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A. The aim of this paper is to give an explicit formula for the SL2(C)-
twisted Reidemeister torsion as defined in [6] in the case of twist knots. For
hyperbolic twist knots, we also prove that the twisted Reidemeister torsion at the
holonomy representation can be expressed as a rational function evaluated at the
cusp shape of the knot. Tables given approximations of the twisted Reidemeister
torsion for twist knots on some concrete examples are also enclosed.

1. I

Twist knots form a family of special two–bridge knots which include the trefoil
knot and the figure eight knot. The knot group of a two–bridge knot has a partic-
ularly nice presentation with only two generators and a single relation. One could
find our interest in this family of knots in the following facts: first, twist knots ex-
cept the trefoil knot are hyperbolic, and second twist knots are not fibered except
the trefoil knot and the figure eight knot (see Remark2 of the present paper for
details).

In [5], the first author introduced the notion of the twisted Reidemeister torsion
in the adjoint representation associated to an irreducible representation of a knot
group. In [6, Main Theorem], one can find an “explicit” formula which gives the
value of this torsion for fibered knots in terms of the map induced by the mon-
odromy of the knot at the level of the character variety of the knot exterior. In
particular, a practical formula of the twisted Reidemeister torsion for torus knots
is presented in [6, Section 6.2]. One can also find an explicit formula for the
twisted Reidemeister torsion for the figure eight knot in [6, Section 7]. More re-
cently, the last author found [26, Theorem 3.1.2] an interpretation of the twisted
Reidemeister torsion in terms of the twisted Reidemeister torsion polynomial and
gave an explicit formula of the twisted torsion for the twist knot 52.

In the present paper we give an explicit formula of the twisted Reidemeister
torsion for all twist knots. Since twist knots are particular two–bridge knots, this
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paper is a first step in the understanding of the twisted Reidemeister torsion for
two–bridge knots.

O

We recall some properties of twist knots in Section2. In Section3, we give a
recursive description of the character variety of twist knots and an explicit formula
for the cusp shape of hyperbolic twist knots. In Section4, we recall the definition
of the twisted Reidemeister torsion for a knot and an algebraic description of this
invariant. We give formulas for the twisted Reidemeister torsion for twist knots in
Section5. In particular, we show in Subsection5.3 that the twisted Reidemeister
torsion for a hyperbolic twist knot at its holonomy representation is expressed by
using the cusp shape of the hyperbolic structure of the knot complement. The last
part of the paper (Subsection5.5) deals with some remarks on the behavior of the
sequence of twisted Reidemeister torsions for twist knots at the holonomy indexed
by the number of crossings. The Appendix contains concrete examples and tables
of the values of the twisted torsion for some explicit twist knots.
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2. T 

Notation. According to the notation of [8], the twist knots are writtenJ(±2,n),
wheren is an integer. Then crossings are right–handed whenn > 0 and left–
handed whenn < 0.

Here is some important facts about twist knots.

(1) By definition, ifn ∈ {0,1,−1} thenJ(±2,n) is the unknot. In all this paper,
we focus on the knotsJ(±2,n) with |n| > 2.

(2) If we rotate the diagram ofJ(2,n) by a 90 degrees angle clockwise then
we get a diagram of a rational knot in the sense of Conway. In rational
knot notation,J(2,n), n > 0, is represented by the continued fraction

[n,−2] =
1

−2 + 1
n

=
−n

2n− 1
.
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n-crossings n-crossings

F 1. The diagrams ofJ(2,n) andJ(−2,n), n > 0.

Therefore in two–bridge knot notation, forn > 0, we have

J(2,n) = b(2n− 1,−n) = b(2n− 1,n− 1).

Similarly, the knotJ(2,−n), n > 0, is represented by the continued fraction
[−n,−2], thereforeJ(2,−n) = b(2n + 1,n + 1).

On the other hand, the knotJ(−2,n), n > 0, isb(2n+1,n) andJ(−2,−n),
n > 0, isb(2n− 1,n).

(3) Another important observation is the following: the twist knotJ(±2,2m+

1) is isotopic toJ(∓2,2m) (see [8]) and moreoverJ(±2,n) is the mirror
image ofJ(∓2,−n).

As a consequence,we will only consider the twist knotsJ(2,n), where
n is an integer such that|n| > 2. From now on, we adopt in the sequel the
following terminology: a twist knotJ(2,n) is said to beeven(resp.odd)
if n is even (resp. odd).

Example. Note that in Rolfsen’s table [18], the trefoil knot 31 = J(2,2) = b(3,1),
the figure eight knot 41 = J(2,−2) = b(5,3), 52 = J(2,4) and 61 = J(2,−4) etc.

Notation. For a knotK in S3, we letEK (resp. Π(K)) denote the exterior (resp.
the group) ofK, i.e. EK = S3\N(K), whereN(K) is an open tubular neighborhood
of K (resp.Π(K) = π1(EK)).

Convention. Suppose thatS3 is oriented. The exterior of a knot is thus oriented
and we know that it is bounded by a 2-dimensional torusT2. This boundary in-
herits an orientation by the convention“the inward pointing normal vector in the
last position”. Let int(·, ·) be the intersection form on the boundary torus induced
by its orientation. The peripheral subgroupπ1(T2) is generated by the meridian–
longitude system (µ, λ) of the knot. If we suppose that the knot is oriented, then
µ is oriented by the convention that the linking number of the knot withµ is +1.
Next, λ is the oriented preferred longitude using the rule int(µ, λ) = +1. These
orientation conventions will be used in the definition of the twisted sign–refined
Reidemeister torsion.
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Twist knots live in the more general family of two-bridge knots. The group
of such a knot admits a particularly nice Wirtinger presentation with only two
generators and a single relation. Such Wirtinger presentations of groups of twist
knots are given in the two following facts (see for example [18] or [8] for a proof).
We distinguish even and odd cases and suppose thatm ∈ Z.

Fact 1. The knot group ofJ(2,2m) admits the following presentation:

(1) Π(J(2,2m)) = 〈x, y |wmx = ywm〉
wherew is the word[y, x−1] = yx−1y−1x.

Fact 2. The knot group ofJ(2,2m+ 1) admits the following presentation:

(2) Π(J(2,2m+ 1)) = 〈x, y |wmx = ywm〉
wherew is the word[x, y−1] = xy−1x−1y.

One can easily describe the peripheral–system (µ, λ) of a twist knot. It is ex-
pressed in the knot group as:

µ = x andλ = (
←
w)mwm,

where we let
←
w denote the word obtained fromw by reversing the order of the

letters.

Remark1. The knot group of a two–bridge knotK admits a distinguished Wirtin-
ger presentation of the following form:

Π(K) = 〈x, y |Ωx = yΩ〉 whereΩ = xε1yεn xε2yεn−1 · · · xεnyε1, εi = ±1.

With the above notation, forK = J(2,2m), m ∈ Z∗, the wordΩ is:

(3) Ωm =


wm if m< 0,

x−1(w)m−1y−1 if m> 0.

Herew = (
←
w)
−1

, i.e. the wordw is obtain fromw by changing each of its letters
by its reverse. Of course this choice is strictly equivalent to presentation (1). But
in a sense, whenm > 0 the wordwm does not give a “reduced” relation (some
cancelations are possible inwmxw−my−1) which is not the case forΩm.

Some more elementary properties of twist knots are discussed in the following
remark.

Remark2. (1) The knot groupsΠ(J(2,2m+1)) andΠ(J(2,−2m)) are isomor-
phic by interchangingx andy. Therefore it is enough to consider the case
of even twist knots.

(2) The genus of a twist knot is1 ([1, p. 99]). Thus, the only torus knot which
is a twist knot is the trefoil knot 31.
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(3) Twist knots are hyperbolic knotsexcept in the case of the trefoil knot (see
[13]).

(4) It is well known (see for example [18]) that the Alexander polynomial of
the twist knotJ(2,2m) is given by

∆J(2,2m)(t) = mt2 + (1− 2m)t + m.

Moreover, using the mirror image invariance of the Alexander polyno-
mial, one has∆J(2,2m+1)(t) = ∆J(2,−2m)(t). Thus the Alexander polynomial
becomes monic if and only ifm is±1. As a consequence,the knotJ(2,2m)
is not fibered(since its Alexander polynomial is not monic) except for
m = ±1, that is to say except for the trefoil knot and the figure eight knot,
which are known to be fibered knots.

F 2. The Whitehead link.

(5) Twist knot exteriors can be obtained by surgery on the trivial component
of the Whitehead linkW (see Figure2). More precisely,EJ(2,−2m) =

W(1/m) is obtained by a surgery of slope1/m on the trivial component
of the Whitehead linkW, see [18, p. 263] for a proof. As a consequence,
twist knots areall virtually fibered, see [12].

3. O  SL2(C)-   - 

3.1. Review on theSL2(C)-character variety of knot groups. Given a finitely
generated groupπ, we let

R(π; SL2(C)) = Hom(π; SL2(C))

denote the space of SL2(C)-representations ofπ. As usual, this space is endowed
with the compact–open topology. Hereπ is assumed to have the discrete topology
and the Lie group SL2(C) is endowed with the usual one.

A representationρ : π→ SL2(C) is calledabelianif ρ(π) is an abelian subgroup
of SL2(C). A representationρ is calledreducibleif there exists apropersubspace
U ⊂ C2 such thatρ(g)(U) ⊂ U, for all g ∈ π. Of course, any abelian representation
is reducible (while the converse is false in general). A non reducible representation
is calledirreducible.
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The group SL2(C) acts on the representation spaceR(π; SL2(C)) by conjuga-
tion, but the naive quotientR(π; SL2(C))/SL2(C) is not Hausdorff in general. Fol-
lowing [4], we will focus on thecharacter varietyX(π) = X(π; SL2(C)) which is
the set ofcharactersof π. Associated to the representationρ ∈ R(π; SL2(C)), its
characterχρ : π → C is defined byχρ(g) = tr(ρ(g)), where tr denotes the trace of
matrices. In some senseX(π) is the “algebraic quotient” ofR(π; SL2(C)) by the
action by conjugation of PSL2(C). It is well known thatR(π,SL2(C)) and X(π)
have the structure of complex algebraic affine varieties (see [4]).

Let Rirr(π; SL2(C)) denote the subset of irreducible representations ofπ, and
Xirr(π) denote its image under the mapR(π; SL2(C)) → X(π). Note that two irre-
ducible representations ofπ in SL2(C) with the same character are conjugate by an
element of SL2(C), see [4, Proposition 1.5.2]. Similarly, we writeXnab(Π(K)) for
the image of the setRnab(Π(K)) of non–abelian representations inX(Π(K)). Note
thatXirr(Π(K)) ⊂ Xnab(Π(K)) and observe that this inclusion is strict in general.

3.2. Review on the character varieties of two–bridge knots.Here we briefly
review Riley’s method [17] for describing the non–abelian part of the representa-
tion space of two–bridge knot groups.

The knot group of a two–bridge knotK admits a presentation of the following
form:

(4) Π(K) = 〈x, y |Ωx = yΩ〉 whereΩ = xε1yεn xε2yεn−1 · · · xεnyε1, εi = ±1.

We use the following notation:

C =

(
t 1
0 1

)
, D =

(
t 0

−tu 1

)
,

C1 =

(
t 1
0 t−1

)
, D1 =

(
t 0
−u t−1

)
,

C2 =

(
t t−1

0 t−1

)
, D2 =

(
t 0

−tu t−1

)
.

Remark3. Note thatC andD can be obtained by conjugatingtC1 andtD1 by the
diagonal matrixU =

( t−1/2 0
0 t1/2

)
, and replacingt2 by t. We also note thatC2 andD2

are conjugate toC1 andD1 via U.

Fact 3. If M1, M2 are non–commuting elements inSL2(C) with same traces, then
there exists a pair(t,u) ∈ C2 such thatM1 and M2 are conjugated toC2 and D2

respectively.

Combining Fact3 and Remark3, we obtain:

Claim 4. If M1, M2 are non-commuting elements inSL2(C) with same traces, then
M1 andM2 are simultaneously conjugated toC1 andD1 respectively.
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For a two–bridge knotK, x andy are conjugate elements inΠ(K) and represent
meridians of the knot, thereforeρ(x) andρ(y) have same traces. Ifρ(x) andρ(y)
do not commute, i.e. ifρ is non–abelian, then up to a conjugation one can assume
thatρ(x) andρ(y) are the matricesC1 andD1 respectively.

Proposition 5. The homomorphismρ : Π(K) → GL2(C) defined byρ(x) = C and
ρ(y) = D is a non–abelian representation ofΠ(K) if and only if the pair(t,u) ∈ C2

satisfies the following equation

(5) w1,1 + (1− t)w1,2 = 0

whereW = ρ(Ω) =

(
w1,1 w1,2

w2,1 w2,2

)
.

Conversely, every non–abelian representation is conjugated to a representation
satisfying Equation (5).

Proof. A direct matrix computation shows that the requirementWC = DW is
equivalent to the following two equations:

w1,1 = (t − 1)w1,2 andw2,1 = −tuw1,2.

