TWISTED REIDEMEISTER TORSION FOR TWIST KNOTS

JEROME DUBOIS, VU HUYNH, AND YOSHIKAZU YAMAGUCH]

AsstracT. The aim of this paper is to give an explicit formula for the £C)-

twisted Reidemeister torsion as defined!@h ih the case of twist knots. For
hyperbolic twist knots, we also prove that the twisted Reidemeister torsion at the
holonomy representation can be expressed as a rational function evaluated at the
cusp shape of the knot. Tables given approximations of the twisted Reidemeister
torsion for twist knots on some concrete examples are also enclosed.

1. INTRODUCTION

Twist knots form a family of special two—bridge knots which include the trefoil
knot and the figure eight knot. The knot group of a two—bridge knot has a partic-
ularly nice presentation with only two generators and a single relation. One could
find our interest in this family of knots in the following facts: first, twist knots ex-
cept the trefoil knot are hyperbolic, and second twist knots are not fibered except
the trefoil knot and the figure eight knot (see Reni2rif the present paper for
details).

In [5], the first author introduced the notion of the twisted Reidemeister torsion
in the adjoint representation associated to an irreducible representation of a knot
group. In B, Main Theorem], one can find an “explicit” formula which gives the
value of this torsion for fibered knots in terms of the map induced by the mon-
odromy of the knot at the level of the character variety of the knot exterior. In
particular, a practical formula of the twisted Reidemeister torsion for torus knots
is presented ind, Section 6.2]. One can also find an explicit formula for the
twisted Reidemeister torsion for the figure eight knotén$ection 7]. More re-
cently, the last author foun®6, Theorem 3.1.2] an interpretation of the twisted
Reidemeister torsion in terms of the twisted Reidemeister torsion polynomial and
gave an explicit formula of the twisted torsion for the twist kngt 5

In the present paper we give an explicit formula of the twisted Reidemeister
torsion for all twist knots. Since twist knots are particular two—bridge knots, this
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paper is a first step in the understanding of the twisted Reidemeister torsion for
two-bridge knots.

ORGANIZATION

We recall some properties of twist knots in Seci®nn Sectior3, we give a
recursive description of the character variety of twist knots and an explicit formula
for the cusp shape of hyperbolic twist knots. In Secdpwe recall the definition
of the twisted Reidemeister torsion for a knot and an algebraic description of this
invariant. We give formulas for the twisted Reidemeister torsion for twist knots in
Section5. In particular, we show in Subsecti@&n3 that the twisted Reidemeister
torsion for a hyperbolic twist knot at its holonomy representation is expressed by
using the cusp shape of the hyperbolic structure of the knot complement. The last
part of the paper (Subsecti®&ng) deals with some remarks on the behavior of the
sequence of twisted Reidemeister torsions for twist knots at the holonomy indexed
by the number of crossings. The Appendix contains concrete examples and tables
of the values of the twisted torsion for some explicit twist knots.
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2. TwisT KNOTS

Notation. According to the notation 01g], the twist knots are writted(+2, n),
wheren is an integer. The crossings are right-handed when> 0 and left—
handed whem < 0.

Here is some important facts about twist knots.

(1) By definition, ifn € {0, 1, —1} thenJ(+2, n) is the unknot. In all this paper,
we focus on the knotd(+2, n) with |n| > 2.

(2) If we rotate the diagram a¥(2, n) by a 90 degrees angle clockwise then
we get a diagram of a rational knot in the sense of Conway. In rational
knot notationJ(2, n), n > 0, is represented by the continued fraction

1 -n

n-2]=—m=-——:.
[n.-2] _2+r% 2n-1
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(VY

n-crossings n-crossings

Ficure 1. The diagrams 09(2, n) andJ(-2,n), n> 0.

Therefore in two-bridge knot notation, for> 0, we have
J(2,n)=b(2n-1,-n) =b(2n-1,n-1).

Similarly, the knotJ(2, —n), n > 0, is represented by the continued fraction
[—n, =2], thereforeld(2, —n) = b(2n + 1, n + 1).

On the other hand, the knd¢-2, n), n > 0, isb(2n+1, n) andJ(-2, —n),
n>0,isb(2n-1,n).

(3) Another important observation is the following: the twist kd@t2, 2m+
1) is isotopic toJ(¥2, 2m) (see [B]) and moreoverd(+2, n) is the mirror
image ofJ(¥2, —n).

As a consequencje will only consider the twist knotK2, n), where
nis an integer such thgh| > 2. From now on, we adopt in the sequel the
following terminology: a twist knotl(2, n) is said to besven(resp.odd)
if nis even (resp. odd).

Example. Note that in Rolfsen’s tablélB], the trefoil knot 3 = J(2, 2) = b(3, 1),
the figure eight knot 4= J(2,-2) = b(5,3), 5, = J(2,4) and § = J(2, —4) etc.

Notation. For a knotK in S3, we letEx (resp.TI(K)) denote the exterior (resp.
the group) oK, i.e. Ex = S*\ N(K), whereN(K) is an open tubular neighborhood
of K (resp.I(K) = n1(Ek)).

Convention. Suppose tha®® is oriented. The exterior of a knot is thus oriented
and we know that it is bounded by a 2-dimensional tdFés This boundary in-
herits an orientation by the conventitthe inward pointing normal vector in the
last position”. Let int(,, -) be the intersection form on the boundary torus induced
by its orientation. The peripheral subgrom{T?) is generated by the meridian—
longitude systemy, 1) of the knot. If we suppose that the knot is oriented, then
u is oriented by the convention that the linking number of the knot with +1.
Next, 1 is the oriented preferred longitude using the ruleimt) = +1. These
orientation conventions will be used in the definition of the twisted sign—refined
Reidemeister torsion.
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Twist knots live in the more general family of two-bridge knots. The group
of such a knot admits a particularly nice Wirtinger presentation with only two
generators and a single relation. Such Wirtinger presentations of groups of twist
knots are given in the two following facts (see for exam{l€] pr [8] for a proof).

We distinguish even and odd cases and supposerthkdt.

Fact 1. The knot group 08(2, 2m) admits the following presentation:

1) T1(J(2,2m)) = (X, y|w"x = yw")

wherew is the word[y, x ] = yxly1x.

Fact 2. The knot group 08(2, 2m+ 1) admits the following presentation:
2 I1(J(2, 2m+ 1)) = (X, y|W"x = yw™

wherew is the word[x, y™!] = xy *x1y.

One can easily describe the peripheral-system)(of a twist knot. It is ex-
pressed in the knot group as:

1 =xandd = (W)™w™,

where we letw denote the word obtained from by reversing the order of the
letters.

Remarkl. The knot group of a two—bridge knét admits a distinguished Wirtin-
ger presentation of the following form:

I(K) = (X, y| Qx = yQ) whereQ = xtyax2ymt... x5yt g = +1.
With the above notation, fak = J(2, 2m), m € Z*, the wordQ is:

wm if m<O0,
(3) sz{

x W)™yl if m> 0.

Herew = (\7v) 1, i.e. the wordw is obtain fromw by changing each of its letters
by its reverse. Of course this choice is strictly equivalent to presentdijoB(it

in a sense, whem > 0 the wordw™ does not give a “reduced” relation (some
cancelations are possiblewfxw™y~1) which is not the case fa@,.

Some more elementary properties of twist knots are discussed in the following
remark.

Remark2. (1) The knot group$1(J(2, 2m-+1)) andI1(J(2, —2m)) are isomor-
phic by interchanging andy. Therefore it is enough to consider the case
of even twist knots.

(2) The genus of a twist knot is(|2, p. 99]). Thus, the only torus knot which
is a twist knot is the trefoil knot3
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(3) Twist knots are hyperbolic knogxcept in the case of the trefoil knot (see
[13)).

(4) Itis well known (see for examplélB]) that the Alexander polynomial of
the twist knotJ(2, 2m) is given by

AJ(zygm) (t) =mt + (l - 2m)t +m.

Moreover, using the mirror image invariance of the Alexander polyno-
mial, one has\y om:1)(t) = Aje—2m(t). Thus the Alexander polynomial
becomes monic if and only ihis +1. As a consequenctie knotJ(2, 2m)
is not fibered(since its Alexander polynomial is not monic) except for
m = =1, that is to say except for the trefoil knot and the figure eight knot,
which are known to be fibered knots.

o)

Ficure 2. The Whitehead link.

(5) Twist knot exteriors can be obtained by surgery on the trivial component
of the Whitehead linkW (see Figure2). More precisely,Ejo_om =
W(1/m) is obtained by a surgery of slodgm on the trivial component
of the Whitehead linkl, seellL8, p. 263] for a proof. As a consequence,
twist knots areall virtually fibered seellL2].

3. ON THE SL,(C)-CHARACTER VARIETY AND NON-ABELIAN REPRESENTATIONS

3.1. Review on theSL,(C)-character variety of knot groups. Given a finitely
generated group, we let

R(r; SL2(C)) = Hom(r; SL(C))

denote the space of $(C)-representations of. As usual, this space is endowed
with the compact—open topology. Herés assumed to have the discrete topology
and the Lie group S4(C) is endowed with the usual one.

A representatiop: m — SL,(C) is calledabelianif p(r) is an abelian subgroup
of SL,(C). A representatiop is calledreducibleif there exists gropersubspace
U c C2? such thap(g)(U) c U, for all g € #. Of course, any abelian representation
is reducible (while the converse is false in general). A non reducible representation
is calledirreducible
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The group Sk(C) acts on the representation sp&{&; SL,(C)) by conjuga-
tion, but the naive quotieR(r; SL,(C))/SL,(C) is not Hausddf in general. Fol-
lowing [4], we will focus on thecharacter varietyX(r) = X(r; SLp(C)) which is
the set ofcharactersof 7. Associated to the representatiore R(rr; SL,(C)), its
charactey,: m — C is defined byy,(g) = tr(o(g)), where tr denotes the trace of
matrices. In some sens€r) is the “algebraic quotient” oR(r; SL,(C)) by the
action by conjugation of PSKC). It is well known thatR(r, SL>(C)) and X(x)
have the structure of complex algebrafirze varieties (seé]).

