their work is related to ours when the curve f0(x, y) = 0 is algebraic and
satisfies all of the assumptions described in [6].

As an example of practical application of Theorem 1 we get the following
result, proved in Section 4:

Proposition 2. Consider system

ẋ = −y + (x2 + y2 − 1)
(
α0x + α1y

2 + α2y + α3(1− x2 − 3y2) + α4y
)
,

ẏ = x + (x2 + y2 − 1)
(−1/2− α1xy + α2(−1− x + x2 + y2)+

+2α3xy − α4x) ,

where α0, α1, α2, α3, α4 are real parameters. It has the unit circumference Γ
as hyperbolic limit cycle if and only if α0 6= 0. If α0 = 0 and α1 6= 0, then
Γ is a limit cycle of multiplicity 2. If α0 = α1 = 0 and α2 α3 6= 0, then Γ is
a limit cycle of multiplicity 3. And, if α0 = α1 = 0 and α2 α3 = 0, then Γ
belongs to a continuum of periodic orbits. Furthermore when |α0| ¿ |α1| ¿
|α2 α3| and α0, α1 and α2 α3 alternate signs, Γ is a hyperbolic limit cycle
and two more hyperbolic limit cycles appear in a neighborhood of Γ.
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Note that the above result can be interpreted as the solution of the
“center-focus” problem for the periodic orbit Γ.

This paper is organized as follows. Section 2 contains a set of preliminary
definitions and results related with the proof of Theorem 1, which is given
in Section 3. The last section is formed by several applications of this result,
including the previous example, as well as the computation of the Lyapunov
constants for quadratic systems by using Theorem 1 and one example of
analytic system having an analytic, non-algebraic, multiple limit cycle.

2. Preliminary definitions and results

In this section, we first summarize some classical definitions and notions
related with limit cycles. Afterwards, we give some results concerning m-
solutions of a system (1).

Consider a limit cycle Γ = {γ(t) : 0 ≤ t < T} of system (1). It is well
known that Γ can be either stable, unstable or semi-stable, see for instance
[10]. Its character is given by its associated Poincaré map. We consider a
point p0 ∈ Γ and a section Σ through it. A section through a point is an
arc of a curve containing the point, such that the considered vector field
is not tangent to any point of the arc of the curve. Since Γ is a periodic
orbit, for each point q of Σ, the solution of system (1) starting at q cuts
Σ again in another point for some positive time. We denote by Π(q) the
point corresponding to the first intersection of the solution of system (1)
starting in q with Σ. We notice that since Γ is a periodic orbit and p0 ∈ Γ,
we have that Π(p0) = p0. The function Π : Σ → Σ defined in this way is
called the Poincaré map for Γ at p0. It can be shown that Π : Σ → Σ is a
diffeomorphism with the same regularity than system (1). Clearly, from its
definition, Π controls the stability of Γ. Assume that Π is the identity, then
Γ belongs to a continuous band of periodic orbits. Assume that Π′(p0) 6= 1,
then if Π′(p0) > 1, Γ is an unstable limit cycle and if Π′(p0) < 1, then Γ
is a stable limit cycle. If Π′(p0) 6= 1, we say that Γ is a hyperbolic, or of
multiplicity 1, limit cycle. In case that Π′(p0) = 1, but Π is not the identity,
there exists an integer m, with m > 1, such that the mth derivative of Π
evaluated in p0 is different from zero and m is the lowest value with this
property. We say that Γ is a limit cycle of multiplicity m. In this case,
if m is odd and Π(m)(p0) > 0 then Γ is an unstable limit cycle, and if
Π(m)(p0) < 0 then Γ is a stable limit cycle. If m is even, then Γ is semi-
stable. It is also well known that at most m limit cycles, taking into account
their multiplicities, can bifurcate from a limit cycle of multiplicity m.
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A classical known result is that Π′(p0) = exp
{∫ T

0
div(γ(t)) dt

}
, where

as usual div(x, y) = ∂P/∂x + ∂Q/∂y is the divergence of system (1). As we
will see in Lemma 4, for any periodic orbit Γ of system (1) there exists an
invariant curve f0(x, y) = 0 which contains it. If k0(x, y) is the cofactor of
this curve it is proved in [8] that

Π′(p0) =
∫ T

0

div(γ(t)) dt =
∫ T

0

k0(γ(t)) dt. (3)

In the sequel we will see how to extend the idea of [8] to obtain more
derivatives of the Poincaré map from the generalized cofactors associated
to f0(x, y) = 0.

With this aim we introduce the curvilinear coordinates (s, n) near a
periodic orbit, as described in [10, p. 27] or in [1, pp. 110–118]. Let
Γ := {γ(t) | 0 ≤ t < T}, where γ(t) is a periodic orbit of system (1) with
minimal period T > 0. Let us consider a neighborhood U of Γ sufficiently
small so that there is no singular point of system (1) contained in U . Let
us fix a point p0 in Γ and we denote by s the arc length of Γ at each of
its points measured from p0 and the direction of increasing s coincides with
the direction of increasing t. We denote by n the length of the normal to Γ
whose outward direction is taken positive if Γ is oriented clockwise or whose
inward direction is taken positive if Γ is oriented counterclockwise. Suppose
that the equations of Γ with s as parameter are x = ϕ(s) and y = ψ(s)
and that the complete length of Γ is L > 0. It is clear that ϕ(s) and ψ(s)
are L-periodic functions. With these definitions, the formulas connecting
the rectangular coordinates (x, y) of a point in a neighborhood of Γ and its
curvilinear coordinates (s, n) are: x = ϕ(s)−nψ′(s) and y = ψ(s)+nϕ′(s).
It can be shown, provided that |n| is sufficiently small, that if U is small
enough, we always have the jacobian |∂(x, y)/∂(s, n)| > 0 on U . Hence,
the formulas (x, y) = (ϕ(s)− nψ′(s), ψ(s) + nϕ′(s)) represent a coordinate
transformation preserving the orientation of Γ.

By applying the above change of coordinates (x, y) → (s, n) to system
(1), we get an analytic, non-autonomous differential equation of the form:

dn

ds
= F (s, n) =

∑

j≥1

Fj(s) nj , (4)

defined for |n| small enough. Since ϕ(s) and ψ(s) are L-periodic functions,
we have that the functions Fj(s) are also L-periodic functions in the variable
s. Moreover, we have that n = 0 is a solution of (4), which corresponds to
the prior closed periodic trajectory Γ of (1).