The second equation is just a consequence of the fact thatW is palindromic and
therefore is not really a requirement at all. Indeed, usingWT to denote the trans-
pose of the matrixW, we haveWT = DT ε1CT εnDT ε2CT εn−1 · · ·DT εnCT ε1. Now
CT = VDV−1 and DT = VCV−1 whereV =

( (−tu)1/2 0
0 (−tu)−1/2

)
. This provides

V−1WTV = W, which immediately gives the second equation above. �

Notation. We letφK(t,u) = w1,1 + (1− t)w1,2 denote the left hand side of Equation
(5) and call it theRiley polynomialof K.

The same proof provides a sometimes more convenient result:

Proposition 6. The homomorphismρ : Π(K)→ SL2(C) defined byρ(x) = C1 and
ρ(y) = D1 is a non–abelian representation ofΠ(K) if and only if the pair(t,u) ∈ C2

satisfies the following equation:

(6) w1,1 + (t−1 − t)w1,2 = 0

whereW = ρ(Ω).
Conversely, every non–abelian representation is conjugated to a representation

satisfying Equation (6).

Similarly, if ρ(x) = C2 andρ(y) = D2, then Riley’s equation is

w1,1 + (1− t2)w1,2 = 0.

3.3. The holonomy representation of a hyperbolic twist knot.
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3.3.1. Some generalities.It is well known that the complete hyperbolic structure
of a hyperbolic knot complement determines a unique discrete faithful represen-
tation of the knot group in PSL2(C), called theholonomy representation. It is
proved [20, Proposition 1.6.1] that such a representation lifts to SL2(C) and deter-
mines two representations in SL2(C).

The trace of the peripheral–system at the holonomy is±2 because their images
by the holonomy are parabolic matrices. More precisely, Calegari proved [2] that
the trace of the longitude at the holonomy is always−2 and the trace of the merid-
ian at the holonomy is±2, depending on the choice of the lift. We summarize all
this in the following important fact.

Fact 7. Let ρ0 be one of the two lifts of the discrete and faithful representation
associated to the complete hyperbolic structure of a hyperbolic knotK and let
T2 denote the boundary of the knot exterior. The restriction ofρ0 to π1(T2) is
conjugate to the parabolic representation such that

µ 7→ ±
(

1 1
0 1

)
, λ 7→

( −1 c

0 −1

)
.

Herec = c(λ, µ) ∈ C is called the cusp shape ofK.

Remark4. The universal cover of the exterior of a hyperbolic knot is the hyper-
bolic 3-spaceH3. The cusp shape can be seen as the ratio of the translations of the
parabolic isometries ofH3 induced by projections to PSL2(C). Of course, the cusp
shapec = c(λ, µ) depends on the choice of the basis (µ, λ) for π1(T2). A change in
the basis ofπ1(T2) shiftsc by an integral M̈obius transformation.

3.3.2. Holonomy representations of twist knots.This subsection is concerned with
the SL2(C)-representations which are lifts of the holonomy representation in the
special case of (hyperbolic) twist knots. Especially, we want to precise the images,
up to conjugation, of the group generatorsx andy (see the group presentation (4)).

Lemma 8. LetK be a hyperbolic two–bridge knot and suppose that its knot group
admits the following presentationΠ(K) = 〈x, y |Ωx = yΩ〉. If ρ0 denotes a lift in
SL2(C) of the holonomy representation, thenρ0 is given by, up to conjugation,

x 7→ ±
(

1 1
0 1

)
, y 7→ ±

(
1 0
−u 1

)
,

whereu is a root of Riley’s equationφK(1,u) = 0 of K.

Proof. It follows from Fact7 that each lift of the holonomy representation maps
the meridian to±

(
1 1
0 1

)
. It is known that the lifts of the holonomy representation

are irreducible SL2(C)-representations, in particular, non–abelian ones. Hence we
can construct the SL2(C)-representations which are conjugate to the lifts of the
holonomy representation by using roots of Riley’s equation. Using Section3.2, if
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x is sent to±
(

1 1
0 1

)
theny is sent to±

(
1 0
−u 1

)
, whereu is a root of Riley’s equation

φK(1,u) = 0. �

Notation. If we let A be an element of SL2(C), then the adjoint actions ofA and
−A are same. So, we use the SL2(C)-representation such that

x 7→
(

1 1
0 1

)
, y 7→

(
1 0
−u 1

)
(whereu is such thatφK(1,u) = 0)

as a lift of the holonomy representation and we improperly call it theholonomy
representation.

3.4. On parabolic representations of twist knot groups. In this subsection, we
are interested in theparabolic representationsof (hyperbolic) two–bridge knot
groups and especially twist knot groups. The holonomy representation is one of
them. Lemma8 characterizes the holonomy representation algebraically and says
that it corresponds to a root of Riley’s equationφK(1,u) = 0. A natural and in-
teresting question is the following: whose roots of Riley’s equationφK(1,u) = 0
correspond to the holonomy representation? Here we will give a geometric char-
acterization of such roots.

3.4.1. Crucial remarks.We begin this section by some elementary but important
remarks on the roots of Riley’s equationφK(1,u) = 0 corresponding to holonomy
representations.

(1) One can first notice that such roots are necessarilycomplex numbers which
are not real, because the discrete and faithful representation is irreducible
andnot conjugate to a real representation (i.e. a representation such that
the image of each element is a matrix with real entries).

(2) One can also observe that holonomy representations correspond toa pair
of complex conjugate rootsof Riley’s equationφK(1,u) = 0 as it is easy
to see.

3.4.2. Generalities: the case of two–bridge knots.Let K be a hyperbolic two–
bridge knot. Suppose that a presentation of the knot groupΠ(K) is given as in
Equation (4) by

Π(K) = 〈x, y |Ωx = yΩ〉, whereΩ is a word inx, y.

The longitude ofK is of the form:λ =
←
Ω Ω xn. Heren is an integer such that the

sum of the exponents in the wordλ is 0 and we repeat that
←
Ω denotes the word

obtained fromΩ by reversing the order of the letters.
Let ρ : Π(K)→ SL2(C) be a representation such that:

x 7→ ±
(

1 1
0 1

)
, y 7→ ±

(
1 0
−u 1

)
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whereu is necessarily a root of Riley’s equationφK(1,u) = 0. Suppose that

ρ(Ω) =

(
w1,1 w1,2

w2,1 w2,2

)

wherewi, j is a polynomial inu for all i, j ∈ {1,2}.
Riley’s method gives us the following identities (see Section3.2):

w1,1 = 0 anduw1,2 + w2,1 = 0.

Thus

ρ(Ω) =

(
0 w1,2

−uw1,2 w2,2

)
.

The fact thatρ(w) ∈ SL2(C) further gives the following equation:

(7) uw2
1,2 = 1.

The crucial point to computeρ(λ) is to expressρ(
←
w) with the help ofρ(w).

Consider the diagonal matrix:

i =

(
i 0
0 −i

)
∈ SL2(C),

wherei stands for a square root of−1. LetAd denote the adjoint representation of
the Lie group SL2(C). Then the following identities hold:

ρ(x−1) = Adi(ρ(x)), ρ(y−1) = Adi(ρ(y)) andρ(Ω−1) = Adi(ρ(
←
Ω)).

Thus, we have

ρ(
←
Ω) = Adi(ρ(Ω−1)) =

(
w2,2 w1,2

w2,1 w1,1

)
.

Next, a direct computation gives:

(8) ρ(λ) = ρ(
←
Ω)ρ(Ω)ρ(x)n =

( −uw2
1,2 −nuw2

1,2 + 2w1,2w2,2

0 −uw2
1,2

)
.

Combining Equations (7) and (8), we obtain

(9) ρ(λ) =

( −1 −n + 2w1,2w2,2

0 −1

)
.

And we conclude that thecusp shape ofK is

(10) c = n− 2w1,2w2,2.

Remark5. In particular, Equation (9) gives us, by an elementary and direct com-
putation, Calegari’s result [2]: tr ρ0(λ) = −2 for the discrete faithful representation
ρ0 associated to the complete hyperbolic structure of the exterior of a (hyperbolic)
two–bridge knot.
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3.4.3. The special case of twist knots.In the case of hyperbolic twist knots, we
can further estimatewi, j in Equation (10). In fact, we only consider the case where
K = J(2,2m) in what follows. The groupΠ(K) of such a knot has the following
presentation:

Π(K) = 〈x, y |wmx = ywm〉,
wherew is the commutator [y, x−1] (see Fact1, Section2). A direct computation
of the commutatorρ(w) = [ρ(y), ρ(x)−1] gives:

W = ρ(w) =

(
1− u −u

u2 u2 + u + 1

)
(whereu is such thatφK(1,u) = 0).

Using the Cayley–Hamilton identity, it is easy to obtain the following recursive
formula for the powers of the matrixW:

(11) Wk − (u2 + 2)Wk−1 + Wk−2 = 0, k > 2.

Equation (11) implies
w2,2 = −(u + 2)w1,2.

Sincen = 0 anduw2
1,2 = 1, thecusp shape of the twist knotK is:

c = n + (2u + 4)w2
1,2 =

2u + 4
u

.

In other words, the rootu0 of Riley’s equationφK(1,u) = 0 corresponding to
the holonomy representation satisfies the following equation:

(12) u0 =
4

c − 2
,

wherec is the cusp shape of the knot exterior.

Remark6. Equation (12) gives a geometric characterization of the (pair of com-
plex conjugate) roots of Riley’s equationφK(1,u) = 0 associated to the holonomy
representation in terms of the cusp shape, a geometric quantity associated to each
cusped hyperbolic 3-dimensional manifold.

3.5. The character varieties of twist knots: a recursive description.T. Le [11]
gives a recursive description of the SL2(C)-character variety of two–bridge knots
and apply it to obtain anexplicit description of the SL2(C)-character variety of
torus knots. Here we apply his method to obtain an explicit recurrent description
of the SL2(C)-character variety of twist knots.

Let n = 2m or 2m+ 1, recall thatΠ(J(2,n)) = 〈x, y |Ωmx = yΩm〉, whereΩm is
a word inx, y (see Facts1–2).

Notation. Let γ ∈ Π(J(2,n)). Following a notation introduced in [3], we let

Iγ : X(Π(J(2,n)))→ C

be the trace–function defined byIγ : ρ 7→ tr(ρ(γ)).
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Let a = Ix, b = Ixy and recall the following useful formulas forA, B,C ∈
SL2(C):

(13) tr(A−1) = tr(A) and tr(AB) = tr(BA),

(14) tr(AB) + tr(A−1B) = tr(A)tr(B),

(15) tr(ABA−1B−1) = −2− tr(A)tr(B)tr(AB) + (tr(A))2 + (tr(B))2 + (tr(AB))2.

As x andy are conjugate elements inΠ(J(2,n)), we haveIy = a = Ix. If γ is a
word in the lettersx andy, thenIγ can always be expressed as a polynomial func-
tion in a andb. For example, combining the usual Formulas (13), (14) and (15),
one can easily observe that forw = [y, x−1] = yx−1y−1x:

(16) Iw = −2− a2b + 2a2 + b2.

The character variety ofΠ(J(2,n)) is thus parametrized bya andb. Here is a
practical description of it:

(1) We first consider the abelian part of the character variety. It is easy to see
that the equationa2−b−2 = 0 determines the abelian part of the character
variety of any knot group.

(2) Next, consider the non-abelian part of the character variety ofΠ(J(2,n)),
suppose that the length of the wordΩm is 2k + 2 (we know that the length
of Ωm is even). According to [11, Theorem 3.3.1], the non–abelian part of
the character variety ofΠ(J(2,n)), n = 2mor 2m+ 1, is determined by the
polynomial equation:

Φm(a,b) = 0,

where

Φm(a,b) = IΩm − IΩ′m + · · · + (−1)kI
Ω

(k)
m

+ (−1)k+1.

Here we adopt the following notation: ifΛ is a word thenΛ′ denotes the
word obtained fromΛ by deleting the two end letters.

Let us give the two simplest examples to illustrate this general result and find
again some well–known facts.

Example 1. The trefoil knot 31 is the twist knotJ(2,2). With the above notation,
one hasΩ1 = x−1y−1. Thus applying the above method, the non–abelian part of
the character variety is given by the polynomial equation:

Φ1(a,b) = Ix−1y−1 − 1 = 0,

which reduces to

b = 1.
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Example 2. The figure eight knot 41 is the twist knotJ(2,−2). With the above
notation, one hasΩ−1 = x−1yxy−1. Thus, the non–abelian part of the character
variety of the group of the figure eight knot is given by the polynomial equation:

Φ−1(a,b) = Ix−1yxy−1 − Iyx + 1 = 0,

which reduces, using Equation (16), to:

2a2 + b2 − a2b− b = 1.

Now, we turn back to the general case and only consider the twist knotJ(2,2m)
(see Item (2) of Remark2). Recall that (see Remark1):
(17)

Π(J(2,2m)) = 〈x, y | Ωmx = yΩm〉, whereΩm =


wm if m< 0,

x−1(w)m−1y−1 if m> 0.

Herew = [y, x−1] andw = [y−1, x] and observe that the length of the wordΩm is
4m, if m< 0, and 4m− 2, if m> 0.

Our method is based on the fact that the wordΩm in the distinguished Wirtinger
presentation (17) of Π(J(2,2m)) presents a particularly nice “periodic” property.
This property is discussed in the following obvious claim.