Let R"(x; SL»(C)) denote the subset of irreducible representations, Gind
X" () denote its image under the mRor; SL»(C)) — X(x). Note that two irre-
ducible representations afin SL,(C) with the same character are conjugate by an
element of Sk(C), see #, Proposition 1.5.2]. Similarly, we writX"3%I1(K)) for
the image of the seR"YI1(K)) of non—abelian representationsX(I1(K)). Note
that X" (I1(K)) ¢ X"¥11(K)) and observe that this inclusion is strict in general.

3.2. Review on the character varieties of two—bridge knots.Here we briefly
review Riley’s method17] for describing the non—abelian part of the representa-
tion space of two—bridge knot groups.

The knot group of a two—bridge knét admits a presentation of the following
form:

(4) TII(K) = (X, y| Qx = yQ) whereQ = xtyox2yc-t...x0y1 g = +1.

We use the following notation:

t 1 t O
c=(o 3 P=(w 3
t 1 t 0
Cl = (0 t—l) 5 Dl = (_u t—]_) 5

t tt t 0

Ca= (0 t—l)’ D2 = (—tu t-l)'
Remark3. Note thatC andD can be obtained by conjugating@; andtD; by the
diagonal matrixJ = (** %), and replacing? by t. We also note thaE, andD;
are conjugate t€; andD; via U.
Fact 3. If M1, M, are non—commuting elements$h,(C) with same traces, then
there exists a paitt, u) € C? such thatM; and M, are conjugated t&, and D,
respectively.

Combining FacB and Remarl8, we obtain:

Claim 4. If M1, M, are non-commuting elements$h,(C) with same traces, then
M; and M, are simultaneously conjugated @ and D; respectively.
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For a two-bridge knoK, x andy are conjugate elementsif(K) and represent
meridians of the knot, therefoggx) andp(y) have same traces. #{x) andp(y)
do not commute, i.e. j is non—abelian, then up to a conjugation one can assume
thatp(x) andp(y) are the matrice€; andD; respectively.

Proposition 5. The homomorphism: TI(K) — GL,(C) defined by(x) = C and
p(y) = D is a non—abelian representation B{K) if and only if the pair(t, u) € C?
satisfies the following equation

%) Wi+ (1-twi2 =0

whereW = p(Q) = ( x; xi )

Conversely, every non—abelian representation is conjugated to a representation
satisfying Equation5).

Proof. A direct matrix computation shows that the requirem@ht = DW is
equivalent to the following two equations:
wig = (t— 1)wpo andwy g = —tuwg 5.

The second equation is just a consequence of the facthatpalindromic and
therefore is not really a requirement at all. Indeed, usiigto denote the trans-
pose of the matriV, we haveW' = DT*CT"DT2CT"*...DT“"C™®. Now
CT = vDV-landDT = VCV! whereV = ((“‘(‘))1/2 (_tu()’,l,z). This provides
V-IWTV = W, which immediately gives the second equation above. o

Notation. We letgx (t, u) = wy 1 + (1 —t)wy , denote the left hand side of Equation
(5) and call it theRiley polynomiabf K.

The same proof provides a sometimes more convenient result:

Proposition 6. The homomorphism: I1(K) — SL,(C) defined by(x) = C; and
p(y) = D1 is a non—abelian representationd{K) if and only if the pair(t, u) € C2
satisfies the following equation:

(6) Wyp+ (= wio =0

whereW = p(Q).
Conversely, every non—abelian representation is conjugated to a representation
satisfying Equation@).

Similarly, if p(X) = C, andp(y) = D5, then Riley’s equation is

Wy1 + (1 — tz)W]_,z =0.

3.3. The holonomy representation of a hyperbolic twist knot.
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3.3.1. Some generalitieslt is well known that the complete hyperbolic structure
of a hyperbolic knot complement determines a unique discrete faithful represen-
tation of the knot group in PSKC), called theholonomy representationlt is
proved R0, Proposition 1.6.1] that such a representation lifts tg(8).and deter-
mines two representations in FC).

The trace of the peripheral-system at the holonomp2ibecause their images
by the holonomy are parabolic matrices. More precisely, Calegari pr@yedt
the trace of the longitude at the holonomy is alwaysand the trace of the merid-
ian at the holonomy is2, depending on the choice of the lift. We summarize all
this in the following important fact.

Fact 7. Let pp be one of the two lifts of the discrete and faithful representation
associated to the complete hyperbolic structure of a hyperbolic Knahd let

T2 denote the boundary of the knot exterior. The restrictiopgfo 71(T?) is
conjugate to the parabolic representation such that

N 11 1 -1 ¢
#FPFlo 1) “7 o 1)
Herec = ¢(4, 1) € Cis called the cusp shape K.

Remark4. The universal cover of the exterior of a hyperbolic knot is the hyper-
bolic 3-spacél®. The cusp shape can be seen as the ratio of the translations of the
parabolic isometries dii® induced by projections to PS(C). Of course, the cusp
shape: = (1, 1) depends on the choice of the bagisA) for 71(T?). A change in

the basis ofr,(T?) shiftsc by an integral Mbius transformation.

3.3.2. Holonomy representations of twist knofBhis subsection is concerned with

the SLy(C)-representations which are lifts of the holonomy representation in the
special case of (hyperbolic) twist knots. Especially, we want to precise the images,
up to conjugation, of the group generatar@ndy (see the group presentatiof) ).

Lemma 8. LetK be a hyperbolic two—bridge knot and suppose that its knot group
admits the following presentatidri(K) = (x,y| Qx = yQ). If po denotes a lift in
SL,(C) of the holonomy representation, thefis given by, up to conjugation,

x|—>+11 .—>+10
_Ol’y_—ul’

whereu is a root of Riley’s equatiogk (1, u) = 0 of K.

Proof. It follows from Fact7 that each lift of the holonomy representation maps
the meridian tOt(% %) It is known that the lifts of the holonomy representation
are irreducible Sg(C)-representations, in particular, non—abelian ones. Hence we
can construct the SI(C)-representations which are conjugate to the lifts of the
holonomy representation by using roots of Riley’s equation. Using Se8t#pif
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xis sent tox (§ 1) theny is sent tox (_19), whereu is a root of Riley’s equation
¢K(1, U) =0. O

Notation. If we let A be an element of SI(C), then the adjoint actions & and
—A are same. So, we use the 8C)-representation such that

0 1 -u 1

as a lift of the holonomy representation and we improperly call ithblnomy
representation

x|—>(1 1), y|—>( L O) (whereu is such thatsk (1, u) = 0)

3.4. On parabolic representations of twist knot groups. In this subsection, we

are interested in thparabolic representationsf (hyperbolic) two—bridge knot
groups and especially twist knot groups. The holonomy representation is one of
them. Lemmd8 characterizes the holonomy representation algebraically and says
that it corresponds to a root of Riley's equatigr(1,u) = 0. A natural and in-
teresting question is the following: whose roots of Riley’s equadip(l, u) = 0
correspond to the holonomy representation? Here we will give a geometric char-
acterization of such roots.

3.4.1. Crucial remarks.We begin this section by some elementary but important
remarks on the roots of Riley’s equatigr(1, u) = 0 corresponding to holonomy
representations.

(1) One can first notice that such roots are necessawityplex numbers which
are not rea) because the discrete and faithful representation is irreducible
andnot conjugate to a real representation (i.e. a representation such that
the image of each element is a matrix with real entries).

(2) One can also observe that holonomy representations corresparnmito
of complex conjugate rootsf Riley’s equationpk(1,u) = O as it is easy
to see.

3.4.2. Generalities: the case of two-bridge knotset K be a hyperbolic two—
bridge knot. Suppose that a presentation of the knot gid{lf) is given as in
Equation 4) by

II(K) = (x,y| Qx = yQ), whereQ is a word inx, y.

The longitude oK is of the form: A =Q QX". Herenis an integer such that the

sum of the exponents in the wordis 0 and we repeat that denotes the word
obtained front) by reversing the order of the letters.
Letp: TI(K) — SL,(C) be a representation such that:

X+11 +10
H_Ol’yH_—ul
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whereu is necessarily a root of Riley’s equatigr (1, u) = 0. Suppose that

2(Q) :( Wi1 W2 )

Wo1 Wop

wherew, ; is a polynomial inufor alli, j € {1, 2}.
Riley’s method gives us the following identities (see SecBdi):

W1 = 0 andUW]_,z +Woq1 = 0.

Thus
0 W12
Q) = .
) (—UW1,2 W2,2)
The fact thap(w) € SL,(C) further gives the following equation:
(7) uwg, = 1.

The crucial point to computp(J) is to express)(\Tv) with the help ofp(w).
Consider the diagonal matrix:

. i 0
| =( 0 i )ESLz(C),
wherei stands for a square root efl. Let Ad denote the adjoint representation of
the Lie group Sk(C). Then the following identities hold:

p(X1) = Ad(p(x), p(y™) = Ad(p(y)) andp(Q ) = Ad (o(2)).

Thus, we have

(@) = Ad(p(@) = ( Wz Wz )

W21 Wi
Next, a direct computation gives:
0 —UWE,  —NUWE, + 2W1 oW,
®) p() = p(Q)p(Q)p(X)" :( 01,2 lfuwz 12W22 |
12

Combining Equations/) and B8), we obtain

-1 —n+ 2w ow
© py=( g TRt )
And we conclude that theusp shape of is

(10) c=n- 2\N1’2W2,2.