Our interest is to study the stability and multiplicity of the solution n = 0
for (4), which coincides with the stability and multiplicity of Γ as periodic
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orbit of (1). By using our notations the following theorem, see [10, Thm
2.5], relates the values of Ψj(L) with the stability of Γ.

Theorem 3. Let equation (4) be the expression of system (1) in the local
curvilinear coordinates associated to a given periodic orbit Γ. Let

Ψ(s; n0) =
∑

j≥1

Ψj(s) nj
0. (5)

be the flow of equation (4) such that Ψ(0; n0) = n0. Then
(i) Γ is a hyperbolic limit cycle if and only if Ψ1(L) 6= 1,
(ii) Γ is limit cycle of multiplicity exactly m ≥ 2 if and only if Ψ1(L) = 1

and Ψj(L) = 0 for j = 2, 3, . . . , m− 1 but Ψm(L) 6= 0.

The values Ψj(L) can be determined in a recursive way, although many
computations are involved. To do so, we only need to impose that (5) is a
solution of equation (4) and equate the same powers of n0. We note that, in
this way, we get a set of recursive linear differential equations for each Ψj(s)
whose coefficients involve F1(s), F2(s), . . . , Fj(s) and Ψ1(s),Ψ2(s), . . . ,
Ψj−1(s). Each of the functions Ψj(s) is uniquely determined from the ini-
tial condition Ψ(0; n0) = n0, which implies that Ψ1(0) = 1 and Ψj(0) = 0
for j > 1. In the first step of this recursion, we get Ψ1(s) as the following
expression:

Ψ1(s) = exp
{∫ s

0

F1(σ) dσ

}
. (6)

Following the recursive method, we get:

Ψ2(s) = Ψ1(s)
[∫ s

0

Ψ1(σ)F2(σ) dσ

]
,

Ψ3(s) = Ψ1(s)

[(∫ s

0

Ψ1(σ)F2(σ) dσ

)2

+
∫ s

0

Ψ1(σ)2 F3(σ) dσ

]
,

and the following values of Ψj(s) can also be computed but their expres-
sions are much more complicated. By undoing the change to curvilinear
coordinates, we could display formulas for Ψj(L) in terms of (x, y). For
instance, it can be shown that:

Ψ1(L) = exp

{∫ T

0

div(γ(t)) dt

}
. (7)

This is a way to prove that Γ is hyperbolic if, and only if, Ψ1(L) 6= 1 or,
equivalently, if, and only if,

∫ T

0
div(γ(t)) dt 6= 0.
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Let us recall also how the use of the curvilinear coordinates ensures the
existence of an invariant curve containing any periodic orbit Γ, whenever it
exists. The following lemma is equivalent to Lemma 1 appearing in [1, p.
124]. We include here a proof for the sake of completeness.

Lemma 4. If system (1) has a limit cycle Γ, then there exists an analytic
invariant curve f0(x, y) = 0 for system (1) defined in a neighborhood U of
Γ and such that Γ ⊆ {(x, y) ∈ U : f0(x, y) = 0}. Moreover, the curve
f0(x, y) = 0 can always be chosen such that the vector ∇f0 is different from
zero in all the points of Γ.

Proof. In the curvilinear coordinates (s, n) defined above, the periodic
orbit Γ corresponds to the equation n = 0. The inverse of change of variables
between coordinates (x, y) and (s, n) is analytic and can be written as n =
f0(x, y), s = g0(x, y). Thus we have that f0(x, y) = 0 is an invariant curve
of system (1) which contains the periodic orbit Γ.

Moreover, since by definition n is the length of the normal to Γ, we de-
duce that the vector ∇f0 is different form zero in all the points of Γ.

We consider a system (1) with a periodic orbit Γ := {γ(t) | 0 ≤ t < T} of
minimal period T > 0. By the above lemma, we know that there exists an
invariant curve f0(x, y) = 0 such that Γ ⊆ {(x, y) ∈ U | f0(x, y) = 0}, where
U is a neighborhood of Γ. We denote by k0(x, y) the cofactor associated to
the invariant curve f0(x, y) = 0. As we have already stated, see (3), in [8]
it is proved that:

∫ T

0

div(γ(t)) dt =
∫ T

0

k0(γ(t)) dt.

In this way we are able to determine the hyperbolicity of Γ by using two
different integrands.

We remark that if we consider Γ in curvilinear coordinates (s, n), the
associated invariant curve reads for n = 0 and its cofactor in relation with
equation (4) is

k0(s, n) =
F (s, n)

n
=

∑

j≥1

Fj(s)nj−1.

The cofactor of f0(x, y) = 0 in cartesian coordinates (x, y) is just the trans-
formation of this function by (s, n) → (x, y). By (6) we have that

Ψ1(L) = exp

{∫ L

0

F1(s) ds

}
= exp

{∫ L

0

k0(s, 0) ds

}
.
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Therefore, undoing the change of variables to cartesian coordinates and
parameterizing again by t instead than by s, we deduce that:

Ψ1(L) = exp

{∫ T

0

k0(γ(t)) dt

}
,

and, from (7), we recover relation (3). We have given an alternative proof
to relation (3) to the one described in [8] by using curvilinear coordinates.

Our purpose is to give a generalization of this relation (3) but related
to generalized exponential factors. If Fi(x, y) = exp

{
gi(x, y)/f0(x, y)i

}
is

a generalized exponential factor associated to f0(x, y) = 0 of order i, we
denote by ki(x, y) its cofactor.

Theorem 5. Assume that we have a system (1) with a periodic orbit Γ and
let f0(x, y) = 0 be the invariant curve such that Γ ⊆ {(x, y) ∈ U | f0(x, y) =
0}.

Γ has multiplicity at least m if, and only if, there exist m − 1 general-
ized exponential factors of subsequent orders 1, 2, 3, . . . ,m− 1 associated to
f0(x, y) = 0.

Moreover, in such a case

Ψi+1(L) = −i gi(γ(0))
∫ T

0

ki(γ(t)) dt, (8)

for i = 1, 2, . . . , m− 1, where the values Ψi+1(L) are the ones introduced in
Theorem 3.

We note that this Theorem 5 is equivalent to Theorem 1 but composed
by using the defined values Ψj(L). The following Section 3 contains its
proof.

By the definition of generalized exponential factor, we have that
gi(γ(0)) 6= 0 because the point γ(0) is such that f0(γ(0)) = 0 and
∇f0(γ(0)) 6= 0. In fact, we can always multiply gi(x, y) by a non-negative
constant so that we get a generalized exponential factor Fi(x, y)
with gi(γ(0)) = −1/i.