Claim 9. For m ∈ Z∗, we have

Ω(4)
m =


wm+2 if m6 −2,

x−1(w)m−3y−1 if m> 3.

Based on Claim9, for m> 0, we adopt the following notation:

S+
m = IΩm+2, T+

m = I(Ωm+2)′ , U+
m = I(Ωm+2)′′ andV+

m = I(Ωm+2)′′′ ,

and similarly, form6 0,

S−m = IΩm−2, T−m = I(Ωm−2)′ , U−m = I(Ωm−2)′′ andV−m = I(Ωm−2)′′′ .

The Cayley–Hamilton identity applied to the matrixA2 ∈ SL2(C) gives

Am
(
A4 − (tr A2)A2 + 1

)
= 0.

Write c(a,b) = Iw2; thus form> 0, we have

S+
m+4 − c(a,b)S+

m+2 + S+
m = 0

and same relations forT+
m, U+

m andV+
m hold. Similarly, we have

S−m−4 − c(a,b)S−m−2 + S−m = 0

and same relations forT−m, U−m andV−m also hold.
If we write R±m = S±m−T±m+U±m−V±m for m ∈ Z, then above computations can be

summarized in the following claim which give us a recursive relation for (R±m)m∈Z.
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Claim 10. The sequence of polynomials
(
R±m(a,b)

)
m∈Z satisfies the following re-

cursive relation:

(18) R±m±4 − c(a,b)R±m±2 + R±m = 0.

In Equation (18), using Formula (14) and Equation (16), we have:

c(a,b) = Iw2 = (Iw)2−2 = 2+4a2b−8a2−4b2+a4b2−4a4b−2a2b3+4a4+4a2b2+b4.

Let v be such that:

(19) v + v−1 = c(a,b).

For m ∈ Z∗, we distinguish four cases to derive helpful formulas forΦm in the
case of twist knots.

• Case 1:m> 0 is even.
Let m = 2l, with l > 0, and setr i = R2i . Then

r i+2 = c(a,b)r i+1 − r i , for i > 0.

As we have supposed thatv + v−1 = c(a,b) and following a standard
argument in combinatorics (see e.g. [14, p. 322]), we have the general
formula (which can also be proved by induction)r i = Mvi + Nv−i , where
M andN are determined by the initial conditions:

r0 = R+
0 = M+

0 + N+
0

r1 = R+
2 = M+

0 v + N+
0 v−1

Further observe that:

r0 = IΩ2 − IΩ′2 + IΩ′′2 − IΩ′′′2
= Ix−1wy−1 − Iw + b− 1.

So, we have

Φm+2 = R+
m + R+

m−2 + · · · + R+
0

= r l + · · · + r0

=

l∑

i=0

(M+
0 vi + N+

0 v−i)

= M+
0

vl+1 − 1
v− 1

+ N+
0

v−l−1 − 1
v−1 − 1

.

• Case 2:m< 0 is even.
Let m = −2l, with l > 0, and setr i = R−−2i , i > 0. Similar to the first

case,
r i+2 = c(a,b)r i+1 − r i , for i > 0.

The initial conditions are
r0 = R−0 = M−0 + N−0
r1 = R−−2 = M−0 v + N−0 v−1
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Further observe that:

r0 = IΩ−2 − IΩ′−2
+ IΩ′′−2

− IΩ′′′−2
= Iw2 − Iy(w)−1x + Iw − b.

Thus, we have

Φm−2 = R−m + R−m+2 + · · · + R−0 + 1

= r l + · · · + r0 + 1

=

l∑

i=0

(M−0 vi + N−0 v−i) + 1

= M−0
vl+1 − 1
v− 1

+ N−0
v−l−1 − 1
v−1 − 1

+ 1.

• Case 3:m> 0 is odd.
Let m = 2l + 1, with l > 0, and setr i = R+

2i+1, i > 0. Similar to the first
case,

r i+2 = c(a,b)r i+1 − r i , for i > 0.

The initial conditions are
r0 = R+

1 = M+
1 + N+

1

r1 = R+
3 = M+

1 v + N+
1 v−1

Further observe that:

r0 = IΩ3 − IΩ′3 + IΩ′′3 − IΩ′′′3
= Ix−1(w)2y−1 − I(w)2 + Ixwy− Iw.

Thus,

Φm+2 = R+
m + R+

m−2 + · · · + R+
1 + b− 1

= r l + · · · + r0 + b− 1

=

l∑

i=0

(M+
1 vi + N+

1 v−i) + b− 1

= M+
1

vl+1 − 1
v− 1

+ N+
1

v−l−1 − 1
v−1 − 1

+ b− 1.

• Case 4:m< 0 is odd.
Let m = −2l − 1, with l > 0, and setr i = R−−2i−1, i > 0. Similar to the

first case,
r i+2 = c(a,b)r i+1 − r i , for i > 0.

The initial conditions are
r0 = R−−1 = M−1 + N−1
r1 = R−−3 = M−1 v + N−1 v−1

Further observe that:

r0 = IΩ−3 − IΩ′−3
+ IΩ′′−3

− IΩ′′′−3
= Iw3 − Iy(w)−2x + Iw2 − Iy−1w−1x−1.
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Similarly to the previous case, we have:

Φm−2 = R−m + R−m+2 + · · · + R−−1 + Iw − b + 1

= r l + · · · + r0 + Iw − b + 1

=

l∑

i=0

(M−1 vi + N−1 v−i) + Iw − b + 1

= M−1
vl+1 − 1
v− 1

+ N−1
v−l−1 − 1
v−1 − 1

− a2b + 2a2 + b2 − b− 1.

If we adopt the following notation:

(20) M±j (v, l) = M±j
vl+1 − 1
v− 1

andN±j (v, l) = N±j
v−l−1 − 1
v−1 − 1

, j = 0,1,

then we summarize our computations in the following proposition.

Proposition 11. The polynomial equation which describes the character variety of
the group of the twist knotJ(2,n), wheren = 2mor 2m+1, is given byΦm(a,b) = 0
where the sequence(Φm(a,b))m∈Z is recursively defined as follows:

Φ0(a,b) = 1, Φ1(a,b) = b− 1, Φ−1(a,b) = −a2b + 2a2 + b2 − b− 1,

and form> 1

(21) Φm+2(a,b) =


M+

0 (v, l) + N+
0 (v, l) if m = 2l is even,

M+
1 (v, l) + N+

1 (v, l) + b− 1 if m = 2l + 1 is odd,

and
(22)

Φ−m−2(a,b) =


M−0 (v, l) + N−0 (v, l) + 1 if m = 2l is even,

M−1 (v, l)+N−1 (v, l)−a2b+2a2+b2 − b− 1 if m = 2l + 1 is odd.

Herev is defined in Equation (19) andM±k (v, l),N±k (v, l) in Equation (20).

Remark7. Observe that in Equations (21) and (22), the partM±k (v, l) + N±k (v, l) is
the “recursive” part. In Equation (21) the partb − 1 corresponds toΦ1(a,b), and
in Equation (22) the part−a2b + 2a2 + b2 − b − 1 corresponds toΦ−1(a,b), see
Examples1 and2.

4. R    R     

4.1. Preliminaries: the sign-determined torsion of a CW-complex.We review
the basic notions and results about the sign–determined Reidemeister torsion intro-
duced by Turaev which are needed in this paper. Details can be found in Milnor’s
survey [15] and in Turaev’s monograph [23].
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Torsion of a chain complex.Let C∗ = (0 //Cn
dn //Cn−1

dn−1 // · · · d1 //C0
//0)

be a chain complex of finite dimensional vector spaces overC. Choose a basisci

for Ci and a basishi for the i-th homology groupHi = Hi(C∗). The torsion ofC∗
with respect to these choices of bases is defined as follows.

Let bi be a sequence of vectors inCi such thatdi(bi) is a basis ofBi−1 =

im(di : Ci → Ci−1) and leth̃i denote a lift ofhi in Zi = ker(di : Ci → Ci−1). The
set of vectorsdi+1(bi+1)̃hibi is a basis ofCi . Let [di+1(bi+1)̃hibi/ci ] ∈ C∗ denote
the determinant of the transition matrix between those bases (the entries of this
matrix are coordinates of vectors indi+1(bi+1)̃hibi with respect toci). Thesign-
determined Reidemeister torsionof C∗ (with respect to the basesc∗ andh∗) is the
following alternating product (see [22, Definition 3.1]):

(23) Tor(C∗, c∗,h∗) = (−1)|C∗ | ·
n∏

i=0

[di+1(bi+1)̃hibi/ci ](−1)i+1 ∈ C∗.

Here
|C∗| =

∑

k>0

αk(C∗)βk(C∗),

whereαi(C∗) =
∑i

k=0 dimCk andβi(C∗) =
∑i

k=0 dimHk.
The torsion Tor(C∗, c∗,h∗) does not depend on the choices ofbi and h̃i . Note

that if C∗ is acyclic (i.e. ifHi = 0 for all i), then|C∗| = 0.

Torsion of a CW-complex.Let W be a finite CW-complex andρ be a SL2(C)-
representation ofπ1(W). We define thesl2(C)ρ-twisted chain complex ofW to
be

C∗(W; sl2(C)ρ) = C∗(W̃;Z) ⊗Z[π1(W)] sl2(C)ρ.

Here C∗(W̃;Z) is the complex of the universal cover with integer coefficients
which is in fact aZ[π1(W)]-module (via the action ofπ1(W) on W̃ as the cover-
ing group), andsl2(C)ρ denotes theZ[π1(W)]-module via the compositionAd◦ ρ,
whereAd: SL2(C) → Aut(sl2(C)),A 7→ AdA, is the adjoint representation. The
chain complexC∗(W; sl2(C)ρ) computes thesl2(C)ρ-twisted homology ofW which
we denote asHρ

∗ (W) = Hi(W; Ad◦ ρ).
Let

{
e(i)

1 , . . . , e
(i)
ni

}
be the set ofi-dimensional cells ofW. We lift them to the

universal cover and we choose an arbitrary order and an arbitrary orientation for
the cells

{
ẽ(i)

1 , . . . , ẽ
(i)
ni

}
. If B = {a,b, c} is an orthonormal basis ofsl2(C), then we

consider the corresponding basis overC

ci
B =

{
ẽ(i)

1 ⊗ a, ẽ(i)
1 ⊗ b, ẽ(i)

1 ⊗ c, . . . , ẽ(i)
ni
⊗ a, ẽ(i)

ni
⊗ b, ẽ(i)

ni
⊗ c

}

of Ci(W; sl2(C)ρ) = C∗(W̃;Z) ⊗Z[π1(W)] sl2(C)ρ. Now choosing for eachi a basishi

for thesl2(C)ρ-twisted homologyHρ
i (W), we can compute the torsion

Tor(C∗(W; sl2(C)ρ), c∗B,h
∗) ∈ C∗.
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The cells
{
ẽ(i)

j

}
06i6dimW,16 j6ni

are in one–to–one correspondence with the cells

of W, their order and orientation induce an order and an orientation for the cells{
e(i)

j

}
06i6dimW,16 j6ni

. Again, corresponding to these choices, we get a basisci over

R for Ci(W;R).
Choose anhomology orientationof W, which is an orientation of the real

vector spaceH∗(W;R) =
⊕

i>0 Hi(W;R). Let o denote this chosen orientation.
Provide each vector spaceHi(W;R) with a reference basishi such that the basis{
h0, . . . , hdimW

}
of H∗(W;R) is positively oriented with respect too. Compute the

sign–determined Reidemeister torsion Tor(C∗(W;R), c∗,h∗) ∈ R∗ of the resulting
based and homology based chain complex and consider its sign

τ0 = sgn(Tor(C∗(W;R), c∗,h∗)) ∈ {±1}.
We define the twisted (sign–refined) Reidemeister torsion ofW to be

(24) TOR(W; sl2(C)ρ,h∗, o) = τ0 · Tor(C∗(W; sl2(C)ρ), c∗B,h
∗) ∈ C∗.

This definition only depends on the combinatorial class ofW, the conjugacy class
of ρ, the choice ofh∗ and the cohomology orientationo. It is independent of the
orthonormal basisB of sl2(C), of the choice of the lifts ˜e(i)

j , and of the choice of
the positively oriented basis ofH∗(W;R). Moreover, it is independent of the order
and the orientation of the cells (because they appear twice).

One can prove that TOR is invariant under cellular subdivision, homeomor-
phism and simple homotopy equivalences. In fact, it is precisely the sign (−1)|C∗ |

in Equation (23) which ensures all these important invariance properties to hold.

4.2. Regularity for representations. In this subsection, we briefly review two
notions of regularity (see [6], [7] and [16]). In the sequelK ⊂ S3 denotes an
oriented knot.

We say thatρ ∈ Rirr(Π(K); SL2(C)) is regular if dim Hρ
1(EK) = 1. This notion

is invariant by conjugation and thus it is well defined for irreducible characters.

Example 3. For the trefoil knot and for the figure eight knot, one can prove that
each irreducible representation of its group in SL2(C) is regular (see [5] and [16])

Note that for a regular representationρ : Π(K)→ SL2(C), we have

dimHρ
1(EK) = 1, dimHρ

2(EK) = 1 andHρ
j (EK) = 0 for all j , 1,2.