Remarkb. In particular, Equation9) gives us, by an elementary and direct com-
putation, Calegari’s resulf]: tr po(1) = —2 for the discrete faithful representation

po associated to the complete hyperbolic structure of the exterior of a (hyperbolic)
two—bridge knot.
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3.4.3. The special case of twist knotB) the case of hyperbolic twist knots, we
can further estimate ; in Equation|(L0). In fact, we only consider the case where
K = J(2,2m) in what follows. The groupI(K) of such a knot has the following
presentation:
I(K) = (x ylw™x = yw"),

wherew is the commutatonyj x ] (see Factl, Sectiori2). A direct computation
of the commutatop(w) = [o(y), p(x)™1] gives:

1-u -u

W= p(w) = v uwd+u+l

(whereu s such thatpk (1, u) = 0).

Using the Cayley—Hamilton identity, it is easy to obtain the following recursive
formula for the powers of the matri:
(11) WK — (WP + 2QWK Lt + WK 2 =0, k> 2.
Equation|lL1) implies
Wz = —(U+ 2)w 2.
Sincen = 0 anduw; , = 1, thecusp shape of the twist knitis:

2u+4
c=n+(u+ 4w, = UJ )

In other words, the roatly of Riley’s equationpk (1, u) = 0 corresponding to
the holonomy representation satisfies the following equation:
4
CTZ,
wherec is the cusp shape of the knot exterior.

(12) Up =

Remark6. Equation|2) gives a geometric characterization of the (pair of com-
plex conjugate) roots of Riley’s equatigni (1, u) = 0 associated to the holonomy
representation in terms of the cusp shape, a geometric quantity associated to each
cusped hyperbolic 3-dimensional manifold.

3.5. The character varieties of twist knots: a recursive description.T. Le [11]
gives a recursive description of the £C)-character variety of two—bridge knots
and apply it to obtain amexplicit description of the Si(C)-character variety of
torus knots. Here we apply his method to obtain an explicit recurrent description
of the SL,(C)-character variety of twist knots.

Letn=2mor 2m+ 1, recall thafl1(J(2, n)) = (X, Y| QmX = YQn), WhereQp, is
aword inx, y (see Factd-2).

Notation. Lety € I1(J(2,n)). Following a notation introduced i8], we let
[, : XITI(JI(2,n)) —» C
be the trace—function defined by: p — tr(o(y)).
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Leta = Iy, b = I,y and recall the following useful formulas fa%, B,C €
SL,(C):

(13) tr(A 1) = tr(A) and tr@B) = tr(BA),
(14) tr(AB) + tr(A1B) = tr(A)tr(B),

(15) tr(ABA1B™) = -2 — tr(A)tr(B)tr(AB) + (tr(A))? + (tr(B))? + (tr(AB))2.

As x andy are conjugate elementsii(J(2,n)), we havely =a = 1. If yisa
word in the letters< andy, thenl, can always be expressed as a polynomial func-
tion in a andb. For example, combining the usual Formula8)( (14) and (15),
one can easily observe that for= [y, x 1] = yxly1x:

(16) lw = -2 — a’b + 2a° + b?.

The character variety dfi(J(2, n)) is thus parametrized by andb. Here is a
practical description of it:

(1) We first consider the abelian part of the character variety. It is easy to see
that the equatioa®—b-2 = 0 determines the abelian part of the character
variety of any knot group.

(2) Next, consider the non-abelian part of the character variefy{d(2, n)),
suppose that the length of the wdpd, is 2k + 2 (we know that the length
of Qm is even). According tolll, Theorem 3.3.1], the non—-abelian part of
the character variety al(J(2, n)), n = 2mor 2m+ 1, is determined by the
polynomial equation:

®p(a,b) =0,
where
Dy(a,b) = |Qm - I% 44 (_1)kIQ$,'? + (_1)k+l.

Here we adopt the following notation: A is a word themA” denotes the
word obtained from\ by deleting the two end letters.

Let us give the two simplest examples to illustrate this general result and find
again some well-known facts.

Example 1. The trefoil knot 3 is the twist knotJ(2, 2). With the above notation,

one hag; = xlyl. Thus applying the above method, the non—abelian part of

the character variety is given by the polynomial equation:
®i(ab)=lxy1-1=0,

which reduces to
b=1
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Example 2. The figure eight knot dis the twist knotJ(2, —2). With the above
notation, one ha€_; = xlyxy!. Thus, the non-abelian part of the character
variety of the group of the figure eight knot is given by the polynomial equation:

@_1(a,b) = Iy = lyx+1=0,
which reduces, using Equatichg), to:
28 +b’-a’b-b=1

Now, we turn back to the general case and only consider the twistIKBd&m)
(see Item (2) of RemaliR). Recall that (see Remall:
17)

wm if m<O0O
I1(J(2,2m)) = (X, ¥ | QmX = YOy, whereQ, = ) ’
(J( ) = (XY | QmX = YQm), W m {xl(v_v)m‘lyfl ifm> 0.

Herew = [y, x ] andw = [y, x] and observe that the length of the wdbg, is
dm,if m< 0,and -2, if m> 0.

Our method is based on the fact that the wa@rglin the distinguished Wirtinger
presentation7) of I1(J(2,2m)) presents a particularly nice “periodic” property.
This property is discussed in the following obvious claim.

Claim 9. For me Z*, we have
0l _ {W? if m< -2,
™ x W)™ 3yt ifm> 3.
Based on Clain®, for m > 0, we adopt the following notation:
Sm = lanz: Tm = l@nays Um = lnay aNdVin = lan,
and similarly, form < 0,
Sm = lans Tm = l@mays Un = lan,y andVa = I,y
The Cayley—Hamilton identity applied to the matAx € SL,(C) gives
A" (A (tr AP)A? + 1) = 0.
Write c(a, b) = l2; thus form > 0, we have
Smia— (@ b)Sp,, + Sy =0
and same relations fdr}, U andV hold. Similarly, we have
S, 4—-c@b)s,, ,+S,=0

and same relations fdry,, Uy, andVp, also hold.
If we write Ry, = Sy, — T+ Uy, — Vi, for m e Z, then above computations can be
summarized in the following claim which give us a recursive relation R fez.-
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Claim 10. The sequence of polynomid;,(a, b)), satisfies the following re-
cursive relation:

(18) Ria — (@ DRy, + Ry = 0.
In Equation|(8), using Formula14) and Equation16), we have:
c(a b) = lyz = (Iw)?-2 = 2+4a’b—8a’-4b’+a*b?—4a’b—2a2b’ +4a* + 4a?b?+b*.
Letv be such that:
(19) v+v!=c(ab).
Form € Z*, we distinguish four cases to derive helpful formulasdgy in the
case of twist knots.
e Case 1:m> Qs even.
Letm= 2I, with| > 0, and set; = Ry. Then
riz2 = c(a, b)ri;. —rj, fori > 0.

As we have supposed that+ v'* = c¢(a, b) and following a standard
argument in combinatorics (see e.d4[p. 322]), we have the general
formula (which can also be proved by induction): MV + Nv', where
M andN are determined by the initial conditions:

ro=R{ =M +NJ
{rl = RS = MJv+Njv?
Further observe that:
ro=lg, = lo, +loy = lay = laigyr — lw+b—1.
So, we have

Pz =R+ Ry o+ + RY

=r+---+T0g
|

= > (MY + Ngv™)
i=0

+1 v—l—l -1

TN .
v—1 0 y1_1

= Mg

e Case2:m< 0Ois even.
Letm = -2I, with| > 0, and set; = R,;, i > 0. Similar to the first
case,
ris2 = c(a,b)rizy —rj, fori > 0.
The initial conditions are
{ro =Ry = Mg +N;

ri=R,=Myv+Nyv?
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Further observe that:
o= |972 - |Q:2 + |Q:/2 — IQ:’% = |W2 — Iy(W)‘lx + |W— b.
Thus, we have

Do =R,+R,+--+Ry+1
=rn+---+ro+1
[
= > (MgV + Ngv) +1
i=0

w1 vit-1
+ Ny + 1.
v-1 0 yv1_1

=M,
e Case 3:m> 0 is odd.
Letm= 2l + 1, withl > 0, and set; = R;,,, i > 0. Similar to the first
case,
riz2 = c(@ b)riyp —rj, fori > 0.
The initial conditions are
ro=R} =M + N/
ri=R, =Mjv+Nfv?
Further observe that:

o= IQ3 - |Q/3 + |Qg - |Q/3~ = IX‘l(W)Zy'l - I(W)2 + |wa— lw.
Thus,
®no=R,+RL,+ - +R +b-1
=rn+---+rp+b-1
I
=Y (MiV+Njv)+b-1
i=0
Vl+l_l v—I—l_l

=M; =) + Ny ") +b-1

e Case 4:m< 0is odd.
Letm= -2l -1, with| > 0, and set; = R,,_;, i > 0. Similar to the
first case,
riz2 = c(@ b)riyp — 1y, fori > 0.
The initial conditions are
ro=R,=M]+N;
ri=R;=M;v+Nv?
Further observe that:

o= IQi3 - IQ’_3 + |Q'_/3 - IQ'_/é = IW3 - Iy(W)’zx + |W2 - I)FIV\FIX’L
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Similarly to the previous case, we have:

Py o=R,+R,,+ - +R;+ly-b+1
=f+---+rp+ly—-b+1

|
= Z(M;\/’ +N;v) 41, —b+1
i=0

+1 _ V»I—l -1
= M; + Ny —a’b+2a’+b*-b-1
Lv-1 byvioa
If we adopt the following notation:
-1 vit-1

2 M3(v, 1) = Mf——— -
(20)  MiwD =M .

then we summarize our computations in the following proposition.

andN; (v, 1) = N ji=0,1,

Proposition 11. The polynomial equation which describes the character variety of
the group of the twist knal(2, n), wheren = 2mor 2m+1, is given by®ny(a,b) = 0
where the sequend@®n,(a, b))z is recursively defined as follows:

®o(ab)=1 @i(ab)=b-1 ®_i(ab)=-a’b+2a2+b>-b-1,

and form> 1
ME(v, 1) + N&(v, | if m= 2l is even
(21)  Pm2(a.b) = {MEEV |; + NEEV |; +b-1 ifm=2+1isodd
1\ 1\" -

and
(22)

Mg(v. 1) + Ng (v, ) +1 if m= 2l is even
(I)—rmz(ae b) = _ _ 2 2 2 . .