We remark that relation (8) is more than a generalization of relation
(3) because, although the values of Ψj(L) can be computed in a recursive
way, there is no explicit formula for Ψj(L) for a high value of j, due to its
computational difficulty. In this way, relation (8) gives us an explicit way
to determine the values Ψj(L).

We conclude that if Γ is of multiplicity m, we can always find a set of
m− 1 generalized exponential factors associated to f0(x, y) = 0 with a cor-
relative sequence of orders up to m − 1. Although Theorem 5 only states
the existence of such generalized exponential factors, in the proof of this
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Theorem we will show a constructive way to give them, provided that we
use curvilinear coordinates, see Remark 9. Reciprocally, if we have any set
of m − 1 generalized exponential factors associated to f0(x, y) = 0 with a
correlative sequence of orders up to m−1, we can ensure that Γ has at least
multiplicity m and we can decide whether its multiplicity is higher or not
by computing

∫ T

0
km(γ(t)) dt.

We want to end this section stating the following theorem because it
describes the creation of limit cycles from a multiple limit cycle Γ, by using
its implicit expression f0(x, y) = 0.

Theorem 6. ([1, Ch. X, §27.1]) Consider an analytic system (1) with a
limit cycle Γ of multiplicity exactly m (m ≥ 1), then, by perturbing this
system in the world of analytic systems, at most m limit cycles bifurcate
from Γ, taking into account their multiplicities. Furthermore this upper
bound is sharp.

The first part of proof of the above result uses the Weierstrass’ Prepara-
tion Theorem, while the second one considers the following perturbation of
system (1):

ẋ = P (x, y) +
(
ε1f0 + ε2f

2
0 + . . . + εm−1f

m−1
0

)
∂f0/∂x,

ẏ = Q(x, y) +
(
ε1f0 + ε2f

2
0 + . . . + εm−1f

m−1
0

)
∂f0/∂y,

(9)

where ε1, ε2, ε3, . . . , εm−1 are suitable real parameters.

3. Proof of the Main Theorem

Since we have introduced the values Ψj(L) in the previous section and
these values characterize the stability of Γ, to prove Theorem 1 it suffices
to prove Theorem 5.

Let us consider a system (1) with a periodic orbit Γ. We transform the
system to equation (4) by using curvilinear coordinates (s, n). We know
that these curvilinear coordinates only have sense for |n| sufficiently small,
so we restrict ourselves to these neighborhood of Γ in the rest of this section.

The equation (4) has n = 0 as invariant curve with cofactor k0(s, n) =
F (s, n)/n. We note that this cofactor is analytic and L-periodic in s. We
may consider functions analytic in (s, n) which are not L-periodic. In such
a case, when we undo the change of variables to cartesian coordinates (x, y)
we do not get an analytic function well-defined in a neighborhood U of Γ.
Any analytic function in (x, y) well-defined in a neighborhood U of Γ is
transformed to an analytic function which is L-periodic in the variable s
in curvilinear coordinates. And the other way round, any analytic function
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which is L-periodic in the variable s in curvilinear coordinates transforms
to an analytic function in (x, y) well-defined in a neighborhood U of Γ.

Let us consider the solution Ψ(s;n0) of equation (4) such that Ψ(0; n0) =
n0. We define the following function:

G(s, n; n0) := ln |n−Ψ(s; n0)| ,
where | · | denotes the absolute value. For each positive integer j, with j ≥ 1,
we also define:

gj(s, n) :=
nj

j!
∂jG(s, n; n0)

∂nj
0

∣∣∣∣{n0 = 0} . (10)

If we develop the function G(s, n;n0) in powers of n0, we note that gj(s, n)
is the product of nj by the coefficient of G(s, n; n0) corresponding to nj

0.
Hence, for |n| sufficiently small, each gj(s, n) is also an analytic function.

Proposition 7. (i) For any j ≥ 1, there exists an analytic function
kj(s, n) such that:

∂gj(s, n)
∂s

+
∂gj(s, n)

∂n
F (s, n) = j k0(s, n) gj(s, n) + kj(s, n)nj . (11)

(ii) For any j ≥ 1, we have gj(s, 0) 6= 0 for any value of s.
(iii) There exists an integer m, m > 1, such that Ψ1(L) = 1 and

Ψj(L) = 0 for j = 2, 3, . . . ,m if, and only if, all the functions
g1(s, n), g2(s, n), . . ., gm(s, n) are periodic in s of period L.

(iv) There exists an integer m, m > 1, such that Ψ1(L) = 1, Ψj(L) = 0
for j = 2, 3, . . . , m− 1 and Ψm(L) 6= 0 if, and only if,

∫ L

0

kj(s, 0) ds = 0 for j = 0, 1, 2, . . . m− 2

and ∫ L

0

km−1(s, 0) ds 6= 0.

Moreover Ψm(L) =
∫ L

0

km−1(s, 0) ds.

It is clear that the statements (i) and (ii) imply that Fj(s, n) :=
exp

{
gj(s, n)/nj

}
is a generalized exponential factor of equation (4) associ-

ated to the curve n = 0 of order j and kj(s, n) is its associated cofactor.
Although each gj(s, n) gives rise to an exponential factor for the equation
in curvilinear coordinates (4), each gj(s, n) does not need to be transformed
into a well-defined generalized exponential factor for the system in cartesian
coordinates (1). When applying the change from curvilinear coordinates
to cartesian coordinates (s, n) → (x, y), we only get as much well-defined
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generalized exponential factors, in increasing order, for system (1) as the
multiplicity of Γ minus one. This is the conclusion extracted from statement
(iii). The last statement gives the relation between the values of Ψj(L) and
the cofactors of the defined generalized exponential factors.

Proof of Proposition 7. Define:

K(s, n; n0) =
F (s, n)− F (s, Ψ(s;n0))

n−Ψ(s; n0)
,

which is an analytic function in a neighborhood of n = 0 and also in a
neighborhood of n0 = 0. Using the previously defined function G(s, n; n0) =
ln |n−Ψ(s;n0)|, an easy computation shows that:

∂G(s, n;n0)
∂s

+
∂G(s, n;n0)

∂n
F (s, n) = K(s, n; n0), (12)

where we have that used that ∂Ψ(s;n0)/∂s = F (s, Ψ(s;n0)).
Now we introduce the functions kj(s, n) as the ones satisfying the follow-

ing relation:
K(s, n; n0) =

∑

j≥0

kj(s, n) nj
0.