Let γ be a simple closed unoriented curve in∂EK . Among irreducible represen-
tations we focus on theγ-regular ones. We say that an irreducible representation
ρ : Π(K)→ SL2(C) is γ-regular, if (see [16, Definition 3.21]):

(1) the inclusionι : γ ↪→ EK induces asurjectivemap

ι∗ : Hρ
1(γ)→ Hρ

1(EK),

(2) if tr(ρ(π1(∂EK))) ⊂ {±2}, thenρ(γ) , ±1.
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It is easy to see that this notion is invariant by conjugation, thus the notion ofγ-
regularity is well-defined for irreducible characters. Also observe that aγ-regular
representation is necessarily regular (the converse is false in general for an arbi-
trary curve).

Example 4. For trefoil knot, all irreducible representations of its group in SL2(C)
areλ-regular (see [5]).

For the figure eight knot, one can prove that each irreducible representation of
its group in SL2(C) areλ-regularexcepttwo.

We close this section with an important fact concerning hyperbolic knots

Fact 12 ([16]). Let K be a hyperbolic knot and consider the holonomy represen-
tation ρ0 associated to the hyperbolic structure. Letγ be any simple closed curve
in the boundary ofEK such thatρ0(γ) , ±1, thenρ0 is γ-regular.

In particular, for a hyperbolic knot the holonomy representationρ0 is always
µ-regular andλ-regular.

Applying [16, Proposition 3.26] to a hyperbolic knot exteriorEK , we obtain
that for any simple closed curveγ, irreducible and non-γ-regular characters are
contained in the set of zeros of the differential of the trace–functionIγ.

Remark8. Since the trace–functionIγ is a regular function on the character variety,
the set of irreducible and non-γ-regular characters is discrete on the components
whereIγ is nonconstant.

If K is a hyperbolic knot, then the character of a holonomy representation is
contained in a 1-dimensional irreducible componentX0(Π(K)) of X(Π(K)), which
satisfies the following condition: if a simple closed curveγ in ∂EK represents any
nontrivial element ofΠ(K) then the trace–functionIγ is nonconstant onX0(Π(K))
(see [20, Corollary 4.5.2]). In particular, irreducible characters near the character
of a holonomy representation areµ-regular andλ-regular.

4.3. Review on the twisted Reidemeister torsion for knot exteriors.This sub-
section gives a detailed review of the constructions made in [5, Section 6]. In
particular, we shall explain how to construct distinguished bases for the twisted
homology groups of knot exteriors.

Canonical homology orientation of knot exteriors.We equip the exterior ofK with
its canonical homology orientationdefined as follows (see [23, Section V.3]). We
have

H∗(EK ;R) = H0(EK ;R) ⊕ H1(EK ;R)

and we base thisR-vector space with{[[ pt]] , [[µ]] }. Here [[pt]] is the homology class
of a point, and [[µ]] is the homology class of the meridianµ of K. This reference
basis ofH∗(EK ;R) induces the so–called canonical homology orientation ofEK .
In the sequel, we leto denote the canonical homology orientation ofEK .
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How to construct natural bases for the twisted homology.Let ρ be a regular
SL2(C)-representation ofΠ(K) and fix a generatorPρ of Hρ

0(∂EK) (i.e. Pρ is an
element insl2(C) such thatAdρ(g)(Pρ) = Pρ for all g ∈ π1(∂EK)).

The canonical inclusioni : ∂EK → EK induces (see [5, Lemma 5.2] and [16,
Corollary 3.23]) an isomorphismi∗ : Hρ

2(∂EK) → Hρ
2(EK). Moreover, one can

prove that (see [5, Lemma 5.1] and [16, Proposition 3.18])

Hρ
2(∂EK) � H2(∂EK ;Z) ⊗ C.

More precisely, let [[∂EK ]] ∈ H2(∂EK ;Z) be the fundamental class induced by the
orientation of∂EK , one hasHρ

2(∂EK) = C [[[ ∂EK ]] ⊗ Pρ].
Thereference generatorof Hρ

2(EK) is defined by

(25) hρ(2) = i∗([[[ ∂EK ]] ⊗ Pρ]).

Let ρ be aλ-regular representation ofΠ(K). Thereference generatorof the first
twisted homology groupHρ

1(EK) is defined by

(26) hρ(1)(λ) = ι∗
([

[[λ]] ⊗ Pρ]) .
Remark9. The generatorhρ(1)(λ) of Hρ

1(EK) depends on the orientation ofλ. If we
change the orientation of the longitudeλ in Equation (26), then the generator is
change into its reverse.

Remark10. Note thatHρ
i (EK) is isomorphic to the dual space of thesl2(C)ρ-

twisted cohomologyHi
ρ(EK) = Hi(EK ; Ad ◦ ρ). Reference elements defined in

Equations (25) and (26) are dual from the ones defined in [6, Section 3.4].

The Reidemeister torsion for knot exteriors.Letρ : Π(K)→ SL2(C) be aλ-regular
representation. TheReidemeister torsionTK

λ atρ is defined to be

(27) TK
λ (ρ) = TOR

(
EK ; sl2(C)ρ, {hρ(1)(λ),hρ(2)}, o

)
∈ C∗.

It is an invariant of knots. Moreover, ifρ1 andρ2 are twoλ-regular representations
which have the same character thenTK

λ (ρ1) = TK
λ (ρ2). ThusTK

λ defines a map on
the setXirr

λ (Π(K)) = {χ ∈ Xirr(Π(K)) | χ is λ-regular}.
Remark11. The Reidemeister torsionTK

λ (ρ) defined in Equation (27) is exactly
the inverse of the one considered in [6].

4.4. Review on the twisted Reidemeister torsion polynomial.To compute the
twisted Reidemeister torsion for twist knots, we use techniques developed by the
third author in [27]. In fact, we compute a more general invariant of knots called
the twisted Reidemeister torsion polynomial. It is a sort of Alexander polynomial
invariant (but with non–abelian twisted coefficients) whose “derivative coefficient”
at t = 1 is exactlyTK

λ .
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Definitions. Let W be a finite CW–complex. We regardZ as a multiplicative group
which is generated by one variablet. Letα be the surjective homomorphism from
π1(W) to Z = 〈t〉.

If ρ is a SL2(C)-representation ofπ1(W), we define thẽsl2(C)ρ-twisted chain
complex ofW to be

C∗(W; s̃l2(C)ρ) = C∗(W̃;Z) ⊗Ad◦ρ⊗α (sl2(C) ⊗ C(t)) ,

whereσ · γ ⊗ v⊗ f is identified withσ ⊗ Adρ(γ)(v) ⊗ f · tα(γ).
The sign–defined Reidemeister torsion ofW with respect to this̃sl2(C)ρ-twisted

chain complex is defined to be (compare with Equation (24))

TOR(W; s̃l2(C)ρ,h∗, o) = τ0 · Tor(C∗(W; s̃l2(C)ρ), c∗B,h
∗) ∈ C(t)∗.

Note that TOR(W; s̃l2(C)ρ,h∗, o) is — as the Alexander polynomial — determined
up to a factortm wherem ∈ Z.

Next we turn back to knots exteriors. From now on, we suppose that the CW–
complexW is EK and that the homomorphismα : Π(K)→ Z is the abelianization.
From [26, Proposition 3.1.1], we know that ifρ is λ-regular, then all homology
groupsH∗(EK ; s̃l2(C)ρ) vanishes. So ifρ is λ-regular, then we define the twisted
Reidemeister torsion polynomial atρ to be

(28) T K
λ (ρ) = TOR(W; s̃l2(C)ρ, ∅, o) ∈ C(t)∗.

The torsion in Equation (28) is also determined up to a factortm wherem ∈ Z. It
is also shown in [26, Theorem 3.1.2] that

TK
λ (ρ) = − lim

t→1

T K
λ (ρ)

(t − 1)
.

Remark12. It is shown by T. Kitano [10, Theorem A] thatT K
λ (ρ) agree with the

twisted Alexander invariant forK andAd◦ ρ.

How to computeT K
λ (ρ) from Fox–calculus.Here we review a description ofT K

λ (ρ)
from a Wirtinger presentation ofΠ(K). This description comes from some results
by T. Kitano [10]. For simplicity, write Φ for (Ad ◦ ρ) ⊗ α. Choose and fix a
Wirtinger presentation

(29) Π(K) = 〈x1, . . . , xk | r1, . . . , rk−1〉
of Π(K). Let WK be the 2-dimensional CW–complex constructed from the presen-
tation (29) in the usual way. The 0-skeleton ofWK consists in a single 0-cellpt, the
1-skeleton is a wedge ofk oriented 1-cellsx1, . . . xk and the 2-skeleton consists in
(k− 1) 2-cellsD1, . . . ,Dk−1 with attaching maps given by the relationsr1, . . . , rk−1

of presentation (29).
F. Waldhausen proved [24] that the Whitehead group of a knot group is trivial.

As a result,WK has the same simple homotopy type asEK . So, the CW–complex
WK can be used to compute the twisted Reidemeister torsion polynomial (28).
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Therefore it is enough to consider Reidemeister torsion of thes̃l2(C)ρ-twisted chain
complexC∗

(
WK ; s̃l2(C)ρ

)
.

The twisted complexC∗(WK ; s̃l2(C)ρ) thus becomes:

0 // (sl2(C) ⊗ C(t))k−1 ∂2 //(sl2(C) ⊗ C(t))k ∂1 //sl2(C) ⊗ C(t) //0

where
∂1 = (Φ(x1 − 1),Φ(x2 − 1), . . . ,Φ(xk − 1)) .

and∂2 is expressed using the Fox differential calculus and the action given by
Φ = (Ad◦ ρ) ⊗ α:

(30) ∂2 =



Φ( ∂r1
∂x1

) . . . Φ( ∂rk−1
∂x1

)
...

. . .
...

Φ( ∂r1
∂xk

) . . . Φ( ∂rk−1
∂xk

)



Here we briefly denote thel-times direct sum ofsl2(C) ⊗ C(t) by (sl2(C) ⊗ C(t))l .
Let A1

K,Ad◦ρ denote the 3(k− 1)× 3(k− 1)–matrix obtained from matrix (30) of

∂2 by deleting its first row. The torsion polynomialT K
λ (ρ) defined in Equation (28)

can be described, up to a factortm (m ∈ Z), as follows (for more details see [9, 10]):

(31) T K
λ (ρ) = τ0 ·

detA1
K,Ad◦ρ

det(Φ(x1 − 1))
.

This rational function has the first order zero att = 1 [26, Theorem 3.1.2]. The
twisted Reidemeister torsionTK

λ (ρ) is expressed as

(32) TK
λ (ρ) = − lim

t→1

T K
λ (ρ)

(t − 1)
= − lim

t→1

τ0 ·
detA1

K,Ad◦ρ
(t − 1) det(Φ(x1 − 1))

 .

Remark13. From [26, Proposition 4.3.1], we can see that the twisted Reidemeister
torsionTK

λ associated to a two–bridge knotK is a rational function ins+ 1/s and
u, where (s,u) is a solution of Riley’s equationφK(s,u) = 0. In particular, if we
consider the case fors = 1, then the Reidemeister torsionTK

λ is a rational function
of u. The variableu satisfies Riley’s equationφK(1,u) = 0. Sinceu is expressed in
terms of the cusp shape, the twisted Reidemeister torsionTK

λ at the holonomyρ0

is also a rational function in the cusp shape corresponding to the rootu.

5. T  R    

In this section, we compute the twisted Reidemeister torsion for twist knots.
Since there exists an isomorphism between the knot groupsΠ(J(2,2m + 1)) and
Π(J(2,−2m)) (see Remark2), it is enough for us to make the computation in the
case of even twist knotsK = J(2,2m), m ∈ Z. The method used is the follow-
ing. We will make the computation at the acyclic level, i.e. compute the torsion
polynomialT K

λ (ρ), and next apply [26, Theorem 3.1.2] to obtainTK
λ (ρ).
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5.1. The twisted Reidemeister torsion for even twist knots.We calculate the
twisted Reidemeister torsion for even twist knotsJ(2,2m) wherem is an integer.

5.1.1. Preliminaries. Following Section3.2and using Riley’s method we can pa-
rametrize a non–abelian SL2(C)-representationρ by two parametersu and s as
follows:

ρ(x) =

( √
s 1/

√
s

0 1/
√

s

)
, ρ(y) =

( √
s 0

−√su 1/
√

s

)
,

wheres andu satisfy Riley’s equationφJ(2,2m)(s,u) = 0. Besides, the Riley poly-
nomial for twist knots is such that:

(33) φJ(2,2m)(u, s) =
(s+ s−1 − 1− u)(ξm

+ − ξm
− ) − (ξm−1

+ − ξm−1
− )

ξ+ − ξ− ,

whereξ± are theeigenvaluesof the matrixρ(w) = ρ([y, x−1]) given by
(34)

ξ± =
1
2

[
u2+(2−s−s−1)u+2±

√
(u2 + (2− s− s−1)u + 4)(u2 + (2− s− s−1)u)

]
.