MI(V,)+Ny(v.l)-ab+2a°+b*—b-1 ifm=2l+1isodd

Herev is defined in Equationl®) and M, (v, I), Ng (v, 1) in Equation @0).

Remark7. Observe that in Equation&1) and 22), the partM (v, 1) + N (v, 1) is
the “recursive” part. In Equatior2() the partb — 1 corresponds td,(a, b), and
in Equation 22) the part-a?b + 2a? + b?> — b — 1 corresponds t@_;(a, b), see
Exampleslland2.

4. REVIEW ON THE TWISTED REIDEMEISTER TORSION AND TWISTED POLYNOMIAL TORSION

4.1. Preliminaries: the sign-determined torsion of a CW-complex. We review

the basic notions and results about the sign—determined Reidemeister torsion intro-
duced by Turaev which are needed in this paper. Details can be found in Milnor’s
survey [L5] and in Turaev’'s monograpl28].
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n d

Torsion of a chain complexd.etC, = (0 Cn Ch1 L Co 0)
be a chain complex of finite dimensional vector spaces GveEhoose a basig
for C; and a basi&' for thei-th homology grougH; = H;(C,). The torsion ofC,
with respect to these choices of bases is defined as follows.

Let b' be a sequence of vectors @ such thatd;(b") is a basis ofB_; =
im(di: Ci — Ci_1) and leth' denote a lift ofh in Z = ker(di: C; — Ci_1). The
set of vectorsd;,;(b*1)hb' is a basis ofC;. Let [di,1(b*1)hibi/c'] € C* denote
the determinant of the transition matrix between those bases (the entries of this
matrix are coordinates of vectors dh,.1(b'*})h'b' with respect tac'). The sign-
determined Reidemeister torsiohC, (with respect to the bases andh*) is the
following alternating product (se22, Definition 3.1]):

n
(23) Tor(C.,c", h*) = (-1)! . ﬂ[di+1(bi+l)’r? b'/d1V" e .

i=0
Here

IC.l= " a(C.)BK(C.),
k=0
wherea;(C,) = Y\_, dimCy andg;(C.) = Y}_, dim Hk.
The torsion TorC,, ¢*, h*) does not depend on the choicesbbfandh’. Note

that if C, is acyclic (i.e. ifH; = O for all i), then|C,| = 0.

Torsion of a CW-complex.et W be a finite CW-complex ang be a Sl;(C)-
representation ok, (W). We define thesl,(C),-twisted chain complex ofV to
be

C.(W; s12(C)p) = C.(W; Z) &z, wy) 512(C)p-
Here C.(W;Z) is the complex of the universal cover with integer fiméents
which is in fact aZ[x1(W)]-module (via the action of1(W) on W as the cover-
ing group), andl>(C), denotes th&[r1(W)]-module via the compositioAd o p,
whereAd: SL,(C) — Aut(sl(C)), A — Ad,, is the adjoint representation. The
chain complexC, (W; slx(C),) computes thel,(C),-twisted homology otV which
we denote ast!(W) = H;(W; Ado p).

Let {e...., e} be the set of-dimensional cells ofv. We lift them to the
universal cover and we choose an arbitrary order and an arbitrary orientation for
the cells{ég), .. éﬂ)} If 8 = {a,b,c} is an orthonormal basis of,(C), then we
consider the corresponding basis oGer

o= eaddebdec... Head)ebd ad]

of Ci(W; s[,(C),) = C.(W;Z) ®zpmwy 5I2(C),. Now choosing for eacha basigh'
for thesly(C),-twisted homologyH! (W), we can compute the torsion

Tor(C..(W, sl2(C),), €z, h*) € C*.
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The celis{g?} . are in one-to—one correspondence with the cells
J Jo<i<dimWigj<n

of W, their order and orientation induce an order and an orientation for the cells

{ E')}O<_ ) .. Again, corresponding to these choices, we get a whsiger
<i<dimWi<j<n;

R for Cj(W; R).

Choose arhomology orientatiorof W, which is an orientation of the real
vector spaceH.(W;R) = EBDO H;(W;R). Let o denote this chosen orientation.
Provide each vector spat#(W; R) with a reference basis such that the basis
{ho, s hd‘mW} of H.(W;R) is positively oriented with respect to Compute the
sign—determined Reidemeister torsion Tu{WV; R), c*, h*) € R* of the resulting
based and homology based chain complex and consider its sign

79 = sgn(Tor(C.(W; R), c*, h")) € {+1}.

We define the twisted (sign—refined) Reidemeister torsion ab be
(24) TORW; sIx(C),, h*, 0) = 7 - Tor(C.(W, sl2(C),), ¢, h*) e C*.
This definition only depends on the combinatorial clasgthe conjugacy class
of p, the choice oh* and the cohomology orientatian It is independent of the
orthonormal basi8 of sl;(C), of the choice of the lifte®, and of the choice of
the positively oriented basis &f.(W; R). Moreover, it is independent of the order
and the orientation of the cells (because they appear twice).

One can prove that TOR is invariant under cellular subdivision, homeomor-

phism and simple homotopy equivalences. In fact, it is precisely the sibyt(
in Equation23) which ensures all these important invariance properties to hold.

4.2. Regularity for representations. In this subsection, we briefly review two
notions of regularity (seeg], [7] and [16]). In the sequeK c S® denotes an
oriented knot.

We say thap € R™(I1(K); SL»(C)) is regular if dim H{(Ex) = 1. This notion
is invariant by conjugation and thus it is well defined for irreducible characters.
Example 3. For the trefoil knot and for the figure eight knot, one can prove that
each irreducible representation of its group in@&l) is regular (se€eq] and [16])

Note that for a regular representationI1(K) — SL,(C), we have
dimH}(Ek) = 1, dimH(Ex) = 1 andH‘j’(EK) =0forallj+12

Lety be a simple closed unoriented curvedtak . Among irreducible represen-
tations we focus on the-regular ones. We say that an irreducible representation
p : II(K) = SLy(C) is y-regular, if (see [L6, Definition 3.21]):

(1) the inclusion: y — Eg induces asurjectivemap
C HIG) - H(Ex).
(2) iftr(p(r1(0Ek))) C {£2}, thenp(y) # +1.
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It is easy to see that this notion is invariant by conjugation, thus the notign of
regularity is well-defined for irreducible characters. Also observe thategular
representation is necessarily regular (the converse is false in general for an arbi-
trary curve).

Example 4. For trefoil knot, all irreducible representations of its group in@&L)
are-regular (seefq)).

For the figure eight knot, one can prove that each irreducible representation of
its group in Sla(C) areA-regularexceptwo.

We close this section with an important fact concerning hyperbolic knots

Fact 12([16]). LetK be a hyperbolic knot and consider the holonomy represen-
tation pg associated to the hyperbolic structure. hetbe any simple closed curve
in the boundary ok such thafog(y) # +1, thenpg is y-regular.

In particular, for a hyperbolic knot the holonomy representatigiis always
p-regular andi-regular.

Applying [16, Proposition 3.26] to a hyperbolic knot exterigk, we obtain
that for any simple closed curwg irreducible and non~regular characters are
contained in the set of zeros of thefdrential of the trace—functioly.

Remarlk8. Since the trace—functidr is a regular function on the character variety,
the set of irreducible and nopregular characters is discrete on the components
wherel, is nonconstant.

If K is a hyperbolic knot, then the character of a holonomy representation is
contained in a 1-dimensional irreducible componés(T1(K)) of X(I1(K)), which
satisfies the following condition: if a simple closed cugvim 0Eg represents any
nontrivial element ofI(K) then the trace—functioh, is nonconstant oXy(I1(K))
(seeRQ, Corollary 4.5.2]). In particular, irreducible characters near the character
of a holonomy representation gieegular andi-regular.

4.3. Review on the twisted Reidemeister torsion for knot exteriors.This sub-
section gives a detailed review of the constructions mad&,irs¢ction 6]. In
particular, we shall explain how to construct distinguished bases for the twisted
homology groups of knot exteriors.

Canonical homology orientation of knot exteriofdle equip the exterior df with
its canonical homology orientatiodefined as follows (se28, Section V.3]). We
have

H.(Ex;R) = Ho(Ex; R) @ Hi(Ek; R)
and we base thi-vector space with[ pt], [«] }. Here [pt] is the homology class
of a point, and [] is the homology class of the meridianof K. This reference
basis ofH.(Ex; R) induces the so—called canonical homology orientatio&af
In the sequel, we let denote the canonical homology orientatiorgf.
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How to construct natural bases for the twisted homoldgst p be a regular
SL2(C)-representation ofI(K) and fix a generatoP” of Hf (9Ek) (i.e. P is an
element inslx(C) such thatAd,g (P?) = P* for all g € 71(9Ek)).

The canonical inclusion: 0Ex — Eg induces (se€5, Lemma 5.2] and16,
Corollary 3.23]) an isomorphism : H‘Z’(aEK) - Hg(EK). Moreover, one can
prove that (see5, Lemma 5.1] and16, Proposition 3.18])

H2(0Ek) = Ha(9Ex; Z) ® C.

More precisely, let PEx] € H2(0Ek; Z) be the fundamental class induced by the
orientation ofdEx, one hadH5(9Ek) = C[[Ek] ® P*].
Thereference generatasf H5(Ex) is defined by

(25) ) = 1. (LOEK] ® P°]).

Letp be aa-regular representation df(K). Thereference generatauf the first
twisted homology groupt|(Ex) is defined by

(26) (D = ¢ (L] © 7).

Remarkd. The generatohfl)(/l) of H{(Ex) depends on the orientation &f If we
change the orientation of the longituden Equation [26), then the generator is
change into its reverse.