Equating the coefficients of nj
0 in the previous identity (12), we have that:

1
nj

(
∂gj(s, n)

∂s
+

∂gj(s, n)
∂n

F (s, n)− j gj(s, n)
F (s, n)

n

)
= kj(s, n),

where we have used the definition (10). Since k0(s, n) = F (s, n)/n, we get
exactly (11) and, hence, statement (i).

We have just seen that the cofactor associated to the generalized expo-
nential factor Fj(s, n) = exp

{
gj(s, n)/nj

}
is kj(s, n), which is an analytic

function in coordinates (s, n). We note that, although we are considering
j ≥ 1, this formula also has sense for j = 0 and it gives the value of the
cofactor of n = 0 for equation (4): k0(s, n) = F (s, n)/n.

In the definition of gj(s, n) given in (10), we only need to consider values
of (s, n; n0) such that |Ψ(s;n0)/n| is small. We have that:

G(s, n;n0) = ln |n−Ψ(s;n0)| = ln |n| + ln
∣∣∣∣1−

Ψ(s; n0)
n

∣∣∣∣

= ln |n| −
∑

i≥1

1
i

(∣∣∣∣
Ψ(s;n0)

n

∣∣∣∣
)i

,

where we have used the development of the logarithm ln(1 − x) =
−∑

i≥1 xi/i for small |x|. If we develop G(s, n;n0) in powers of n0, we
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note that gj(s, n) is defined from the coefficient of degree j in n0 of this
development. This fact implies that to compute gj(s, n) we only need to
consider the sum of terms until i = j in the last expression of G(s, n; n0).
We have that gj(s, n) is the product of the coefficient of G(s, n;n0) of degree
j in n0 by nj , that is,

gj(s, n) = −
j∑

i=1

nj−i

i

[
nj

0

] (
Ψ(s, n0)i

)
. (13)

Given ψ(n0) an analytic function of n0 in a neighborhood of n0 = 0, we
denote by

[
nj

0

]
(ψ(n0)) the coefficient of the term corresponding to nj

0 in
the Taylor development of ψ(n0) in a neighborhood of n0 = 0.

When taking n = 0, the only term that it is not cancelled is the one
which corresponds to i = j, and since Ψ(s; n0) =

∑
i≥1 Ψi(s)ni

0, we deduce:

gj(s, 0) = −Ψ1(s)j

j
.

We recall that, by (6), Ψ1(s) 6= 0 for any value of s. Therefore, gj(s, 0) is
different from zero for any value of s.

To prove the third statement, we remark that the condition Ψ1(L) = 1
and Ψj(L) = 0 for j = 2, 3, . . . , m is equivalent to say that all the functions
Ψj(s) for 1 ≤ j ≤ m are L-periodic. We first assume that there exists an
integer m, m > 1, such that Ψ1(L) = 1 and Ψj(L) = 0 for j = 2, 3, . . . , m.
From identity (13), we have that the dependence in s of all the functions
g1(s, n), g2(s, n), . . ., gm(s, n) is via Ψj(s) for j = 1, 2, . . . , m, which are
periodic functions of period L. Therefore, given any integer j with 1 ≤ j ≤
m, the function gj(s, n) is L-periodic in s.

Reciprocally, assume that all the functions g1(s, n), g2(s, n), . . ., gm(s, n)
are periodic in s of period L. By (13), we have that if g1(s, n) is L-periodic
in s, then Ψ1(s) must be L-periodic in s. Since Ψ1(0) = 1, we deduce that
Ψ1(L) = 1. Then, if g2(s, n) is L-periodic in s and since Ψ1(L) = 1, we
deduce that Ψ2(s) must be L-periodic. We can continue the same inductive
argument and we obtain that all the functions Ψj(s) for 1 ≤ j ≤ m are
L-periodic.

In order to prove the last statement, we note that the equation (5) can
also be written in integral form as:

Ψ(s; n0) = n0 exp
{∫ s

0

F (σ; Ψ(σ; n0))
Ψ(σ; n0)

dσ

}
.
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Therefore, we have that:

Ψ(s; n0) = n0 exp
{∫ s

0

K(σ, 0; n0)dσ

}
, (14)

where K(s, n;n0) is the one defined in the proof of statement (i). If we
develop the last formula (14) in powers of n0 and we equate the coefficients
of same degree in both members, we can relate the values of Ψj(s) and∫ s

0
kj−1(σ; 0) dσ. Note that given any integer number m, m ≥ 1, and any

real constant am, we have:

n0 exp
{
amnm

0 +O (
nm+1

0

)}
= n0 + amnm+1

0 + O (
nm+2

0

)
. (15)

We first equate the coefficients of degree 1 in n0 of equation (14) and
we have that Ψ1(s) = exp

{∫ s

0
k0(σ, 0) dσ

}
. We recover, in this way, the

conclusion extracted from (7) and (3). Therefore, Ψ1(L) = 1 if, and only if,∫ L

0
k0(σ, 0) dσ = 0. We are going to assume that Ψ1(L) = 1 for the rest of

the proof.
We are going to use induction over m. The basic step is for m = 2

and we equate the coefficient of n0 of degree 2 in the expression (14) once
evaluated in s = L. Using (15), we get that Ψ2(L) =

∫ L

0
k1(σ, 0) dσ. Hence,

Ψ2(L) = 0 if, and only if,
∫ L

0
k1(σ, 0) dσ = 0.

The inductive hypothesis states that Ψ1(L) = 1, Ψj(L) = 0 for j =
2, 3, . . . ,m − 1 and Ψm(L) 6= 0 if, and only if,

∫ L

0
kj(s, 0) ds = 0 for j =

0, 1, 2, . . .m − 2 and
∫ L

0
km−1(s, 0) ds 6= 0. Moreover, Ψm(L) =∫ L

0
km−1(s, 0) ds. We first assume that Ψ1(L) = 1, Ψj(L) = 0 for j =

2, 3, . . . ,m and by induction hypothesis we have that
∫ L

0
kj(s, 0) ds = 0 for

j = 0, 1, 2, . . .m−1. Now, we equate the coefficients of degree m+1 in n0 of
(14) once evaluated in s = L and, using the expansion given in (15), we de-
duce that Ψm+1(L) =

∫ L

0
km(s, 0) ds. Therefore, we get that Ψm+1(L) = 0

if, and only if,
∫ L

0
km(s, 0) ds = 0.

The following proposition reads that the set of obtained generalized ex-
ponential factors is not unique but the corresponding functions gj(s, n) are
determined up to order nj and the value of the integral of its cofactor
does not vary. We note that, as a corollary, we have that the definition of
m-solution is a good definition. If gd(x, y) and g̃d(x, y) give rise to two dif-
ferent exponential factors of order d associated to the same invariant curve
f0(x, y) = 0, then the integrals of their cofactors over Γ have the same value
up to a multiplicative constant.