5.1.2. Statement of the result.

Notation. Let α1, α2, β1, β2, c andtm be as follows:

c = c(u, s) = u + 1− s−1;
α1 = (ξ− − 1)(ξ+ + s) + (s− 1)2u− su2;
α2 = (1− su− ξ+) (1 + (ξ− − s)/c);
β1 = (ξ+ − 1)(ξ− + s) + (s− 1)2u− su2;
β2 = (1− su− ξ−) (1 + (ξ+ − s)/c);
tm = (ξm

+ − ξm
− )/(ξ+ − ξ−).

Remark14. Using such notation, the Riley polynomial of the twist knotJ(2,2m)
becomes:

φJ(2,2m)(u, s) = (s− c)tm − tm−1.

With this notation in mind we can write down the general formula for the
twisted Reidemeister torsion for twist knots.

Theorem 13. Letmbe a positive integer.

(1) The Reidemeister torsionTJ(2,2m)
λ (ρ) satisfies the following formula:

(35) TJ(2,2m)
λ (ρ) =

τ0

s+ s−1 − 2

[
C1(m)ξm−1

+ tm + C2(m)ξm−1
− tm + C3(m)

]
.

(2) Similarly, we have

(36) TJ(2,−2m)
λ (ρ) =

τ0

s+ s−1 − 2

[
−C1(−m)ξ−m−1

+ tm −C2(−m)ξ−m−1
− tm + C3(−m)

]
.
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In that two formulas we have:

C1(m) =
1

(ξ+ − ξ−)2

{
1
s
α2

1(3m+ 1) +
m
s
β2

1(ξ2
+ + 1)−m(ξ+ − ξ−)2(s+

1
s

+ 1)

}

− m
(ξ+ − ξ−)4


(
c(1− ξ+) +

α1

s

)2
(ξ+ − ξ−)2(s+

1
s

+ 1)− α
2
1 + β2

1

s



+
2α1β2

s

(
c(1− ξ+) +

α1

s

) (
c(1− ξ+) +

α2

s

)}

− m
(ξ+ − ξ−)4


α2

1

s

(
(ξ+ − ξ−)2(u2 + 4u + 3)− (c(1− ξ+) +

α1

s
)2

−(c(1− ξ−) +
β1

s
)2
)

+
2α1α2

s

(
c(1− ξ+) +

α1

s

) (
c(1− ξ−) +

β2

s

)}

C2(m) =
1

(ξ+ − ξ−)2

{
1
s
β2

1(3m+ 1) +
m
s
α2

1(ξ2
− + 1)−m(ξ+ − ξ−)2(s+

1
s

+ 1)

}

− m
(ξ+ − ξ−)4


(
c(1− ξ−) +

β1

s

)2
(ξ+ − ξ−)2(s+

1
s

+ 1)− α
2
1 + β2

1

s



+
2α2β1

s

(
c(1− ξ−) +

β1

s

) (
c(1− ξ−) +

β2

s

)}

− m
(ξ+ − ξ−)4


β2

1

s

(
(ξ+ − ξ−)2(u2 + 4u + 3)− (c(1− ξ+) +

α1

s
)2

−(c(1− ξ−) +
β1

s
)2
)

+
2β1β2

s

(
c(1− ξ−) +

β1

s

) (
c(1− ξ+) +

α2

s

)}
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C3(m) =
m

(ξ+ − ξ−)2

(ξ+ − ξ−)2(s+
1
s

+ 1)− α
2
1 + β2

1

s



+
t2m

(ξ+ − ξ−)2

4(ξ+ − ξ−)2(s+
1
s

+ 1)− 5(α2
1 + β2

1)

s



− t2m
(ξ+ − ξ−)4

{
1
s

(
c(1− ξ+)β1 +

α1β1

s

)2

− 1
s

(
c(1− ξ+)β2 +

α2β2

s

)2

+
1
s

(
c(1− ξ−)α1 +

α1β1

s

)2

− 1
s

(
c(1− ξ−)α2 +

α2β2

s

)2}

+ m(s+
1
s
− 2)2t2m.

Remark15. One can observe thatTJ(2,2m)
λ is symmetric inξ±. Together with the

fact thatξ+ · ξ− = 1, we can see thatTJ(2,2m)
λ is in fact a function ofξ+ + ξ− =

u2 + (2− s− s−1)u + 2.

5.1.3. Proof of Theorem13. We make the detailed proof in the case ofJ(2,2m)
for m> 0.

First, recall that the group ofJ(2,2m) admits the following presentation (see
Fact1):

〈x, y |wmx = ywm〉.
Herew is the word [y, x−1] = yx−1y−1x.

Before computations, we give an elementary and useful lemma about trace of
matrices inM3(C).

Lemma 14. The two following items hold:

(1) Let A be inGL(3,C). Set

σ1(A) = tr (A) andσ2(A) =
1
2

(
tr 2(A) − tr (A2)

)
.

We have
σ2(A) = σ1(A−1) · det(A).

(2) If A = (ai, j)1≤i, j≤3 andB = (bi, j)1≤i, j≤3 are two matrices inM3(C), then we
have

tr (A)tr (B) − tr (AB) =

∣∣∣∣∣∣
a1,1 a1,3

b3,1 b3,3

∣∣∣∣∣∣ +

∣∣∣∣∣∣
b1,1 b1,3

a3,1 a3,3

∣∣∣∣∣∣

+

∣∣∣∣∣∣
a2,2 a2,3

b3,2 b3,3

∣∣∣∣∣∣ +

∣∣∣∣∣∣
b2,2 b2,3

a3,2 a3,3

∣∣∣∣∣∣

+

∣∣∣∣∣∣
a1,1 a1,2

b2,1 b2,2

∣∣∣∣∣∣ +

∣∣∣∣∣∣
b1,1 b1,2

a2,1 a2,2

∣∣∣∣∣∣ .



26 J́ERÔME DUBOIS, VU HUYNH, AND YOSHIKAZU YAMAGUCHI

Proof.

(1) From the Cayley–Hamilton identity, we have

A3 − σ1(A)A2 + σ2(A)A− det(A)1 = 0.

Multiplying this equation by−det(A)−1A−3, we obtain our first claim.
(2) Second item follows from direct calculations.

�

Fox–differential calculus for2m-twist knots.SinceJ(2,2m) is a two–bridge knot,
the twisted Reidemeister torsion polynomialT K

λ (ρ) associated toJ(2,2m) is ex-
pressed as (see Equation (31)):

(37) T K
λ (ρ) = τ0

detΦ( ∂
∂xwmxw−my−1)

detΦ(y− 1)

whereΦ = Ad◦ ρ ⊗ α : Z[Π(J(2,2m))] → M3(C[t, t−1]).
The following claim gives us the Fox–differential part in the numerator of Equa-

tion (37).

Claim 15. For m> 0, we have:

(38)
∂

∂x

(
wmxw−my−1

)
= wm

(
1 + (1− x)(1 + w−1 + · · · + w−m+1)(x−1 − x−1y)

)
.

Proof of Claim15. We have:

∂

∂x

(
wmxw−my−1

)
=
∂wm

∂x
+ wm + wmx(−w−m)

∂wm

∂x

= wm

(
1 + (1− x)w−m∂wm

∂x

)
.

It is easy to see that

∂w
∂x

=
∂

∂x

(
yx−1y−1x

)
= yx−1y−1 − yx−1.

Thus

w−m∂wm

∂x
= (1 + w−1 + · · · + w−m+1)w−1∂w

∂x
= (1 + w−1 + · · · + w−m+1)(x−1 − x−1y),

which gives us Equation (38). �

Let {E,H, F} be the following usualC-basis of the Lie algebrasl2(C):

E =

(
0 1
0 0

)
,H =

(
1 0
0 −1

)
, F =

(
0 0
1 0

)
.
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It is easy to see that the adjoint actions ofx andy in the basis{E,H, F} of sl2(C)
are given by the following matrices:

X = Adρ(x) =


s −2 −s−1

0 1 s−1

0 0 s−1

 , Y = Adρ(y) =


s 0 0
su 1 0
−su2 −2u s−1

 .

If W = Adρ(w), thenΦ( ∂
∂xwmxw−my−1) is given by (see Claim15):

Wm
(
1 + (1− tX)(1 + W−1 + · · · + W−m+1)(t−1X−1 − X−1Y)

)
.

SetSm(A) = 1 + A + · · · + Am−1, for A ∈ SL2(C), we finally obtain:

(39) Φ(
∂

∂x
wmxw−my−1) = Wm

(
1 + (1− tX)Sm(W−1)(t−1X−1 − X−1Y)

)
.

Observation about the “second differential” of a determinant.We can compute
the twisted Reidemeister torsion forJ(2,2m) combining Equations (32) and (39)
as follows:

TJ(2,2m)
λ (ρ) = −τ0 lim

t→1

det(Φ( ∂
∂xwmxw−my−1))

(t − 1) det(Φ(y− 1))
.

Using the fact that detW = 1, Equation (39) gives:

(40) detΦ(
∂

∂x
wmxw−my−1) = det

(
1 + (1− tX)Sm(W−1)(t−1X−1 − X−1Y)

)
.

If we write det(1 + Zm) for the right hand side of Equation (40), then

(41) TJ(2,2m)
λ (ρ) = −τ0 lim

t→1

det(1 + Zm)
(t − 1)2(t2 − (s+ s−1)t + 1)

thus

TJ(2,2m)
λ (ρ) =

τ0

s+ s−1 − 2
lim
t→1

det(1 + Zm)
(t − 1)2

.

Moreover we can split det(1 + Zm) as follows:

(42) det(1 + Zm) = 1 + σ1(Zm) + σ2(Zm) + σ3(Zm),

where

σ1(Zm) = tr (Zm), σ2(Zm) =
1
2

(
tr 2(Zm) − tr (Z2

m)
)
, σ3(Zm) = det(Zm).

Thus

(43) TJ(2,2m)
λ (ρ) =

τ0

s+ s−1 − 2
lim
t→1

1 + σ1(Zm) + σ2(Zm) + σ3(Zm)
(t − 1)2

.

With the “splitting” of TJ(2,2m)
λ (ρ) given in Equation (43) in mind, we compute

separately each “second differential” of theσi(Zm) (i = 1,2,3) to obtain the twisted
Reidemeister torsion ofJ(2,2m).
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The “second differential” of σ3(Zm). We concentrate first on theσ3(Zm)-part of
Equation (43), which is the easier term to compute and correspond to the “second
differential” ofσ3(Zm).

Claim 16. We have:

lim
t→1

σ3(Zm)
(t − 1)2

= (2− s− s−1)2 ·mt2m.

Proof of Claim16. By definitionσ3(Zm) = det(Zm), thus

σ3(Zm) = det((1− tX)Sm(W−1)(t−1X−1 − X−1Y))

= det(1− tX) det(Sm(W−1)) det(t−1X−1Y) det(Y−1 − t1)

= t−3(t − 1)2(1− ts)(1− ts−1)(t − s)(t − s−1) det(Sm(W−1)).(44)

Taking the limit whent goes to 1, we thus obtain:

lim
t→1

σ3(Zm)
(t − 1)2

= (2− s− s−1)2 det(Sm(W−1)).

Note, with Equation (34) in mind, thatξ2
± and 1 are the eigenvalues ofW−1 =

Adρ(w)−1. It thus follows that

det(Sm(W−1)) = m
(1− ξ2m

+ )(1− ξ2m
− )

(1− ξ2
+)(1− ξ2−)

= m
(ξm
− − ξm

+ )(ξm
+ − ξm

− )
(ξ− − ξ+)(ξ+ − ξ−)

= mt2m.

�

If we substitute the result of Claim16 into Equation (43), we obtain

TJ(2,2m)
λ (ρ) =

τ0

s+ s−1 − 2

[
lim
t→1

1 + σ1(Zm) + σ2(Zm)
(t − 1)2

+ (s+ s−1 − 2)2 ·mt2m

]
.

These expression can be easily written again as
(45)

TJ(2,2m)
λ (ρ) =

τ0

s+ s−1 − 2

[
1
2

d2

dt2
(σ1(Zm) + σ2(Zm))

∣∣∣∣∣∣
t=1

+ (s+ s−1 − 2)2 ·mt2m

]
.

The “second differentials” ofσ1(Zm) andσ2(Zm). We now focus on the “second
differentials” ofσ1(Zm) andσ2(Zm). If we let

Z̃m = (t−1X−1 − X−1Y)(1− tX)Sm(W−1),

then it follows from the definitions ofσ1 andσ2 that

σ1(Zm) = σ1(Z̃m), σ2(Zm) = σ2(Z̃m).

We useσ1(Z̃m) andσ2(Z̃m) instead ofσ1(Zm) andσ2(Zm) for our calculations.
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Claim 17. We have:

1
2

d2

dt2
σ1(Z̃m)

∣∣∣∣∣∣
t=1

=
1
2

lim
t→1

σ1(Z̃m)
(t − 1)2

= tr (X−1Sm(W−1)),(46)

1
2

d2

dt2
σ2(Z̃m)

∣∣∣∣∣∣
t=1

=
1
2

lim
t→1

σ2(Z̃m)
(t − 1)2

(47)

= 3σ2(X−1Sm(W−1)) + σ2(YSm(W−1)W−1)(48)

− tr
(
X−1Sm(W−1)

)
tr

(
(1 + X−1Y)Sm(W−1)

)

+ tr
(
X−1Sm(W−1)(1 + X−1Y)Sm(W−1)

)
.