Remark10. Note that_Hip(EK) isAisomorphic to the dual space of thi(C),-
twisted cohomologyH,,(Ex) = H'(Ex;Ad o p). Reference elements defined in
Equations25) and 26) are dual from the ones defined B} Section 3.4].

The Reidemeister torsion for knot exteriotsetp: I1(K) — SL,(C) be at-regular
representation. ThReidemeister torsioiﬁlK atp is defined to be

(27) T (p) = TOR(Ex; s12(C),, {h(2), Wy}, 0) € C".

It is an invariant of knots. Moreover, #f; andp, are twol-regular representations
which have the same character thgf(o1) = TX (02). ThusTX defines a map on
the setX!"(I1(K)) = {xy € X"(I1(K)) | x is A-regulat.

Remarkll. The Reidemeister torsioﬁﬁf(p) defined in Equation27) is exactly
the inverse of the one considered/@j.[

4.4. Review on the twisted Reidemeister torsion polynomial.To compute the
twisted Reidemeister torsion for twist knots, we use techniques developed by the
third author inR7]. In fact, we compute a more general invariant of knots called
the twisted Reidemeister torsion polynomial. It is a sort of Alexander polynomial
invariant (but with non—abelian twisted d&eients) whose “derivative cdigcient”

att = 1 is exactlyTk.
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Definitions. Let W be a finite CW—complex. We regafdas a multiplicative group
which is generated by one varialtld_et a be the surjective homomorphism from
(W) to Z = (t).

If p is a SLy(C)-representation of1(W), we define the?Iz(C)p-twisted chain
complex ofW to be

C.(W; 512(C),) = Co(W; Z) ®adopsa (512(C) ® C(1)) ,

whereo - y @ v® f is identified witho ® Ad,,) (V) ® f - t20).
The sign—defined Reidemeister torsioVéivith respect to thisl»(C),-twisted
chain complex is defined to be (compare with Equati@))(

TORW; sl5(C),,, h*, 0) = 7o - Tor(C.(W; sIz(C),), C, h*) € C(t)".

Note that TORYV; %'IZ(C)p, h*, o) is — as the Alexander polynomial — determined
up to a factot™ whereme Z.

Next we turn back to knots exteriors. From now on, we suppose that the CW-
complexW is Ex and that the homomorphism: TI(K) — Z is the abelianization.
From 26, Proposition 3.1.1], we know that jf is A-regular, then all homology
groupsH..(Eg; ;IZ(C)p) vanishes. So ip is A-regular, then we define the twisted
Reidemeister torsion polynomial ato be

(28) T X (p) = TORW; sI5(C),,, 0, 0) € C(t)".

The torsion in Equation2@) is also determined up to a factft wherem € Z. It
is also shown in26, Theorem 3.1.2] that

7x ()
Kiy— i 2
i) =-lm =gy
Remarkl12. Itis shown by T. Kitano/1Q, Theorem A] thatr™ AK(p) agree with the
twisted Alexander invariant fak andAd o p.

How to comput§™ AK (o) from Fox—calculus.Here we review a description (ZTAK (0)
from a Wirtinger presentation @i(K). This description comes from some results
by T. Kitano [10]. For simplicity, write @ for (Ad o p) ® @. Choose and fix a
Wirtinger presentation

(29) M(K) = (X1, .., X | T2,y 005 M)

of TI(K). Let Wk be the 2-dimensional CW—complex constructed from the presen-
tation 29) in the usual way. The 0-skeleton\ consists in a single O-cdit, the
1-skeleton is a wedge @&foriented 1-cellsq, ... X and the 2-skeleton consists in
(k—1) 2-cellsDy, ..., Dx_1 with attaching maps given by the relations. .., rg_1
of presentation29).

F. Waldhausen prove2{] that the Whitehead group of a knot group is trivial.
As a resultWk has the same simple homotopy typeEas So, the CW—complex
Wk can be used to compute the twisted Reidemeister torsion polyncg@al (
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Therefore itis enough to consider Reidemeister torsion dflﬂo@)p-twisted chain
complexC. (Wk; siz(C), ).
The twisted complexC, (Wk; 52((:‘)[,) thus becomes:

0—=(sI5(C) ® C(t))< —>(sI5(C) ® C(t))k—>sIZ(C) ® C(t)—=0
where
= (D(x1 — 1), O(x2 = 1),...,P(x — 1)) .
and g, is expressed using the Foxfidirential calculus and the action given by
® = (Adop)®a:

a U
(D(a_:é) (‘(;;11)

(30) 02 = -
("fl) ("rk-)

Here we briefly denote thetimes direct sum 0fl,(C) ® C(t) by (sl2(C) ® C(t))".
Let AK Adop denote the (- 1) x 3(k — 1)—matrix obtained from matri>30) of

0- by deleting its first row. The torsion ponnom@K(p) defined in Equation8)

can be described, up to a fact®r(m € Z), as follows (for more details se8,[10):

1
detA ad.p

31 Kp) =10 ————.

(31) T2 (o) =70 det@(x, — 1))

This rational function has the first order zerotat 1 [26, Theorem 3.1.2]. The
twisted Reidemeister torsidH (o) is expressed as

K 7X(p) _ detAﬁ Adop
(32) T! (o) = ~lim (t_l) =-lm|7o- (t— 1) det@(x, — 1)) )’

Remarkl3. From 26, Proposition 4.3.1], we can see that the twisted Reidemeister
torsionTX associated to a two—bridge kniétis a rational function irs + 1/s and

u, where § u) is a solution of Riley’s equationk (s,u) = 0. In particular, if we
consider the case far= 1, then the Reidemeister torsimj is a rational function

of u. The variablau satisfies Riley’s equatiosi (1, u) = 0. Sinceu is expressed in
terms of the cusp shape, the twisted Reidemeister toﬁ@}oat the holonomypg

is also a rational function in the cusp shape corresponding to theiroot

5. THE TWISTED REIDEMEISTER TORSION FOR TWIST KNOTS

In this section, we compute the twisted Reidemeister torsion for twist knots.
Since there exists an isomorphism between the knot grigi&, 2m + 1)) and
I1(J(2, —2m)) (see Remarl), it is enough for us to make the computation in the
case of even twist knot& = J(2,2m), m € Z. The method used is the follow-
ing. We will make the computation at the acyclic level, i.e. compute the torsion
polynomial7 X (p), and next apply26, Theorem 3.1.2] to obtaifi¥ (o).
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5.1. The twisted Reidemeister torsion for even twist knots.We calculate the
twisted Reidemeister torsion for even twist knd¢g, 2m) wheremis an integer.

5.1.1. Preliminaries. Following Sectior8.2 and using Riley’s method we can pa-
rametrize a non—abelian ${C)-representatiop by two parameters and s as

follows:
b= % UV )= ey 10 )

wheres andu satisfy Riley’s equatio;m(s, u) = 0. Besides, the Riley poly-
nomial for twist knots is such that:
(s+s'-1-uEr-¢n-(rt-¢mh

& — & ’
where¢, are theeigenvalue®f the matrixo(w) = p([y, x1]) given by
(34)
& = > [u2+(2—s—s‘1)u+2 £+ VW +(2-s-sHu+4)W+((2-s- gl)u)J .

(33) #322m(U, S) =

5.1.2. Statement of the result.

Notation. Letas, az, B1, B2, C andty, be as follows:
c=c(u,s) =u+l-st;
a1 = (€. — 1)+ 9) + (s—1)°u— s
az = (1-su-§&)(1+(¢- - 9/c);
Bi=(& - 1)E +9+(s-1Pu-si;
B2=(1-su-¢£) (L + (& —9)/o);
tm = (é:T _é_—r_n)/(§;+ _‘f—)-

Remarkl4. Using such notation, the Riley polynomial of the twist kidg2, 2m)
becomes:

#322m(U, ) = (S— O)tm — tm-1.

With this notation in mind we can write down the general formula for the
twisted Reidemeister torsion for twist knots.

Theorem 13. Letmbe a positive integer.
(1) The Reidemeister torsidfl>*"™ (o) satisfies the following formula:

35)  TI*M(p) = 5 [ComET tm + Colme™ 4 + Cam)].

s+st
(2) Similarly, we have
To

36 TJ(Z,—Zm) -
(36) T, ©) s+s1-2

[-Ca(=m)&;™ i — Co(—=m)e=™ My + Ca(—m)] .
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In that two formulas we have:

Cy(m) = a?(3m+ 1) + —/5'1(5+ +1)—m(& — )% (s+ ‘_1 i 1)}

2, o2
ag + 1
S

(& - & )2{
) m {(C(l )+ ) ((§+ §-)Z(S+ Z41)-
20/1:32 (

c(1-&)+ —)(C(l )+ —)}

m

(& -8

{4 ((ga £V + 40+ 3) - (1) + 2
~c1-£)+2y)

20/1&2( C-£)+ —)(c(l £)+ _)}

1
& 6)2

_ m {(C(l —&)+ _l) ((§+ _57)2(3_,’_ S +1)—
Za'Zﬂl

Ca(m) = { ~pi(Bm+1)+ —al(f_ +1) - mE, - £)%(s+ % + 1)}

2 92
a7y + ]
S

(c(l £)+ )(C(l—.f_) + ﬁ—;)}

m

G-

& ((a £V + a0+ 3) - (e(1-£) + D
~c1-£)+22y)

22 (o) + B (et - §+)+—)}
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2
Cs(m’zﬁ{(a s+ D=2 +ﬂl}
2 5 2 2
e e - e Ly XY

& tzg )4{ (ca- §+)ﬂ1+al’81) <(ca- §+)ﬁ2+“2ﬁ2)
181\

P (C(l—f—)al + QT) - (C(l E)ap + 2ﬁ2) }
+ m(s+ - 22,

Remark15. One can observe that **™ is symmetric in¢.. Together with the
fact thaté, - £ = 1, we can see thatJ(zzm) is in fact a function of¢, + & =
wW+(@2-s-sHu+2.