Proposition 8. Let g̃m(s, n) be an analytic function such that m is an
integer number with m ≥ 1, g̃m(s, 0) 6≡ 0, g̃m(s, n) is L-periodic in s and
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there exists an analytic function k̃m(s, n) satisfying that:

∂g̃m(s, n)
∂s

+
∂g̃m(s, n)

∂n
F (s, n) = mk0(s, n) g̃m(s, n) + k̃m(s, n)nm. (16)

Then, there exists a set of real constants {wi ∈ R | i = 1, 2, . . . , m} with

wm = −mg̃m(0, 0) 6= 0 such that g̃m(s, n) =
m∑

i=1

wi gi(s, n)nm−i + O(nm),

where gi(s, n) are the ones given in the previous Proposition 7, and
∫ L

0

k̃m(s, 0) ds =
m∑

i=1

wi

∫ L

0

ki(s, 0) ds . (17)

We note that Theorem 5 is a consequence of Propositions 7 and 8 just
changing from curvilinear coordinates (s, n) to cartesian coordinates.

Proof of Proposition 8. We are going to use three steps. We first
show that any function g̃m(s, n) for which there exists an analytic function
k̃m(s, n) satisfying (16) writes as g̃m(s, n) =

∑m
i=1 wi gi(s, n) nm−i +O(nm)

for a certain set of real constants wi, i = 1, 2, 3, . . . , m. The second step
is to show that, in fact, g̃m(s, 0) 6= 0 for all values of s and that wm =
−mg̃m(0, 0). The last step of the proof is to use that g̃m(s, n) is L-periodic
in s so as to show the identity (17).

In order to prove that any function g̃m(s, n) for which there exists an ana-
lytic function k̃m(s, n) satisfying (16) writes as g̃m(s, n) =∑m

i=1 wi gi(s, n)nm−i + O(nm) for a certain set of real constants wi, i =
1, 2, 3, . . . ,m, we will use induction over m. But, we first encounter a pre-
vious result which is going to be useful for both the basic step and the
induction step in the inductive process.

Let us consider an integer number m ≥ 1 and a function g̃m(s, n) for
which there exists an analytic function k̃m(s, n) satisfying (16) and we de-
fine the quotient qm(s, n) := g̃m(s, n)/gm(s, n). Since both gm(s, n) and
g̃m(s, n) are analytic functions in a neighborhood of n = 0 and gm(s, 0) 6= 0
for all s by the proved statement (ii), we have that qm(s, n) is an analytic
function in a neighborhood of n = 0. By (11) and (16), we have that:

∂qm(s, n)
∂s

+
∂qm(s, n)

∂n
F (s, n) =

1
gm(s, n)2

([
mk0(s, n)g̃m(s, n)+

+ k̃m(s, n)nm
]
gm(s, n) −

[
mk0(s, n)gm(s, n) + km(s, n)nm

]
g̃m(s, n)

)
.



16 ARMENGOL GASULL, JAUME GINÉ AND MAITE GRAU

Therefore,

∂qm(s, n)
∂s

+
∂qm(s, n)

∂n
F (s, n)=

(
k̃m(s, n)gm(s, n)−km(s, n)g̃m(s, n)

gm(s, n)2

)
nm.

(18)
We have that m ≥ 1 and, by statement (ii), that gm(s, 0) 6= 0 for any value
of s, so the right hand side of identity (18) is identically null for n = 0.
Let us consider qm(s, 0) and evaluating (18) in n = 0, we deduce that
(∂qm(s, 0)/∂s) ≡ 0 Therefore, qm(s, 0) ≡ wm, where wm is a real constant.

Let us start with the inductive process. The basic step corresponds to
m = 1 and we consider a function g̃1(s, n) for which there exists an analytic
function k̃1(s, n) satisfying (16). We define q1(s, n) := g̃1(s, n)/g1(s, n) and
by the reasoning given in the previous paragraph, we deduce that q1(s, n) =
w1 +O(n), for a certain real constant w1. Hence, g̃1(s, n) = w1 g1(s, n) +
O(n).

We consider the step in which we prove the statement for m+1 once the
statement for m is assumed. We consider a function g̃m+1(s, n) for which
(16) is satisfied with a certain analytic function k̃m+1(s, n). We define the
quotient function qm+1(s, n) := g̃m+1(s, n)/gm+1(s, n). We have proved
that there exists a real constant wm+1 such that qm+1(s, n) = wm+1 +
O(n), therefore we deduce that g̃m+1(s, n) = wm+1 gm+1(s, n) + O(n). Let
us define the following function: g̃m(s, n) := (g̃m+1(s, n)−
wm+1gm+1(s, n)) /n. We have that g̃m(s, n) is an analytic function in a
neighborhood of n = 0. We compute the derivative of g̃m(s, n) with respect
to equation (4), applying (11), (16) and that F (s, n) = k0(s, n)n:

∂g̃m(s, n)
∂s

+
∂g̃m(s, n)

∂n
F (s, n) =

1
n2

{([
(m + 1)k0(s, n)g̃m+1(s, n)+

+̃km+1(s, n)nm+1
]
−wm+1

[
(m + 1)k0(s, n)gm+1(s, n)+km+1(s, n)nm+1

])
n

−
(
g̃m+1(s, n)− wm+1 gm+1(s, n)

)
k0(s, n)n

}
.

We reorder the terms to get that:

∂g̃m(s, n)
∂s

+
∂g̃m(s, n)

∂n
F (s, n) =

= mk0(s, n)
(

g̃m+1(s, n)− wm+1 gm+1(s, n)
n

)
+

+
(
k̃m+1(s, n)− wm+1 km+1(s, n)

)
nm.



MULTIPLICITY OF LIMIT CYCLES AND ANALYTIC M-SOLUTIONS... 17

We define k̃m(s, n) := k̃m+1(s, n) − wm+1 km+1(s, n), which is an analytic
function, and we deduce that:

∂g̃m(s, n)
∂s

+
∂g̃m(s, n)

∂n
F (s, n) = m k0(s, n) g̃m(s, n) + k̃m(s, n)nm.

We conclude that g̃m(s, n) is an analytic function that satisfies (16) for
the order m and, hence, we can apply the induction hypothesis. There
exists a set of real constants {wi | i = 1, 2, 3, . . . m} such that g̃m(s, n) =∑m

i=1 wi gi(s, n)nm−i + O(nm). Since g̃m(s, n) = (g̃m+1(s, n)−
wm+1 gm+1(s, n)) /n, we deduce that:

g̃m+1(s, n) =
m+1∑

i=1

wi gi(s, n) nm+1−i + O(nm+1).