Proof of Claim17. Sinceσ1(Z̃m) is the trace ofZ̃m, the only term which remains

after taking the “second differential” att = 1 is d2

dt2
1
t X−1Sm(W−1)

∣∣∣∣
t=1

.

Now we considerσ2(Z̃m). From the definition ofσ2(Z̃m), we have

1
2

d2

dt2
σ2(Z̃m)

∣∣∣∣∣∣
t=1

=
1
2

d2

dt2
1
2

(
tr 2(Z̃m) − tr (Z̃2

m)
)∣∣∣∣∣∣

t=1

=
1
4

{
d2

dt2
tr 2(Z̃m)

∣∣∣∣∣∣
t=1

− d2

dt2
tr (Z̃2

m)

∣∣∣∣∣∣
t=1

}
.

In tr (Z̃2
m), the following three terms are the terms which remain after taking the

second differential att = 1:

d2

dt2 t−2tr
(
(X−1Sm(W−1))2

)∣∣∣∣
t=1
,

d2

dt2 − 2t−1tr
(
X−1Sm(W−1)(1 + X−1Y)Sm(W−1)

)∣∣∣∣
t=1
,

d2

dt2 t2tr
(
(YSm(W−1)W−1)2

)∣∣∣∣
t=1
.

Hence

1
2

d2

dt2
σ2(Z̃m)

∣∣∣∣∣∣
t=1

=
3
2

{
tr 2

(
X−1Sm(W−1)

)
− tr

(
(X−1Sm(W−1))2

)}

− tr
(
X−1Sm(W−1)

)
tr

(
(1 + X−1Y)Sm(W−1)

)

+ tr
(
X−1Sm(W−1)(1 + X−1Y)Sm(W−1)

)

+
1
2

{
tr 2

(
YSm(W−1)W−1

)
− tr

(
(YSm(W−1)W−1)2

)}
.

�

If we substitute Equations (46) & (48) of Claim17 into Equation (45), then we
obtain the following formula forTJ(2,2m)

λ (ρ).
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Claim 18. The twisted Reidemeister torsion forJ(2,2m) satisfies the following
formula:

TJ(2,2m)
λ (ρ) =

τ0

s+ s−1 − 2

[
tr

(
X−1Sm(W−1)

)
+ 3σ2(X−1Sm(W−1))

(49)

+ σ2(YSm(W−1)W−1) − tr
(
X−1Sm(W−1))tr (Sm(W−1)

)

+ tr
(
X−1Sm(W−1)Sm(W−1)

)
− tr

(
X−1Sm(W−1)

)
tr

(
X−1YSm(W−1)

)

+ tr
(
X−1Sm(W−1)X−1YSm(W−1)

)
+(s+ s−1 − 2)2 ·mt2m

]
.

More explicit descriptions.To find more explicit expression of theTJ(2,2m)
λ (ρ), we

change our basis ofsl2(C) in order to diagonalize the matrixrho(w).
The SL2(C)-matrixρ(w) can be diagonalized by

p =

(
u + 1− s−1 u + 1− s−1

1− su− ξ+ 1− su− ξ−

)
.

Explicitly, p−1ρ(w)p is the diagonal matrix diag(ξ+, ξ−).
Seta = 1− su− ξ+ andb = 1− su− ξ−. With respect to the basis{E,H, F} of

sl2(C), the matrix of adjoint action ofp becomes as follows:

P =
1

a− b


−c 2c c
a −(a + b) −b

a2/c −2ab/c −b2/c



wherec = u + 1− s−1 is defined in Subsection5.1.2.
Note that the matrixP−1WP is the diagonal matrix diag(ξ2

+,1, ξ
2
−). Here we

repeat thatW = Adρ(w).
Set

X̃ = P−1XP, Ỹ = P−1YPandW̃ = P−1WP.

Since we haveP−1Sm(W−1)P = Sm(W̃−1), the matrixP−1Sm(W−1)P is the follow-
ing diagonal matrix

P−1Sm(W−1)P = diag(ξm−1
− tm,m, ξ

m−1
+ tm).

Moreover as tr (X−1Sm(W−1)) = tr (X̃−1Sm(W̃−1)), we have the following claim.

Claim 19. We have

tr (X−1Sm(W−1))

=
1

(a− b)2


β2

1

s
ξm−1
− tm +

(a− b)2(s+ s−1 + 1)− β
2
1

s
− α

2
1

s

 m+
α2

1

s
ξm−1

+ tm

 .

Proof of Claim19. By a direct computation, we obtain that the (1,1)-component
of the matrixX̃−1 is equal toβ2

1/(s(a − b)2) and its (3,3)-component is equal to
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α2
1/(s(a − b)2). We can also find the (2,2)-component ofX̃−1from tr (X̃−1) = s +

s−1 + 1. �

Now, we computeσ2(XSm(W−1)) andσ2(YSm(W−1)W−1) from Lemma14 as
follows.

Claim 20. The following equalities hold:

(1) σ2(X−1Sm(W−1))

=
1

(a− b)2


β2

1

s
ξm−1
− mtm +

(a− b)2(s+ s−1 + 1)− α
2
1

s
− β

2
1

s

 t2m +
α2

1

s
ξm−1

+ mtm

 .

(2) σ2(YSm(W−1)W−1)

=
1

(a− b)2


α2

1

s
ξm+1
− mtm +

(a− b)2(s+ s−1 + 1)− α
2
1

s
− β

2
1

s

 t2m +
β2

1

s
ξm+1

+ mtm

 .

Proof of Claim20. Using Lemma14and because det(X) = 1,det(Y) = 1 we have:

σ2(X−1Sm(W−1)) = tr (XSm(W−1)−1) · det(Sm(W−1))

and
σ2(YSm(W−1)W−1) = tr (Y−1WSm(W−1)−1) · det(Sm(W−1)).

We obtain the above formulas by computing the traces usingX̃, Ỹ andSm(W̃−1) as
in Claim19. �

Finally we calculate the other two terms which are of the following form:
−tr (A)tr (B) + tr (AB).

Claim 21. We have:

(1) −tr (X−1Sm(W−1))tr (Sm(W−1)) + tr (X−1Sm(W−1)Sm(W−1))

= − 1
(a− b)2


(a− b)2(s+

1
s

+ 1)− α
2
1

s

 ξm−1
− mtm +


α2

1

s
+
β2

1

s

 t2m

+

(a− b)2(s+
1
s

+ 1)− β
2
1

s

 ξm−1
+ mtm.



(2) If we setX̃−1 = (ai, j)1≤i, j≤3, andX̃−1Ỹ = (bi, j)1≤i, j≤3, then we have

− tr (X−1Sm(W−1))tr (X−1YSm(W−1)) + tr (X−1Sm(W−1)X−1YSm(W−1))

=

(∣∣∣∣∣∣
a1,1 a1,3

b3,1 b3,3

∣∣∣∣∣∣ +

∣∣∣∣∣∣
b1,1 b1,3

a3,1 a3,3

∣∣∣∣∣∣
)
t2m

−
(∣∣∣∣∣∣

a2,2 a2,3

b3,2 b3,3

∣∣∣∣∣∣ +

∣∣∣∣∣∣
b2,2 b2,3

a3,2 a3,3

∣∣∣∣∣∣
)
mξm−1

+ tm

−
(∣∣∣∣∣∣

a1,1 a1,2

b2,1 b2,2

∣∣∣∣∣∣ +

∣∣∣∣∣∣
b1,1 b1,2

a2,1 a2,2

∣∣∣∣∣∣
)
mξm−1
− tm.
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Proof of Claim21. Item (1) follows from above results and Item (2) follows from
Lemma14. �

Remark16. The matrices̃X−1 andX̃−1Ỹ are described explicitly as follows.

X̃−1 =
1

(a− b)2



β2
1
s − β1β2

s − β2
2
s

α2β1

s (a− b)2(s+ 1
s + 1)− α2

1+β2
1

s −α1β2

s

−α2
s

2α1α2
s

α2
1
s


,

(a− b)2X̃−1Ỹ

=



(c(1− ξ−) +
β1

s )2 −2(c(1− ξ−) +
β1

s )(c(1− ξ−) +
β2

s ) −(c(1− ξ−) +
β2

s )2

(c(1− ξ+) + α2
s )

·(c(1− ξ−) +
β1

s )

(a− b)2(u2 + 4u + 3)
−(c(1− ξ+) + α1

s )2

−(c(1− ξ−) +
β1

s )2

−(c(1− ξ+) + α1
s )

·(c(1− ξ−) +
β2

s )

−(c(1− ξ+) + α2
s )2 2(c(1− ξ+) + α1

s )(c(1− ξ+) + α2
s ) (c(1− ξ+) + α1

s )2


.

One can observe that (a− b)2 is equal to (ξ+ − ξ−)2. Thus, if we substitute the
results given in Claims19, 20 and21 into Equation (49), then we obtain Equa-
tion (35) of Theorem13. This achieves the first part of the proof of Theorem13.

The computation ofTJ(2,−2m)
λ (ρ), for m > 0, is completely similar and has the

following expression:

TJ(2,−2m)
λ (ρ) = −τ0 lim

t→1

det(Φ( ∂
∂xw−mxwmy−1))

(t − 1) det(Φ(y− 1))

=
τ0

s+ s−1 − 2
lim
t→1

det(1 + Z−m)
(t − 1)2

.(50)

Here the matrixZ−m is given by (1 − tX)Sm(W)(YX−1 − t−1YX−1Y−1). The right
hand side of Equation (50) is given by

τ0

s+ s−1 − 2

[
−tr (X−1Sm(W)W) + 3σ2(WX−1Sm(W)) + σ2(YSm(W))(51)

− tr (X−1Sm(W)W)tr ((1 + X−1Y)Sm(W)W)

+ tr (X−1Sm(W)W(I + X−1Y)Sm(W)W)

−(s+ s−1 − 2)2 ·mt2m
]
.

Each term in Equation (51) can be computed similarly as in Claims19, 20 and21
which give the second item of Theorem13.

5.2. Examples. As an illustration of our main Theorem13, we explicitly compute
TK
λ on the character varietyXirr

λ (Π(K)) for the following four examples: the trefoil
knot 31 = J(2,2), 52 = J(2,4), the figure eight knot 41 = J(2,−2), and 61 =

J(2,−4) respectively.
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(1) For the trefoil knot 31 = J(2,2), the Riley polynomial is given by

φJ(2,2)(s,u) = −1 + s+ s−1 − u.

The computation of the twisted Reidemeister torsion forJ(2,2) is ex-
pressed as follows.

TJ(2,2)
λ (ρ√s,u) =

τ0

s+ s−1 − 2

(
−3(s+ s−1 − 2)

)

= −3τ0.

This coincides with the inverse of the result [6, Subsection 6.1] (see Re-
mark11).

(2) For 52 = J(2,4), the Riley polynomial is given by

φJ(2,4)(s,u) = −3 + 2(s+ s−1) +
(
−4 + 3(s+ s−1) − (s+ s−1)2

)
u

+
(
−3 + 2(s+ s−1)

)
u2 − u3.

The twisted Reidemeister torsion for 52 = J(2,4) is expressed as follows.

TJ(2,4)
λ (ρ√s,u) =

τ0

s+ s−1 − 2
[−2 + 21(s+ s−1) − 10(s+ s−1)2

+ {−2 + 15(s+ s−1) − 17(s+ s−1)2 + 5(s+ s−1)3}u
+ {6 + 7(s+ s−1) − 5(s+ s−1)2}u2]

= τ0

(
−10(s+ s−1) + 1 +

(
5(s+ s−1)2 − 7(s+ s−1) + 1

)
u

+
(
−5(s+ s−1) − 3

)
u2

)
.

(3) For the figure eight knot 41 = J(2,−2), the Riley polynomial is given by

φJ(2,−2)(s,u) = (3− s− s−1)(u + 1) + u2.

The computation of the twisted Reidemeister torsion forJ(2,−2) is ex-
pressed as follows.

TJ(2,−2)
λ (ρ√s,u) =

τ0

s+ s−1 − 2

(
−2(s+ s−1) + 1

) (
s+ s−1 − 2

)

= τ0

(
−2(s+ s−1) + 1

)
.

This coincides with the inverse of the result [6, Subsection 6.3] (see Re-
mark11) in which the torsion is expressed as±√17+ 4Iλ.

Since the longitudeλ is equal to [y, x−1][ x, y−1], one has

Iλ = −2− (s+ s−1) + s2 + s−2.

Thus, up to sign, we have
√

17+ 4Iλ = 2(s+ s−1) − 1.
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(4) For 61 = J(2,−4), the Riley polynomial is given by

φJ(2,−4)(s,u) = 5− 2(s+ s−1) +
(
12+ (s+ s−1)2 − 7(s+ s−1)

)
u+

(
11+ (s+ s−1)2 − 6(s+ s−1)

)
u2 +

(
5− 2(s+ s−1)

)
u3 + u4.

The twisted Reidemeister torsion forJ(2,−4) is expressed as follows.