5.1.3. Proof of Theorenl3. We make the detailed proof in the caseJ{®, 2m)
form> 0.

First, recall that the group af(2,2m) admits the following presentation (see
Factl):

Xy W = yw™).

Herew is the word §, x 1] = yx 'ty 1x.
Before computations, we give an elementary and useful lemma about trace of
matrices inM3(C).

Lemma 14. The two following items hold:
(1) LetAbeinGL(3,C). Set
o1(A) = tr (A) ando»(A) = (trZ(A) tr (A2)).

We have
o2(A) = o1 (A7) - det(p).
) IfA= (a,-,j)lsi,jsgl andB = (bi’i)lsi,jss are two matrices irM3(C), then we

have
a a b b
tr (A)tr (B) - tr (AB) = | -+ 3 Lo TLs
bs1 b33 az1 as3
L| B2 @3 boo b3
bso b33 azp @33
L] au @ b1 bio
bo1 bo> ay A
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Proof.
(1) From the Cayley—Hamilton identity, we have
A% — 51 (A)A? + o(A)A - det(A)1 = 0.
Multiplying this equation by- det(d)~*A~3, we obtain our first claim.
(2) Second item follows from direct calculations.
O
Fox—djferential calculus fo2m-twist knots.SinceJ(2, 2m) is a two—bridge knot,

the twisted Reidemeister torsion polynonﬂé)‘(p) associated td(2, 2m) is ex-
pressed as (see Equati@1)):

detd(Zwxw My )
detd(y — 1)
where® = Ado p ® a : Z[T1(J(2, 2m))] — M3(C[t, t™2]).
The following claim gives us the Fox-tierential part in the numerator of Equa-
tion (37).

37) TX(p) = 70

Claim 15. For m> 0, we have:
0
ax
Proof of Claim15. We have:

(38) (vvmxw‘my‘l) =w" (1 + (A=A +wle o pw™h)(xt - x‘ly)) .

0 N o OWT
aX(W’“XW y )_ X + W+ wWhx(-w™) X
owm
=w1+(1-xwm—].
( + (1 - Xw X )
It is easy to see that
ow 0, 4 1 _
i &(yx ytx) = yxty - yx
Thus
owm ow
~mZ7" _ 1. ~mly 170
w x Q+w =+ W™ HW X
=(L+wt+ - rw™h(xt - xly),
which gives us EquatiorB86). O

Let {E, H, F} be the following usuaC-basis of the Lie algebrsl;(C):

(3 8)ne(3 )2 8)



TWISTED REIDEMEISTER TORSION FOR TWIST KNOTS 27

It is easy to see that the adjoint actionsxaindy in the basi4E, H, F} of sl;(C)
are given by the following matrices:

s -2 -st s 0 0
X= Adp(x) =10 1 st , Y= Adp(y) = su 1 0o .
0 o st -si# -2u st
If W= Ad,w), thend)(%vv“xvxrmy’l) is given by (see Claird5):
W™ (14 (L= tX)(L+ W™+ WX - XLY)).
SetSy(A) = 1+ A+---+ A™1 for A € SL,(C), we finally obtain:
(39) d)(%wmxw’my’l) = W"(1+ (1 - tX)Sp(W (Xt = X1Y)).

Observation about the “secondffiirential” of a determinant.We can compute
the twisted Reidemeister torsion fd¢2, 2m) combining Equations32) and 39)
as follows:

det@(Zwmxw Myt
TICM(5) = _rylim @(5% Yy~ ))'
=1 (t-1)det®(y - 1))
Using the fact that d&/ = 1, Equation/89) gives:

(40) det@((%vx/“xw‘my‘l) = det(1 + (1 - tX)Sp(W (X - X71Y)).

If we write det( + Z,) for the right hand side of Equatiod@), then

det( + Zy)

J22my, y _ :
(41) T2 (o) = —tolim (t—1)2(t2 - (s+ st + 1)

thus

0 _det(l + Zn)
s+sl-2ts1 (t—-1)2
Moreover we can split det(+ Z,,) as follows:

(42) detd + Zy) = 1+ 01(Zm) + 02(Znm) + 03(Z),

Tj(z,zm) (p) —

where
0'1(Zm) =1r (Zm)’ U'Z(Zm) = % (tl’z(Zm) —1r (Z% )’ O'S(Zm) = deth)-

Thus
To .1+ 01(Zm) + 02(Zm) + 03(Zm)
s+sl-2t1 (t-1)? '

43)  T() =

With the “splitting” of TI**™ (p) given in Equation43) in mind, we compute
separately each “secondidirential” of theoi(Z,) (i = 1, 2, 3) to obtain the twisted
Reidemeister torsion af(2, 2m).
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The “second dferential” of o3(Z). We concentrate first on thes(Zy)-part of
Equation 43), which is the easier term to compute and correspond to the “second
differential” ofo3(Zy).

Claim 16. We have:
. 0'3(Zm)
t (t— 12
Proof of Claim16. By definitiono3(Zn) = detéy), thus
o3(Zm) = det(L — tX)Sm(W )t 1X 1 - X71Y))
= det(l - tX) detSm(W1)) det¢ X 1Y) det(y — t1)

=(2-s-s1)?.mg,

(44) =t3(t - 1)?(L - ts)(1 — tsH)(t - 9)(t — 1) detSm(W ™).
Taking the limit whert goes to 1, we thus obtain:
lim Z3(&m) _ 2 - s— s H2detGm(W ™).

t-1 (t— 1)
Note, with Equation'34) in mind, thaté2 and 1 are the eigenvalues W1 =
Ad, ). It thus follows that
(1-&£m1-¢2m
(1-H(1-¢&)

_ m(fr_” —&NET - &0

(€- - & -€&)
=mg,

detSm(W ™) = m

If we substitute the result of Claih6 into Equation'43), we obtain

Tj(z’zm)(p) - — ;ol - [It'_rf} 1+ 01((th_q)1-;20'2(Zm) F(ststo2p. mlﬁ} .
These expression can be easily written again as
(45)
@My = 0 [Ed—z (1Zm) + 02(Zm)|  +(s+SE-2P - mi
A stsi-2|2dg " v TEAMI '

The “second dferentials” of o1 (Z,) and o-2(Zn). We now focus on the “second
differentials” ofo-1(Zy) ando»(Zy). If we let

Zm = X - XIY)(1 - tX)S(W L),
then it follows from the definitions af; ando that
o1(Zm) = 01(Zm),  T2(Zm) = T2(Zm).
We usea-l(zm) ando-z(Zm) instead ofr1(Zy) ando,(Zy) for our calculations.
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Claim 17. We have:

1 d? 1 o1(Zm) ~ . »
(46) 2 dtZO-l( m) _ é I_>1 (t 1)2 =1r (X Sm(W ))’
1d 1. 0a(Zm)
47) >ae —02(Zm) o =5 |qu (- 1)
(48) = 30(X 'Sp(W ™) + oo(Y Si(W Hw )

—tr (XISm(W ) tr ((1+ X71Y)Sp(W ™))
+1r (XISm(W (L + XHY)Sm(W ).
Proof of Claim17. Sinceo-l(Zm) is the trace o/, the only term which remains

after taking the “second flerential” att = 1 is gfz 1x- lSm(W‘l)L_l
Now we considetr»(Z,). From the definition ofr»(Z,,), we have

1 d?
2 de

—072 (Zm)

2 1 )
(tr2(Zm) - tr (Z2))
t=1

2dt22
2 2
@) }
{dt2 m ™y

In tr (Z2), the following three terms are the terms which remain after taking the
second dierential att = 1:

o -2t ((x—lsm(W‘l))Z)L:1

= 274 (XASp(W (L + X)W )|
2t ((Y SW W)

dt2

Hence
! —0 Zm =~ lr2(XIS(Wh)) —tr ( X_lSm w1t 2)}
2dt2 2( ) 2{ r ( m( )) ( ( ))

—tr (XTI Su(W ) tr ((1+ X71Y)Sm(W 1))
+1r (XTISm(W (L + XHY)Sp(W ™))
+ % {tr2 (YSnWHW) — tr (Y Sn(W W2}
O

If we substitute Equation#6) & (/48) of Claim/17into Equation45), then we
obtain the following formula foﬂFj(z’zm) (0)-
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Claim 18. The twisted Reidemeister torsion {2, 2m) satisfies the following
formula:
(49)

J(2,2 70
T () =

St | (XTISm(W ) + 3oa(XSm(W )

+ (Y SW W) — tr (XESm(W )t (Sm(W ™))
+1r (XISm(WHSm(W ™)) = tr (X1 Sp(W ) tr (XY Sp(W ™))
+1r (XTSmW XY S(W ) +(s+ 571 = 2)7 - mE|.

More explicit descriptionsTo find more explicit expression of tﬁéj(z’zm)(p), we

change our basis &f,(C) in order to diagonalize the matriko(w).
The SLy(C)-matrix p(w) can be diagonalized by

(u+l-st u+l-st
Tl 1l-su-¢, 1-su-& )

Explicitly, p~p(w)p is the diagonal matrix diag(, £-).
Seta=1-su-¢, andb = 1- su- £_. With respect to the bas{&, H, F} of
sl(C), the matrix of adjoint action op becomes as follows:

1 [ -C 2c c ]
=——| a -(@a+hb) -b

a-b a?/c -2ab/c -b%/c
wherec = u+ 1 — s7!is defined in Subsectich.1.2

Note that the matri®'WP is the diagonal matrix diagf, 1,£2). Here we
repeat thaW = Ad,w).