As we have seen wm = qm(s, 0) for all values of s. Therefore, g̃m(s, 0) =
wmgm(s, 0). By the proof of statement (ii), we have gm(s, 0) = −Ψ1(s)m/m,
which is different from zero for all values of s. By hypothesis g̃m(s, 0) is not
equivalent to zero, therefore, we deduce that wm 6= 0 and that g̃m(s, 0) is dif-
ferent from zero for all values of s. In order to give the value of wm we eval-
uate the identity g̃m(s, 0) = wm gm(s, 0) in s = 0. We recall that Ψ1(0) = 1
and we conclude that gm(0, 0) = −1/m and, hence, wm = −mg̃m(0, 0).

Let us consider the function g̃m(s, n) given by the hypothesis and we
define the function φm(s) such that g̃m(s, n) writes as:

g̃m(s, n) =
m∑

i=1

wi gi(s, n)nm−i + φm(s)nm + O(nm+1)

where wi, i = 1, 2, 3, . . . , m, are the real constants whose existence has been
proved in previous paragraphs. We note that, by (13), the functions gi(s, n)
are polynomials in n of degree at most i − 1 and whose coefficients are
functions of Ψj(s) for 1 ≤ j ≤ i. Therefore, the sum

∑m
i=1 wi gi(s, n)nm−i

is the expression of the terms of order ni with i = 0, 1, 2, 3, . . . ,m− 1 in the
development of g̃m(s, n) in powers of n. The function φm(s) is the coefficient
of nm in this development.
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We compute the derivative of g̃m(s, n) with respect to equation (4) using
equation (11) and that F (s, n) = k0(s, n)n:

∂g̃m(s, n)
∂s

+
∂g̃m(s, n)

∂n
F (s, n) =

=
m∑

i=1

wi

[ (
∂gi(s, n)

∂s
+

∂gi(s, n)
∂n

F (s, n)
)

nm−i+

+gi(s, n)(m−i)k0(s, n)nm−i

]
+φ′m(s)nm+φm(s)mk0(s, n)nm+O(nm+1)=

=
m∑

i=1

wi

[(
i gi(s, n)k0(s, n) + ki(s, n)ni

)
nm−i+

+gi(s, n)(m− i)k0(s, n)nm−i

]
+

+φ′m(s)nm + φm(s)mk0(s, n)nm +O(nm+1).

Reordering the terms we get that:

∂g̃m(s, n)
∂s

+
∂g̃m(s, n)

∂n
F (s, n) =

= mk0(s, n)

(
m∑

i=1

wi gi(s, n)nm−i + φm(s)nm

)
+

+

(
m∑

i=1

wi ki(s, n) + φ′m(s)

)
nm + O(nm+1) =

= mk0(s, n) g̃m(s, n) +

(
m∑

i=1

wi ki(s, n) + φ′m(s)

)
nm + O(nm+1).

By (16) we deduce that:

k̃m(s, n)nm =

(
m∑

i=1

wi ki(s, n) + φ′m(s)

)
nm + O(nm+1).

We divide this last identity by nm and we evaluate in n = 0 to conclude
that:

k̃m(s, 0) =
m∑

i=1

wi ki(s, 0) + φ′m(s). (19)
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Since g̃m(s, n) is L-periodic in s, we deduce that each of its coefficients in
n is L-periodic in s. In particular φm(s) in L-periodic in s and, hence,∫ L

0
φ′m(s) ds = φm(L) − φm(0) = 0. Therefore, integrating in s from 0 to

L both members of relation (24), we exactly get identity (17).

Remark 9. As a corollary of this proof, we note that g1(s, n) = −Ψ1(s), see
equations (10) and (13). Using equation (6) we have g1(s, n) =
− exp

{∫ s

0
k0(σ, 0) dσ

}
. We can traduce this expression to cartesian co-

ordinates in the following way: if we have a periodic orbit Γ = {γ(t) :
0 ≤ t < T} whose corresponding invariant curve f0(x, y) = 0 is such
that

∫ T

0
k0(γ(t)) dt = 0, then a suitable function g1(x, y) can be given by

computing the function
∫ t

0
k0(γ(σ)) dσ and undoing the parameterization

t 7→ (x, y) = γ(t). We note that the resulting function g1(x, y) will only be
well defined in rectangular coordinates (x, y) when

∫ T

0
k0(γ(t)) dt = 0. This

function gives an exponential factor of order 1 for f0(x, y) = 0: F1(x, y) =
exp {g1(x, y)/f0(x, y)}.

In the same way, if we know generalized exponential factors of consecutive
orders from 1 to j − 1 whose cofactors ki(x, y) all verify

∫ T

0
ki(γ(t)) dt = 0

for i = 0, 1, . . . , j − 1, we can construct a generalized exponential factor of
the next order j using the expressions given in (10) and (14). With the
integrals of the cofactors, we give the functions:

Ψ̃(t;n0) = n0 exp

{
j−1∑

i=0

(∫ t

0

ki(γ(σ)) dσ

)
ni

0

}

and G̃(s, n; n0) = ln |n− Ψ̃(t;n0)|, which coincide with their homonymous
without tilde up to order j in n0 and the relation (13) ensures that no
other terms are needed. Hence, the expression given in (10) can also be
used to define gj(t, n) which gives gj(x, y) undoing the parameterization
t 7→ (x, y) = γ(t) and n 7→ f0(x, y). We get an exponential factor of order
j for f0(x, y) = 0: Fj(x, y) = exp

{
gj(x, y)/f0(x, y)j

}
.

4. Examples and applications.

In most text books only simple examples of hyperbolic algebraic limit cy-
cles appear. In this section we present several examples, including multiple,
algebraic and non-algebraic limit cycles. We study them by using Theorem
1.

We start with an easy example:
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Example 10. Consider system

ẋ = −y +
(

1
2
− α x y

) (
x2 + y2 − 1

)
,

ẏ = x + α x2
(
x2 + y2 − 1

)
,

(20)

being α a real parameter. When α 6= 0 the unit circumference x2 + y2 =
1 is a limit cycle of multiplicity 2. When α = 0 the unit circumference
belongs to a continuum of periodic orbits.