TJ(2,−4)
λ (ρ√s,u)

=
τ0

s+ s−1 − 2
[−14− 13(s+ s−1) + 26(s+ s−1)2 − 8(s+ s−1)3

+ {−8− 34(s+ s−1) + 49(s+ s−1)2 − 23(s+ s−1)3 + 4(s+ s−1)4}u
+ {−2− 31(s+ s−1) + 32(s+ s−1)2 − 8(s+ s−1)3}u2

+ {2− 9(s+ s−1) + 4(s+ s−1)2}u3]

= τ0

[(
−8(s+ s−1)2 + 10(s+ s−1) + 7

)

+
(
4(s+ s−1)3 − 15(s+ s−1)2 + 19(s+ s−1) + 4

)
u

+
(
−8(s+ s−1)2 + 16(s+ s−1) + 1

)
u2 +

(
4(s+ s−1) − 1

)
u3

]
.

5.3. Twisted Reidemeister torsion at the holonomy representation.In this sec-
tion we consider the twisted Reidemeister torsion for hyperbolic twist knots at
holonomy representations. Formulas of the twisted Reidemeister torsion associ-
ated to twist knots are complicated. But we see here that formulas for the twisted
Reidemeister torsion at holonomy representations are simpler.

Every twist knots except the trefoil knot are hyperbolic. It is well known that
an exterior of a hyperbolic knot admits at most a complete hyperbolic structure
and this hyperbolic structure determines the holonomy representation of the knot
group (see Section3.3). With Fact12in mind we know that such lifts areλ-regular
representations.

Remark17. If we substitutes = 1 into the Riley polynomialφJ(2,2m)(s,u) given in
Equation (33), then

φJ(2,2m)(1,u) = (1− u)tm − tm−1 = (1− u)
ξm

+ − ξm
−

ξ+ − ξ− −
ξm−1

+ − ξm−1
−

ξ+ − ξ− .

The SL2(C)-representations which lifts the holonomy representation correspond
to roots of Riley’s equationφJ(2,2m)(1,u) = 0. We letρu denote such representa-
tions.

We are now ready to give some closed formulas for the twisted Reidemeister
torsion of twist knots at the holonomy representation.

Theorem 22. Let m > 0 and u denote one of the two complex conjugate roots
of Riley’s equationφJ(2,2m)(1,u) = 0 (resp. φJ(2,−2m)(1,u) = 0) corresponding to
holonomy representations, then
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(1) the twisted Reidemeister torsionTJ(2,2m)
λ (ρu) satisfies the following closed

formulas:

TJ(2,2m)
λ (ρu) =

−τ0

u2 + 4

[(
4 + m(u2 − 4u + 8)

)
tm(ξm

+ + ξm
− )

+
(
tm(ξm−1

+ + ξm−1
− ) − 1

)
(u2 − 4)m

+(−5u2 − 8u + 4)t2m
]
,

(2) similarly the Reidemeister torsionTJ(2,−2m)
λ (ρu) satisfies the following

closed formula:

TJ(2,−2m)
λ (ρu) =

−τ0

u2 + 4

[(
−4 + m(u2 − 4u + 8)

)
tm(ξm

+ + ξm
− )

+
(
tm(ξm+1

+ + ξm+1
− ) + 1

)
(u2 − 4)m

+(−5u2 − 8u + 4)t2m
]
.

Remark18. Combining results of Theorem22 with Equation (12), the twisted
Reidemeister torsion of a twist knot at the holonomy is expressed in terms of the
cusp shape of the knot.

Proof. First we make the computations in the case ofJ(2,2m), wherem > 0. If
we substitutes = 1 in Equation (41), then we obtain:

TJ(2,2m)
λ (ρ) = −τ0 lim

t→1

det(1 + Zm)
(t − 1)4

=
−τ0

24
d4

dt4
det(1 + Zm)

∣∣∣∣∣∣
t=1

.

Next, using the splitting of det(1 + Zm) given in Equation (42), we get:

(52) TJ(2,2m)
λ (ρ) =

−τ0

24
d4

dt4
[1 + σ1(Zm) + σ2(Zm) + σ3(Zm)]

∣∣∣∣∣∣
t=1

.

It follows from Equation (44) that (t − 1)6 dividesσ3(Zm) in the case ofs = 1.

Hence the termd4

dt4σ3(Zm)
∣∣∣∣
t=1

in Equation (52) vanishes. By degrees oft in σ1(Zm)

andσ2(Zm), we obtain the following equation from direct computations of the
above differentials:

TJ(2,2m)
λ (ρ) = −τ0[tr (X−1Sm(W−1)) + 5σ2(X−1Sm(W−1))(53)

− tr (X−1Sm(W−1))tr ((1 + X−1Y)Sm(W−1))

+ tr (X−1Sm(W−1)(1 + X−1Y)Sm(W−1))].
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Note thatξ+ + ξ− = u2 + 2 and (ξ+ − ξ−)2 = u2(u2 + 4). By Claims19, 20 and21
we have

tr (X−1Sm(W−1)) =
1

u2 + 4

[
4(ξm

+ + ξm
− )tm − (u2 − 4)m

]

σ2(X−1Sm(W−1)) =
1

u2 + 4

[
4m(ξm

+ + ξm
− )tm − (u2 − 4)t2m

]

and

−tr (X−1Sm(W−1))tr ((1 + X−1Y)Sm(W−1)) + tr (X−1Sm(W−1)(1 + X−1Y)Sm(W−1))

= − 1
u2 + 4

[
8(u + 2)t2m −m(u + 2)(u− 6)(ξm

+ +ξm
− )tm−m(u2 − 4)(ξm−1

+ +ξm−1
− )tm

]
.

If we substitute these results into Equation (53), then we obtain the wanted formula
for J(2,2m).

Similarly, in the case of twist knotsJ(2,−2m), m > 0, from computations of
differentials we have

TJ(2,−2m)
λ (ρu) = −τ0[−tr (X−1Sm(W)W) + 5σ2(X−1Sm(W)W)(54)

− tr (X−1Sm(W)W)tr ((1 + X−1Y)Sm(W)W)

+ tr (X−1Sm(W)W(1 + X−1Y)Sm(W)W)].

It follows from Claims19, 20and21 that

tr (X−1Sm(W)W) =
1

u2 + 4

[
4(ξm

+ + ξm
− )tm − (u2 − 4)m

]

σ2(X−1Sm(W)W) =
1

u2 + 4

[
4m(ξm

+ + ξm
− )tm − (u2 − 4)t2m

]

and

−tr (X−1Sm(W)W)tr ((1+X−1Y)Sm(W)W)+tr (X−1Sm(W)W(1+X−1YSm(W)W))

=− 1
u2+4

[
8(u + 2)t2m−m(u+2)(u−6)(ξm

+ +ξm
− )tm −m(u2 − 4)(ξm+1

+ +ξm+1
− )tm

]
.

If we substitute these results into Equation (54) , then we obtain the wanted for-
mula forJ(2,−2m). �

5.4. Program list for Maxima. We give a program list in order to compute the
twisted Reidemeister torsion for a given twist knot. This program works on the
free computer algebra systemMaxima [19]. The functionR(m) in the list com-
putes the Riley polynomial ofJ(2,2m). The functionT(m) computes the twisted
Reidemeister torsion forJ(2,2m). It gives a polynomial ofs andu such that the
top degree ofu is lower than that in the Riley polynomialφJ(2,2m)(s,u). Here we
use Expressions (49) & (51) and the following remark for computing the twisted
Reidemeister torsion.
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Remark19. It follows from Equation (33) that the highest degree term ofu in
φJ(2,2m)(s,u) is equal to−u2m−1 (resp.u2|m|) if m> 0 (resp.m< 0).

Program list

load("nchrpl");/*We need this package for using mattrace*/

R(m):=block(/*function for calculating the Riley polynomial of J(2,2m)*/

[/*w is the matrix of w=[y,xˆ{-1}]*/

w:matrix([1-s*u,1/s-u-1],[-u+s*u*(u+1),(-u)/s+(u+1)ˆ2]),

p],

w:wˆˆm,

p:w[1,1]+(1-s)*w[1,2],

p:expand(p),

return(p)

);

T(m):=if integerp(m) then

if m=0 then "J(2,0) is unknot." else

block(

[/*matrix for adjoint action of x*/

X:matrix([s,-2,(-1)/s],[0,1,1/s],[0,0,1/s]),

/*matrix for adjoint action of y*/

Y:matrix([s,0,0],[s*u,1,0],[(-s)*uˆ2,(-2)*u,1/s]),

IX,/*inverse matrix of X*/

IY,/*inverse matrix of Y*/

S:ident(3),/*marix for series of W or Wˆ{-1}*/

AS:ident(3),/*adjoint matrix of S*/

W,/*matrix W=[Y,IX] */

IW,/*matrix [IX,Y]*/

d:1,/*the highest degree of u in the numerator

of R-torsion*/

k:1,/*the highest degree of u in the Riley poly*/

p:0,

r:R(m),/*the Riley poly*/

r1 /*a polynomial removed the top term of u

from the Riley polynomial*/

],

IX:invert(X),

IY:invert(Y),

W:Y.IX.IY.X,

IW:IX.Y.X.IY,

/*calculating the numerator of R-torsion*/

if m>0 then

block(

/*calculation of S*/

for i:1 thru m-1 do(S:ident(3)+S.IW),

AS:adjoint(S),
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/*the numerator of R-torsion*/

p:p+mattrace(IX.S),

p:p+3*mattrace(X.AS)+mattrace(IY.W.AS),

p:p-mattrace(IX.S)*mattrace((ident(3)+IX.Y).S),

p:p+mattrace(IX.S.(ident(3)+IX.Y).S),

p:p+(2-s+(-1)/s)ˆ2*determinant(S),

/*The top term of u in the Riley poly r

is given by -uˆ(2m-1).

We use the relation uˆ(2m-1) = r + uˆ(2m-1) later*/

k:2*m-1,/*the highets degree of u in the Riley poly*/

r1:r+uˆ(2*m-1)

)

else

block(

/*calculation of S*/

for i:1 thru -m-1 do(S:ident(3)+S.W),

AS:adjoint(S),

p:p-mattrace(IX.S.W),

p:p+3*mattrace(X.IW.AS)+mattrace(IY.AS),

p:p-mattrace(IX.S.W)*mattrace((ident(3)+IX.Y).S.W),

p:p+mattrace(IX.S.W.(ident(3)+IX.Y).S.W),

p:p-(2-s+(-1)/s)ˆ2*determinant(S),

/*The top term of u in the Riley poly r

is given by uˆ(2|m|).

We use the relation uˆ(2|m|) = -r + uˆ(2|m|) later*/

k:2*(-m),/*the highets degree of u in the Riley poly*/

r1:-r+uˆ(2*(-m))

),

p:expand(p),

/* simplify by using r (decreasing the degrees of u)*/

/* set the degree of u in p*/

d:hipow(p,u),

/*decreasing the degrees of u*/

for j:1 while d >= k do(

p:subst(r1*uˆ(d-k),uˆd,p),

p:expand(p),

d:hipow(p,u)

),

p:factor(p),

/*multiplying p

by the denominator of twisted Alexander*/

p:expand(p*(s/(sˆ2-2*s+1))),

p:factorout(p,s),

r:factorout(r,s),

print("The Riley polynomial of J(2,",2*m,"):",r),
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print("The Reidemeister torsion for J(2,",2*m,"):"),

return(p)

)

else print(m,"is not an integer.");

F 3. Graph of the cusp shape ofJ(2,−2m).

5.5. A remark on the asymptotic behavior of the twisted Reidemeister torsion
at holonomy. We close this paper with some remarks on the behavior of the cusp
shape and of the twisted Reidemeister torsion at the holonomy for twist knots.

Remark20 (Behavior of the cusp shape). In Notes [21, p. 5.63], Thurston explains
that the sequence of exterior of the following knots(J(2,−2m))m>1 converges to
the exterior of the Whitehead link on Figure2 (link 52

1 in Rolfsen’s table [18]).
Note that, if the number of crossingsm increases to infinity, then the cusp shape
of the twist knotJ(2,±2m) converges to 2+ 2i, which is the common value of
the cusp shapes of the Whitehead link, see the graph on Figure3. This result is a
consequence of Dehn’s hyperbolic surgery Theorem.

The graph on Figure4 gives the behavior of the sequence of the absolute value
of TJ(2,−2m)

λ (ρ0) with respect to the number of crossings]J(2,−2m) = 2 + 2m of
the knot. The order of growing can be deduced by a “surgery argument” using
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F 4. Graph of|TJ(2,−2m)
λ (ρ0)| and f (m) = C(]J(2,−2m))3.

Item (5) of Remark2 and the surgery formula for the Reidemeister torsion [16,
Theorem 4.1].

Proposition 23. The sequence
(
|TJ(2,−2m)
λ (ρ0)|

)
m>1

has the same behavior as the

sequence
(
C(]J(2,−2m))3

)
m>1

, for some constantC.