Set

X=P1IXP Y=PlyPandW =PlwP

Since we hav® 1S, (WP = Sy(W1), the matrixP1S,(W-1)P is the follow-
ing diagonal matrix

P1Sn(W P = diagé¢™ tm, m, &M ).
Moreover as trX1Sm(W1)) = tr (X-1S,,(W1)), we have the following claim.
Claim 19. We have
tr (X~ 1Spm(W)
1 ﬂZ ~ ﬁZ 02 0,’2 -
= m(éfmtw((a— b)2(s+st+1)- El - gl m-+ glg Yl

Proof of Claim19. By a direct computation, we obtain that the 1}-component
of the matrixX~* is equal toBZ/(s(a — b)?) and its (33)-component is equal to
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@?/(s(a- h)?). We can also find the (2)-component oX‘from tr (X%) = s+
st+1. o

Now, we computer,(XSm(W1)) andoo(Y Sn(W-HW-1) from Lemmal4 as
follows.
Claim 20. The following equalities hold:
(1) o2AXSuW )

1 B 2 -1 AT
_W(z‘f— mtm+((a—b) (S+S +1)—€—§ tm+€§+ mtm

) oaAYSa(WHW)
1 0’2 e _ az ﬁz ﬁz .
=G e (zlf_ 'mty + ((a— b’ (s+st+1)— Zl - El)tfn+ El'f* 1m'rm].

Proof of Claim20. Using Lemmal4and because deff = 1, det(Y) = 1 we have:
o2(XISm(W™)) = tr (XSp(W ) ™) - detSm(W ™))
and
o2(Y Sa(WHW™) = tr (Y TWS(W ) ™) - detSm(W ).
We obtain the above formulas by computing the traces u%intandS,(W-1) as
in Claim/19. o

Finally we calculate the other two terms which are of the following form:
—tr (A)tr (B) + tr (AB).

Claim 21. We have:
(1) —tr (X_lsm(W_l))tr (Sm(W_l)) +1r (X_lsm(W_l)Sm(W_l))
1 2

2 2
= "@-be [((a— b)*(s+ % +1)- a—sl)fr_mlmtm + [a—sl + 'B—Sl]tﬁw
2
+ ((a— b)?(s + % +1)- 'B—;)gflm%.]

(2) If we setX ! = (&), ;3> ANA XY = (b;j),_; |5, then we have

—tr (X7 ISm(W H))tr (X2Y Sn(W ) + tr (X 1Sm(WHX LY Sp(W1))

_ ( b1 by ) {2
- m
dz1 a3z

a1 a3
bs1 b33

o a3 boo b3 m-1¢
- b b + I'Tf+ m
32 D33 az2 a3z
apr an b1 bip m-14
- rTE_ m .
b1 bo> a1 a
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Proof of Claim21. Item (1) follows from above results and Item (2) follows from
Lemmald. m]

Remarkl6. The matrices<~! andX~1Y are described explicitly as follows.

it s B

- 1 s < . :
~ (@a-b)? o (a—b)2(5+§+1)—_C’1S’3l _%wz
-2 20109 of

S s <

(a— 2K 1Y
C1-£)+ 47 -20l-£)+Bl-£)+5) ~(e(1-£)+5)
Ci-g)+m G W AT (e(l- &) + @)

—(c(1-¢&, @1)2 .
©a-e)v8 ST C1-£)+)

—(C1-&)+ 2y 201-&)+ DL-&)+2)  (Cl-&)+2)

One can observe that ¢ b)? is equal to £, — £.)2. Thus, if we substitute the
results given in Claim49, 20 and21 into Equation [49), then we obtain Equa-
tion (35) of Theorenil3. This achieves the first part of the proof of Theorggn

The computation of}® 2" (), for m > 0, is completely similar and has the
following expression:

]  det@(Zw mxwmy-1))
3@2—2m) _ ox
T ) = =molim 77y detoy - 1)
%o __detll+Z_)

(50)

T Stsl_2t (t-1)

Here the matrixZ_p, is given by @ — tX)Sm(W)(Y X1 — t-2Y X~1Y-1). The right
hand side of Equatiorb0) is given by

(61) 5 [t X Sm(W)W) + 30(WX "Sn(W)) + o2(Y Su(W))

— tr (X Sp(W)W)tr (1 + XHY)Si(W)W)
+ tr (X IS(W)W(I + X71Y)S(W)W)
~(s+sTt-2P-m§].

Each term in Equatiorb) can be computed similarly as in Claiih8, 20 and21
which give the second item of Theoré&8.

5.2. Examples. As anillustration of our main Theoreftg, we explicitly compute
‘Tf on the character variety}" (I1(K)) for the following four examples: the trefoil
knot 3 = J(2,2), 5 = J(2,4), the figure eight knotd= J(2,-2), and § =

J(2, —4) respectively.
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(1) For the trefoil knot 3 = J(2, 2), the Riley polynomial is given by
diez(su)=-1+s+st-u

The computation of the twisted Reidemeister torsion (&, 2) is ex-
pressed as follows.
70

J(2,2) _
T = e

= —3‘1’0.

(—3(s+ st- 2))

This coincides with the inverse of the resiif Bubsection 6.1] (see Re-
mark11).
(2) For 5 = J(2,4), the Riley polynomial is given by

bi2a(sU) = -3+2(s+sh)+ (—4 +3(s+sY) - (s+ s’l)z) u
+ (—3 +2(s+ 5‘1)) u - e,

The twisted Reidemeister torsion foy 5 J(2, 4) is expressed as follows.

T0
T =) =

m[—z +21(s+ s -10(s+ s
+{-2+15(6+s1) - 17(s+ s )2 +5(s+ sH3u
+{6+7(s+ s - 5(s+ s H%?
=10 (—10(s+ sH+1+ (5(s+ sH2_7(s+sH+ 1) u
+ (—5(s+ st - 3) u2) .
(3) For the figure eight knotd= J(2, -2), the Riley polynomial is given by
$i2-2(SU) = (3-s—sHu+1)+ U

The computation of the twisted Reidemeister torsionJ&, —2) is ex-
pressed as follows.
70

J2-2 _
T = e
=7o(-2(s+ s +1).

(-2(s+ s +1)(s+s"-2)

This coincides with the inverse of the resif Bubsection 6.3] (see Re-
mark11) in which the torsion is expressed as/17 + 4l .
Since the longitude is equal to §, x }][x, y~!], one has

l,=—2-(s+sH)++s2

Thus, up to sign, we have

V17+41,=2(s+s Y- 1.
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(4) For 6, = J(2,-4), the Riley polynomial is given by
bie-a(sSU) =5-2(s+s) + (12+ (s+sH?2-7(s+ s’l)) u+
(11+ (s+s12-6(s+ s‘l)) u + (5 -2(s+ s‘l)) w + U,
The twisted Reidemeister torsion 2, —4) is expressed as follows.

T4 (0 )
- T i qa_ ~1 -1\2 _ ~1\3
= s+§1—2[ 14-13(s+ s ) +26(5+ S ) —8(s+s )

+{-8-34(s+5s ) +49(s+5)? - 2305+ s’ +4(s+sH)u
+{-2-31(s+5s ") +32(s+ s)* - 8(s+ s )~
+{2-9(s+ ) +4(s+ s
=To [(—8(s+ sH2+10(6s+s) + 7)
+ (4(S+ s -15(6+s1)?+19(s+ s + 4) u
+(-8(s+ 512 +16(s+ s + 1)U + (4(s+ s - 1) .

5.3. Twisted Reidemeister torsion at the holonomy representationin this sec-

tion we consider the twisted Reidemeister torsion for hyperbolic twist knots at
holonomy representations. Formulas of the twisted Reidemeister torsion associ-
ated to twist knots are complicated. But we see here that formulas for the twisted
Reidemeister torsion at holonomy representations are simpler.

Every twist knots except the trefoil knot are hyperbolic. It is well known that
an exterior of a hyperbolic knot admits at most a complete hyperbolic structure
and this hyperbolic structure determines the holonomy representation of the knot
group (see SectiaB.3). With Fact12in mind we know that such lifts at&regular
representations.

Remarkl7. If we substitutes = 1 into the Riley polynomiad ;e om)(s, u) given in
Equation83), then
S e
Luy=1-uwtn-thr1=(1-u -
$a2m(L,U) = (L - Utn —tma = ( )§+ 3 £ _f

The SL(C)-representations which lifts the holonomy representation correspond
to roots of Riley’s equatiom22m (1, u) = 0. We letp, denote such representa-
tions.

We are now ready to give some closed formulas for the twisted Reidemeister
torsion of twist knots at the holonomy representation.

Theorem 22. Letm > 0 and u denote one of the two complex conjugate roots
of Riley’s equationpyom(1,u) = 0 (resp. ¢y2-2m)(1,u) = 0) corresponding to
holonomy representations, then
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(1) the twisted Reidemeister torsiG®*™(p,) satisfies the following closed
formulas:

Ty, -

u2 a {4+ mu? - 4u+ 8)) t(€T + £M)
+ (@t + €™ - 1) (W - 4)m
+(=5U% - 8u + 47|,

similarly the Reidemeister torsiof, " u) satisfies the following
2 larly the Reid ter torsiof] > 2" tisfies the foll
closed formula:

TG =

2 o i

+ (b + €M) + 1) (U - 4)m
+(-5u% — 8u + 4)tﬁ1] )

Remark18. Combining results of Theorei®2 with Equation I.2), the twisted
Reidemeister torsion of a twist knot at the holonomy is expressed in terms of the
cusp shape of the knot.