Proof. It is clear that the curve Γ = {γ(t) = (cos(t), sin(t)) : 0 ≤ t < 2π}
is a periodic orbit of system (20) and that the curve f0(x, y) = x2+y2−1 = 0
is an invariant curve for system (20), with cofactor k0(x, y) = x. Since

∫ 2π

0

k0(γ(t)) dt =
∫ 2π

0

cos(t) dt = 0,

by Theorem 1 we have that Γ is a periodic orbit of multiplicity at least
two. Furthermore there exists a generalized exponential factor of order 1
associated to the Γ. By using Remark 9 we can find it, obtaining

F1(x, y) = exp
{

ey

x2 + y2 − 1

}
,

with cofactor k1(x, y) = α ey x2. When α 6= 0, the integral of the cofactor
k1(x, y) over γ(t) is:

∫ 2π

0

k1(γ(t)) dt = α

∫ 2π

0

esin(t) cos2(t) dt 6= 0.

Hence, again by Theorem 1, we deduce that when α 6= 0, Γ is a limit cycle
of system (20) of multiplicity exactly two. When α = 0 it is clear that
H = (x2 + y2 − 1) e−y is a first integral of system (1) which is well-defined
over all the plane and, hence, the periodic orbit Γ belongs to a continuum
of periodic orbits, as we wanted to prove.

Proof of Proposition 2. For the sake of clarity we repeat here the
equations of the system

ẋ = −y+(x2 + y2 − 1)
(
α0x + α1y

2 + α2y+α3(1− x2 − 3y2) + α4y
)
,

ẏ = x + (x2 + y2 − 1)
(−1/2− α1xy + α2(−1− x + x2 + y2)+

+2α3xy − α4x) .
(21)

It is clear that the unit circumference Γ = {γ(t) : 0 ≤ t < 2π}, with γ(t) =
(cos(t), sin(t)), is a periodic orbit of system (21). To study its stability we
use the invariant curve f0(x, y) = x2 + y2 − 1 = 0 and Theorem 1. Indeed,
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we will show that f0(x, y) = 0 is a m-solution of system (21) with m = 1, 2, 3
depending on the values of the parameters αi, i = 0, 1, 2, 3.

We note that the cofactor associated to f0(x, y) = 0 is k0(x, y) = −y +
2α0x

2 − 2(x2 + y2 − 1)(α3x− α2y). Therefore,
∫ 2π

0

k0(γ(t)) dt = 2α0

∫ 2π

0

cos2(t) dt.

Hence this value is zero if and only if α0 = 0. Therefore, if α0 6= 0, we have
that the curve f0(x, y) = 0 is a 1-solution of system (21) and thus Γ is a
hyperbolic limit cycle.

We assume that α0 = 0 from now on. We know that there exists a gen-
eralized exponential factor of order 1 associated to f0(x, y) = 0 for system
(21). By using Remark 9 we obtain the following generalized exponential
factor:

F1(x, y) = exp
{

ex

f0(x, y)

}
,

with cofactor

k1(x, y) = ex
(
α1y

2 + (α4 − α2)y + α3(1 + 2x− x2 − 3y2)
)
.

An easy computation exhibits that:
∫

k1(γ(t)) dt = ecos(t) (α2 − α4 + 2α3 sin(t)) + α1

∫
ecos(t) sin2(t) dt.

Therefore,
∫ 2π

0

k1(γ(t)) dt = α1

∫ 2π

0

ecos(t) sin2(t) dt.

It is clear that this value is zero if and only if α1 = 0. Hence, if α1 6= 0, we
deduce that the curve f0(x, y) is a 2-solution of system (21) and Γ is a limit
cycle of multiplicity exactly 2.

We assume that α1 = 0 from now on. Since f0(x, y) = 0 is a m-solution,
with m ≥ 3, of system (21) in this case, we can ensure the existence of a
generalized exponential factor of order 2 associated to it. Using Remark 9,
we find the function:

F2(x, y) = exp
{

e2x − 2e2x ((α2 − α4) + 2α3y) (x2 + y2 − 1)
(x2 + y2 − 1)2

}

which is a generalized exponential factor for system (21) (with α0 = α1 = 0)
associated to f0(x, y) = 0 and of order 2. Its cofactor is:

k2(x, y) = 4e2x (α4 − 2α3y)
(
α3(1 + 2x− x2 − 3y2) + (α4 − α2)y

)
.
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Some computations prove that:∫
k2(γ(t))dt = 2e2 cos(t)

(
α2α4−2α2

3 − α2
4+4α3α4 sin(t)+2α2

3 cos(2t)
)

+8α2α3

∫
e2 cos(t) sin2(t) dt,

which implies that:
∫ 2π

0

k2(γ(t)) dt = 8α2α3

∫ 2π

0

e2 cos(t) sin2(t) dt.

We conclude that this value is zero if and only if α2α3 = 0. We have
just proved that when α0 = α1 = 0 and α2α3 6= 0, the curve f0(x, y) is a
3-solution of system (21) and Γ is a limit cycle of multiplicity exactly 3.

To finish with, we are going to show that when α0 = α1 = 0 and
α2α3 = 0, the periodic orbit Γ belongs to a continuum of periodic orbits.
We encounter a first integral well-defined over all R2, which implies this
fact.

When α0 = α1 = α2 = 0, the function

H = (x2 + y2 − 1) e−x+(2α3y−α4)(x
2+y2−1),

is a first integral of system (21).
When α2 6= 0 and α0 = α1 = α3 = 0, the function

H = e−x (x2 + y2 − 1)
(−1 + 2α2(x2 + y2 − 1)

)α4−α2
2 α2 ,

is a first integral of system (21).

It is well known that at most three limit cycles, taking into account their
multiplicities, can bifurcate from a triple limit cycle, see Theorem 6. Let
us see that this number is achieved in our system. By using the standard
tools utilized to study degenerated Hopf bifurcations, see for instance [3, 7],
we obtain that when |α0| ¿ |α1| ¿ |α2 α3| and α0, α1 and α2 α3 alternate
signs, at least two other limit cycles born from Γ due to its changes of sta-
bility moving the parameters. Since the system has three limit cycles near
Γ they have to be hyperbolic, as we wanted to prove.

Notice that in the above proof the values α0, α1 and α2 α3 associated to
the periodic orbit x2 + y2 − 1 = 0 of system (20) plays a similar role to the
Lyapunov constants associated to a critical point of focus type of a planar
system.