Ideas of the Proof.Item (5) of Remark2 gives us thatEJ(2,−2m) = W(1/m) is
obtained by a surgery of slope 1/mon the trivial component of the Whitehead link
W. Let V denote the glued solid torus andγ its core. Using [16, Theorem 4.1 (iii)
and Proposition 2.25] we have, up to sign:

(55) TJ(2,−2m)
λ (ρ0) = TW(λ,µ′λ′−m)(ρ0) · TOR(V; sl2(C)ρ0, γ)

whereTW
(λ,µ′λ′−m)

(ρ0) stands for the (Ad ◦ ρ0)-twisted Reidemeister torsion of the
Whitehead link exterior computed with respect to the bases of the twisted homol-
ogy groups determined by the two curvesλ, andµ′λ′−m (see [16, Theorem 4.1]),
and TOR(V; sl2(C)ρ0, γ) stands for the (Ad ◦ ρ0)-twisted Reidemeister torsion the
solid torusV computed with respect to its coreγ. Hereρ0 denotes the holonomy
representation of the Whitehead link exterior.
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To obtain the behavior ofTJ(2,−2m)
λ (ρ0) we estimate the two terms on the right–

hand side of Equation (55):

(1) Using [16, Proof of Theorem 4.17], it is easy to see that TOR(V;sl2(C)ρ0,γ)
goes as 1

4π2 m2 whenmgoes to infinity.
(2) Using [16, Theorem 4.1 (ii)], one can prove that

TW(λ,µ′λ′−m)(ρ0) = TW(λ,λ′)(ρ0) ·
(

1
c(λ, µ)

−m

)
,

wherec = c(λ, µ) denotes the cusp shape ofJ(2,−2m) (computed with
respect to the usual meridian/longitude system). Thus,TW

(λ,µ′λ′−m)
(ρ0) goes

asTW(λ,λ′)(ρ0) · m whenm goes to infinity. One can also prove that, at the
holonomy, we have

TW(λ,λ′)(ρ0) = 8(1+ i).

As a result,TJ(2,−2m)
λ (ρ0) goes asC ·m3 for some constantC. �

A: T

In this appendix, except in the case of the trefoil knot (the only twist knot which
is not hyperbolic),u denotes the root of Riley’s equationφK(1,u) = 0 correspond-
ing to the discrete and faithful representation of the complete structure.

Remark21. As explained in Section3.4, one can express the root of Riley’s equa-
tion φK(1,u) = 0 corresponding to the holonomy representation using the cusp
shapec. Equation (12) implies that the Reidemeister torsion at the holonomy rep-
resentation for twist knots can be expressed as a rational function evaluated at the
cusp shape. Such a formula is interesting because it expresses the twisted Reide-
meister torsion at the holonomy in terms of a hyperbolic–geometric quantity.

Tables1 and 2 gives the twisted Reidemeister torsion for twist knots at the
holonomy (except in the case of the trefoil) with respect to the corresponding root
of Riley’s equation and to knot exterior’s cusp shape.

Moreover we can know the approximate value of the cusp shape for the twist
knot complementEJ(2,2m) by usingSnapPea[25], which is a program for creating
and studying hyperbolic three–dimensional manifolds by Jeffrey Weeks. We give
the lists containing the approximate values of cusp shapes for twist knot comple-
ments and the results by substituting them into the formulas of the twisted Reide-
meister torsion in Tables3 and4.
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Twisted torsion for J(2,2m) (1 ≤ m≤ 10)

m
Torsion at the holonomyTJ(2,2m)

λ (ρu) (divided by a sign−τ0)

Result by substitutingu = 4/(c − 2) intoTJ(2,2m)
λ (ρu), wherec is the cusp shape

1
3

3

2
13u2 − 7u + 19

(19c2 − 104c + 340)/(c − 2)2

3
26u4 − 17u3 + 98u2 − 45u + 55

(55c4 − 620c3 + 3968c2 − 11280c + 17424)/(c − 2)4

4
46u6 − 34u5 + 263u4 − 157u3 + 402u2 − 159u + 118

2(59c6 − 1026c5 + 9936c4 − 52912c3 + 180592c2 − 352032c + 369280)/(c − 2)6

5
69u8 − 54u7 + 540u6 − 366u5 + 1360u4 − 733u3 + 1186u2 − 411u + 215

(215c8−5084c7+66072c6−509040c5+2656960c4−9378624c3+22613632c2−33723648c+
26688768)/(c − 2)8

6
99u10−81u9 + 971u8−710u7 + 3400u6−2123u5 + 5052u4−2469u3 + 2875u2−884u+ 353

(353c10 − 10596c9 + 173188c8 − 1742080c7 + 12219808c6 − 61550208c5 + 228030592c4 −
612284416c3 + 1160955136c2 − 1411093504c + 903214080)/(c − 2)10

7

132u12− 111u11 + 1566u10− 1203u9 + 7057u8 − 4810u7 + 14996u6 − 8647u5 + 15044u4 −
6710u3 + 6076u2 − 1678u + 539

(539c12−19648c11+387176c10−4799040c9+42208784c8−274741248c7+1363062528c6−
5187840000c5 + 15118560512c4 − 33001455616c3 + 51856091136c2 − 53202206720c +

28544299008)/(c − 2)12

8

172u14−148u13+2383u12−1899u11+13098u10−9475u9+36258u8−23106u7+52884u6−
28275u5 + 38518u4 − 15774u3 + 11636u2 − 2914u + 780

4(195c14−8374c13+193288c12−2846448c11+30095568c10−239812000c9+1487434752c8−
7287857664c7 + 28404952320c6−87772645888c5 + 212579837952c4−393068802048c3 +

529782681600c2 − 471281852416c + 218188021760)/(c − 2)14

9

215u16 − 188u15 + 3416u14 − 2796u13 + 22210u12 − 16767u11 + 76022u10 − 51847u9 +

146639u8−87602u7 +157972u6−78647u5 +87864u4−33238u3 +20652u2−4730u+1083

(1083c16 − 53576c15 + 1417872c14 − 24177568c13 + 298484224c12 − 2810875520c11 +

20889506048c10 − 124832580096c9 + 606632721920c8 − 2406783375360c7 +

7784342106112c6 − 20354210914304c5 + 42341634637824c4 − 68068269064192c3 +

80435317243904c2 − 63142437978112c + 25688198283264)/(c − 2)16

10

265u18− 235u17 + 4739u16− 3964u15 + 35520u14− 27711u13 + 144776u12− 103759u11 +

348155u10 − 224404u9 + 501055u8 − 281458u7 + 417368u6 − 194245u5 + 183500u4 −
64454u3 + 34537u2 − 7285u + 1455

(1455c18 − 81520c17 + 2433812c16 − 47158400c15 + 665730240c14 − 7230947840c13 +

62585931008c12 − 440831379456c11 + 2561522930176c10 − 12371911213056c9 +

49827680770048c8−167134091640832c7 +464297966682112c6−1056316689612800c5 +

1931794260754432c4 − 2753296051208192c3 + 2901909811167232c2 −
2040504620417024c + 741196988416000)/(c − 2)18

T 1. Table for the sequence of knotsJ(2,2m) (1 ≤ m≤ 10)
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Twisted torsion for J(2,−2m) (1 ≤ m≤ 10)

m
Torsion at the holonomyTJ(2,−2m)

λ (ρu) (divided by a signτ0)

Result by substitutingu = 4/(c − 2) intoTJ(2,−2m)
λ (ρu), wherec is the cusp shape

1
−3

−3

2
7u3 + u2 + 14u− 5

−(5c3 − 86c2 + 268c − 680)/(c − 2)3

3
17u5 + 8u4 + 79u3 + 26u2 + 73u + 1

(c5 + 282c4 − 1880c3 + 9488c2 − 22448c + 34848)/(c − 2)5

4
34u7 + 22u6 + 225u5 + 119u4 + 439u3 + 162u2 + 229u + 22

2(11c7 + 304c6 − 3276c5 + 25488c4 − 112432c3 + 359808c2 − 661824c + 738560)/(c − 2)7

5
54u9 + 39u8 + 474u7 + 300u6 + 1411u5 + 730u4 + 1619u3 + 586u2 + 551u + 65

(65c9+1034c8−16528c7+175520c6−1125280c5+5374144c4−17783040c3+42336768c2−
62848768c + 53377536)/(c − 2)9

6

81u11 + 63u10 + 872u9 + 611u8 + 3462u7 + 2104u6 + 6167u5 + 3036u4 + 4714u3 + 1615u2 +

1129u + 137

(137c11 + 1502c10 − 34340c9 + 468616c8 − 3940960c7 + 25007808c6 − 117308544c5 +

420442368c4 − 1109472000c3 + 2123257344c2 − 2628703232c + 1806428160)/(c − 2)11

7

111u13 + 90u12 + 1425u11 + 1062u10 + 7105u9 + 4747u8 + 17286u7 + 9956u6 + 21045u5 +

9752u4 + 11610u3 + 3724u2 + 2070u + 245

(245c13 + 1910c12 − 62696c11 + 1057552c10 − 11025808c9 + 87196704c8 − 526180096c7 +

2499806720c6 − 9272200448c5 + 26825366016c4 − 58773907456c3 + 94191718400c2 −
99494326272c + 57088598016)/(c − 2)13

8

148u15+124u14+2195u13+1711u12+13125u11+9354u10+40453u9+25698u8+68070u7+

37044u6 + 60745u5 + 26422u4 + 25394u3 + 7604u2 + 3502u + 396

4(99c15 + 532c14 − 26060c13 + 529856c12 − 6606160c11 + 62595520c10 − 460836032c9 +

2719805952c8−12910096128c7 + 49528327168c6−152285103104c5 + 370984124416c4−
695663718400c3 + 961422573568c2 − 884915453952c + 436376043520)/(c − 2)15

9

188u17 + 161u16 + 3172u15 + 2552u14 + 22171u13 + 16540u12 + 82961u11 + 56366u10 +

179181u9 +108029u8 +224190u7 +115204u6 +154037u5 +62916u4 +50650u3 +14172u2 +

5570u + 597

(597c17+1982c16−161440c15+3885760c14−56503104c13+624108160c12−5417133568c11+

38142084096c10 − 219869856256c9 + 1045959103488c8 − 4105465389056c7 +

13257704030208c6 − 34864687169536c5 + 73473552449536c4 − 120432383098880c3 +

146315203575808c2 − 119078046597120c + 51376396566528)/(c − 2)17

10

235u19 + 205u18 + 4434u17 + 3659u16 + 35404u15 + 27360u14 + 155687u13 + 111176u12 +

410964u11 + 266255u10 + 665399u9 + 380935u8 + 647346u7 + 314408u6 + 353985u5 +

135980u4 + 94041u3 + 24637u2 + 8440u + 855

(855c19 + 1270c18 − 236348c17 + 6649256c16 − 110706240c15 + 1397436800c14 −
13965196032c13 + 114155938304c12 − 773068443136c11 + 4380077954048c10 −
20842143467520c9 + 83401615028224c8 − 279834167951360c7 + 782314999349248c6 −
1800640172326912c5 + 3349441682210816c4 − 4881403696185344c3 +

5296224268058624c2 − 3862939033141248c + 1482393976832000)/(c − 2)19

T 2. Table for the sequence of knotsJ(2,−2m) (1 ≤ m≤ 10)
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Table of cusp shape and twisted torsion forJ(2,2m) (1 ≤ m≤ 10)

m
The cusp shape ofEJ(2,2m) by SnapPea

Result by substituting the cusp shape intoTJ(2,2m)
λ (ρu) (divided by a sign−τ0)

1
6

3

2
2.490244668+ 2.979447066i

−4.11623+ 1.84036i

3
2.08126429145+ 2.36227823937i

−7.90122+ 4.10883i

4
2.0276856933+ 2.1860003244i

−15.7856+ 9.8702i

5
2.012780611+ 2.113453657i

−28.639+ 19.945i

6
2.006968456+ 2.076533648i

−47.61+ 35.51i

7
2.0042238896+ 2.0551565883i

−73.9 + 58i

8
2.0027560835+ 2.0416569961i

−108.71+ 87.94i

9
2.001898908+ 2.032581856i

−153.25+ 127.23i

10
2.0013643244+ 2.0261854785i

−208.74+ 176.85i

T 3. Approximate values of cusp shape and torsion forJ(2,2m)
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Table of cusp shape and twisted torsion forJ(2,−2m) (1 ≤ m≤ 10)

m
The cusp shape ofEJ(2,−2m) by SnapPea

Result by substituting the cusp shape intoTJ(2,−2m)
λ (ρu) (divided by a signτ0)

1
2
√

3 i

−3

2
1.8267382783+ 2.5647986322i

−3.56727+ 4.42520i

3
1.9550035735+ 2.2522368192i

−7.65836+ 10.2328i

4
1.9816823033+ 2.1429951300i

−15.613+ 20.31i

5
1.9907131276+ 2.0922630798i

−28.493+ 35.873i

6
1.9946330273+ 2.0645297541i

−47.48+ 58.13i

7
1.9966145588+ 2.0476951383i

−73.77+ 88.3 i

8
1.9977257728+ 2.0367007634i

−108.586+ 127.59i

9
1.9983978648+ 2.0291212618i

−153.13+ 177.2 i

10
1.9988285125+ 2.0236732778i

−208.6 + 238.4 i

T 4. Approximate values of cusp shape and torsion forJ(2,−2m)
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