Next, we include an extension of an example given in [8] that shows a
multiple, analytic and non-algebraic limit cycle.
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Example 11. Consider the planar system

ẋ = −y(m− 1)(x2 + y2)+

+
(
y2 − cos(x)

)m−1 (
(x + y) cos(x)− y(x2 + xy + 2y2)

)
,

ẏ =
sin(x)

2
(m− 1)(x2 + y2)+

+
(
y2 − cos(x)

)m−1
(

(x− y)(y2 − cos(x)) + (x2 + y2)
sin(x)

2

)
,

(22)
with m ≥ 1 being an integer number. Then the oval of the curve y2 −
cos(x) = 0 that surrounds the origin is a limit cycle of multiplicity m of
(22).

Proof. First of all, notice that there is no singular point of the system
on the curve y2 − cos(x) = 0. Moreover, this curve is an invariant curve as
straightforward computations show. Its cofactor is:

k0(x, y) =
(
y2 − cos(x)

)m−1
(2y(x− y)− (x + y) sin(x)) .

Hence, we have that the oval surrounding the origin of this curve is a periodic
orbit of system (22). We denote by Γ0 = {γ0(t) : 0 ≤ t < T0} this periodic
orbit where T0 > 0 is its minimal positive period.

In order to show that Γ0 is a limit cycle of multiplicity exactly m we
use Theorem 1. Consider the following generalized exponential factors:
F`(x, y) = exp

{
1/

(
y2 − cos(x)

)`
}

, for ` = 1, 2, . . . , m − 1. It is easy to
see that the cofactor associated to each one of these generalized exponential
factors is:

k`(x, y) = −`
(
y2 − cos(x)

)m−1−`
(2y(x− y)− (x + y) sin(x)) .

This cofactor is analytic in a neighborhood of Γ0 for ` = 1, 2, . . . ,m − 1.
Fixed a natural number m ≥ 1, we note that:

∫ T0

0

ki(γ0(t)) dt = 0, for i = 0, 1, 2, . . . , m− 2,

since these cofactors identically vanish over Γ0. Hence Γ0 has multiplicity
at least m.

In order to prove that its multiplicity is exactly m, we are going to show
that: ∫ T0

0

km−1(γ0(t)) dt 6= 0.
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We do not explicitly know the parameterization γ0(t) of this periodic orbit,
but we know that it is counterclockwise and we can parameterize this oval
in two parts by using the variable x: y = ±

√
cos(x), −π/2 ≤ x ≤ π/2.

We omit a multiplicative factor m − 1 and use that over Γ0, dx/dt =
−y(m − 1)(x2 + y2) (when m = 1, dx/dt = −y(x2 + y2)). Therefore, the
value of the integral is:

∫ π/2

−π/2

2y(x− y)− (x + y) sin(x)
−y(x2 + y2)

∣∣∣∣
y=−

√
cos(x)

dx +

+
∫ −π/2

π/2

2y(x− y)− (x + y) sin(x)
−y(x2 + y2)

∣∣∣∣
y=
√

cos(x)

dx =

= −2
∫ π/2

−π/2

2 cos(x) + x sin(x)√
cos(x) (x2 + cos(x))

dx =

= −4 arctan

(
x√

cos(x)

)∣∣∣∣∣

x=π/2

x=−π/2

= −4π.

Hence, when m > 1 (resp. m = 1) Γ0 is a multiple (resp. hyperbolic) limit
cycle of system (22) of multiplicity exactly m.

Recovering Lyapunov constants. In the work [9], the quadratic sys-
tems of the form:

ẋ = λx−y−bx2−Cxy−dy2,

ẏ = x + λy + ax2 + Axy − ay2,
(23)

where λ, a, b, d, A, B, C are real parameters, are studied, see also [2]. These
quadratic systems are said to be in the Kapteyn canonical form. The origin
of this system is a focus whose order depends on the values of the parame-
ters. We are going to see how to induce the order of the fine focus from
generalized exponential factors. To do so, let us consider the change to
polar coordinates of system (1):

ṙ = r
[
λ+ar

(
cos2(θ) sin(θ)−sin3(θ)

)−br cos3(θ)−dr cos(θ) sin2(θ)+

+Ar cos(θ) sin2(θ) + Cr cos2(θ) sin(θ)
]
,

θ̇ = 1 + ar
(
cos3(θ)− cos(θ) sin2(θ)

)
+ br cos2(θ) sin(θ) + dr sin3(θ)+

+Ar cos2(θ) sin(θ) + Cr cos(θ) sin2(θ).
(24)
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We take the invariant curve r = 0 and 0 ≤ θ < 2π, which corresponds to
the origin of system (23). This curve has as cofactor:

k0(θ, r) = λ + ar
[
cos2(θ) sin(θ)− sin3(θ)

]− br cos3(θ)−
−dr cos(θ) sin2(θ) + Ar cos(θ) sin2(θ) + Cr cos2(θ) sin(θ).

As we have seen, the invariant curve r = 0 is hyperbolic, and therefore the
origin of system (23) is a strong focus, if and only if, the following integral
is different from zero: ∫ 2π

0

k0(θ, 0) dθ = 2πλ.

From our results, when λ = 0 we are able to encounter a generalized expo-
nential factor of order 1 associated to r = 0. We assume that λ = 0 from
now on, and we have that F1(θ, r) = exp{1/r} is a generalized exponential
factor of system (24) with cofactor:

k1(θ, r) = a
(
sin3(θ)− cos2(θ) sin(θ)

)
+ b cos3(θ) + d cos(θ) sin2(θ)

−A cos(θ) sin2(θ) + C cos2(θ) sin(θ).

The value of the integral of this cofactor1 is:
∫ 2π

0

k1(θ, 0) dθ = 0,

which implies that there exists a generalized exponential factor of order 2
associated to r = 0: F2(θ, r) = exp{g2(θ, r)/r2}. Some computations show
that we can define:

g2(θ, r) = 1 +
r

6
(3(C − a− 3c) cos(θ) + (C + c− a) cos(3θ)

−2(d + 5b−A + (A + b− d) cos(2θ)) sin(θ)) ,

and F2(θ, r) is a generalized exponential factor with cofactor k2(θ, r). We
do not give the explicit expression of k2(θ, r) due to its length. The value
of the integral of its cofactor is:

∫ 2π

0

k2(θ, 0) dθ = −1
2

(2a + C) (b + d)π.

Although we do not explicitly give the expressions and computations, it
can be shown that if (2a + C) (b + d) = 0 then there exists a generalized
exponential factor of order 3 associated to r = 0 whose integral over the
cofactor on r = 0 and from θ = 0 to θ = 2π is 0 and that this process can
be continued until solving totally the center-focus problem for this case.

1That the integral of this cofactor vanishes is not a casuality. It is well known that
after a polar blow up the multiplicity of a weak focus is always an odd number.
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