Proof. First we make the computations in the casel( 2m), wherem > 0. If
we substitutes = 1 in Equation/41), then we obtain:

J(2,2m) T det + Zy)
w1 < —rp 54
0

—7o d*
= >4 qa 9etl + Zn)

t=1

Next, using the splitting of det(+ Z,) given in Equation42), we get:

Tod

J(22m)
(52) ©)= 24 24 dt

[1 + 01(Zm) + 02(Zm) + 03(Zm)]

t=1

It follows from Equation 44) that ¢ — 1)° dividesos(Zy,) in the case of = 1.
Hence the terrm;o-g(zm)‘ in Equationb2) vanishes. By degrees bin o1(Zn,)

and o2(Zy), we obtain the following equation from direct computations of the
above diterentials:

(53) T (p) = ~oltr (X' Sm(W ™)) + 5o (X Sm(W )
—tr (X7 ISp(WH)tr (1 + X1Y)Sp(W )
+tr (XISH(W (L + XLY)Sm(W ).
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Note that¢, + £ = U2 + 2 and €, — £.)? = UA(U? + 4). By Claims19, 20 and21
we have

tr (X~ 'Sm(W ™)) = [4€T + €Mt - (U - 4)m)|

w+4

(X ASm(W ) = [4m(ED + £M)tm — (U2 - 4)E]

w+4
and

—tr (X7ISm(WINtr (1 + X7 Y)S(W1) + tr (X 1Sn(WH (1 + X LY)Sn(Wh)
= —ﬁ [8(u+ 2)t3, — m(u+ 2)(u = B)ET+EMtm—m(U? — 4)ET "+ Mty

If we substitute these results into Equati&a)( then we obtain the wanted formula
for J(2, 2m).

Similarly, in the case of twist knot3(2, —2m), m > 0, from computations of
differentials we have

(54) Ty (py) = —7o[—tr (X "Sm(W)W) + Bora(X " Srm(W)W)
— tr (X Sm(W)W)tr (1 + X1Y)Sn(W)W)
+tr (XISm(W)W(L + X1Y)Sm(W)W)].

It follows from Claims19,20 and21 that

OIS WIW) = 7 [T + €Mt — (o — 4]
o2(X I Sp(W)W) = uz%l [4m(§T + EMtm — (U2 — 4)tﬁ1]

and
~r (XESm(W)W)Er ((1+X 1Y) Si(W)W) +tr (X Sm(W)W(1+X 1Y S(W)W))
= (B + 208 MU+ 2) (U BT £ U — ET ]

If we substitute these results into Equati®d)(, then we obtain the wanted for-
mula for J(2, —2m). O

5.4. Program list for Maxima. We give a program list in order to compute the
twisted Reidemeister torsion for a given twist knot. This program works on the
free computer algebra systeltaxima[19]. The functionR(m) in the list com-
putes the Riley polynomial aJ(2, 2m). The functionT (m) computes the twisted
Reidemeister torsion fad(2, 2m). It gives a polynomial o andu such that the

top degree oti is lower than that in the Riley polynomialom(s, u). Here we

use Expressiondlg) & (51) and the following remark for computing the twisted
Reidemeister torsion.
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Remark19. It follows from Equation 83) that the highest degree term ofin
$322m (s U) is equal to-u?™ (resp.u?™) if m> O (resp.m < 0).

Program list

load("nchrpl");/*We need this package for using mattrace*/
R(m) :=block(/*function for calculating the Riley polynomial of J(2,2m)*/
[/*w is the matrix of w=[y,x"{-1}]%*/
w:matrix([1-s*u,1/s-u-1], [-u+s*u*(u+l), (-u)/s+(u+l1)"21]),
pl,
wiw "m,
p:wl[l,1]+(1-s)*w[1,2],
p:expand(p),
return(p)
s
T(m):=if integerp(m) then
if m=0 then "J(2,0) is unknot." else
block(
[/*matrix for adjoint action of x*/
X:matrix([s,-2,(-1)/s]1,[0,1,1/s],[0,0,1/s]1),
/*matrix for adjoint action of y*/
Y:matrix([s,0,0], [s*u,1,0],[(-s)*u"2,(-2)*u,1/s]),
IX,/*inverse matrix of X*/
IY,/*inverse matrix of Y*/
S:ident(3),/*marix for series of W or W {-1}*/
AS:ident(3),/*adjoint matrix of S*/
W,/*matrix W=[Y,IX] */
IW,/*matrix [IX,Y]*/
d:1,/*the highest degree of u in the numerator
of R-torsion*/
k:1,/*the highest degree of u in the Riley poly*/
p:0,
r:R(m),/*the Riley poly*/
rl /*a polynomial removed the top term of u
from the Riley polynomial*/
1,
IX:invert(X),
IY:invert(Y),
W:Y.IX.IY.X,
Iw:IX.Y.X.IY,
/*calculating the numerator of R-torsion*/
if m>0 then
block(
/*calculation of S*/
for i:1 thru m-1 do(S:ident(3)+S.IW),
AS:adjoint(S),
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*the numerator of R-torsion*/
:p+mattrace(IX.S),
:p+3*mattrace(X.AS)+mattrace(IY.W.AS),
:p-mattrace(IX.S)*mattrace((ident(3)+IX.Y).S),
:p+mattrace(IX.S. (ident(3)+IX.Y).S),
:p+(2-s+(-1)/s) "2*determinant (S),
*The top term of u in the Riley poly r

is given by -u”"(2m-1).
We use the relation u"(2m-1) = r + u" (2m-1) later*/
k:2*m-1,/*the highets degree of u in the Riley poly*/
rl:r+u”(2*m-1)

)

N'T T T T TN

else

p

block(
/*calculation of S*/
for i:1 thru -m-1 do(S:ident(3)+S.W),
AS:adjoint(S),

:p-mattrace(IX.S.W),

rp+3*mattrace(X.IW.AS)+mattrace(IY.AS),

:p-mattrace(IX.S.W)*mattrace((ident(3)+IX.Y).S.W),

:p+mattrace(IX.S.W. (ident(3)+IX.Y).S.W),

:p-(2-s+(-1)/s) "2*determinant (S),

*The top term of u in the Riley poly r
is given by u"(2|m|).

We use the relation u"(2|m|) = -r + u"(2|m|) later*/
k:2*(-m),/*the highets degree of u in the Riley poly*/
rl:-r+u”(2*(-m))

)

~N'T T T T T

rexpand(p),
/'.“:

simplify by using r (decreasing the degrees of u)*/

/* set the degree of u in p*/

d

:hipow(p,u),
e

*decreasing the degrees of u*/

for j:1 while d >= k do(

p:subst(ri*u”(d-k),u"d,p),
p:expand(p),
d:hipow(p,u)

)!

p

p

p
r

:factor(p),

/*multiplying p

by the denominator of twisted Alexander*/

rexpand(p*(s/(s"2-2%s+1))),
:factorout(p,s),

:factorout(r,s),

print("The Riley polynomial of 1(2,",2%m,"):

T,



TWISTED REIDEMEISTER TORSION FOR TWIST KNOTS 39

print("The Reidemeister torsion for J(2,",2*m,"):"),
return(p)

)

else print(m,"is not an integer.");

23 T T T

T
The cups shape of J(2, -2m) X

225 - X B

2.15 - B

Imaginary part

2.1 B

205 | » .

1.95 1.96 1.97 1.98 1.99 2

Real part

Ficure 3. Graph of the cusp shape 32, —2m).

5.5. Aremark on the asymptotic behavior of the twisted Reidemeister torsion
at holonomy. We close this paper with some remarks on the behavior of the cusp
shape and of the twisted Reidemeister torsion at the holonomy for twist knots.

Remark20 (Behavior of the cusp shapdh Notes R1, p. 5.63], Thurston explains
that the sequence of exterior of the following knd$2, —2m)),,.; converges to
the exterior of the Whitehead link on FiguB(link 5§ in Rolfsen’s table(18]).
Note that, if the number of crossingsincreases to infinity, then the cusp shape
of the twist knotJ(2, +2m) converges to 2 2i, which is the common value of
the cusp shapes of the Whitehead link, see the graph on F33udreis result is a
consequence of Dehn'’s hyperbolic surgery Theorem.

The graph on Figurd gives the behavior of the sequence of the absolute value
of T~ (po) with respect to the number of crossing¥2, —2m) = 2 + 2m of
the knot. The order of growing can be deduced by a “surgery argument” using
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2500 T T T T T T T T T T T T

T T T T
f(m)=0.0325*(2m+2)"3

2000 E

1500 - E

1000 + E

Ficure 4. Graph of/ T3~ (p0)| and f (m) = C(§(2, —2m))°.

Item (5) of Remark2 and the surgery formula for the Reidemeister torsibg) [
Theorem 4.1].

Proposition 23. The sequencéTi‘z"zm)(po)l)ml has the same behavior as the
sequencéC($J(2, —2m))3)ml, for some constarg.

Ideas of the Proofltem (5) of Remark2 gives us thatEz_om = W(1/m) is
obtained by a surgery of slopérh on the trivial component of the Whitehead link
“W. LetV denote the glued solid torus apdts core. Usingl16, Theorem 4.1 (iii)
and Proposition 2.25] we have, up to sign:

(55) Ty 72 (p0) = T3}, -m(00) - TOR(V; 812(C)p ¥)

WhereTZ’l"”, A,,m)(po) stands for the Ad o pp)-twisted Reidemeister torsion of the
Whitehead link exterior computed with respect to the bases of the twisted homol-
ogy groups determined by the two curvesandy’2’~™ (see L6, Theorem 4.1)),

and TORVY; sl»(C),,, v) stands for theAd o po)-twisted Reidemeister torsion the
solid torusV computed with respect to its coye Herepg denotes the holonomy
representation of the Whitehead link exterior.
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To obtain the behavior af* 2" (p,) we estimate the two terms on the right—
hand side of Equatiorbb):

(1) Using [16, Proof of Theorem 4.17], itis easy to see that TGRE(C),,.y)
goes as; m? whenmgoes to infinity.
(2) Using [16, Theorem 4.1 (ii)], one can prove that

1
T o -m(00) = Tt 4y (00) - | =— — m),
(e m#0) = T o) (C(/Lu) )

wherec = ¢(4, ) denotes the cusp shape 3P, —2m) (computed with
respect to the usual merididongitude system). Thuﬁj?fﬂ, /l,,m)(po) goes

asT(“i’ﬂ,)(po) - mwhenm goes to infinity. One can also prove that, at the
holonomy, we have

Ty (00) = 8(1+1).
As a resultTI* ™ (p;) goes a< - m? for some constar€. o

APPENDIX: TABLES

In this appendix, except in the case of the trefoil knot (the only twist knot which
is not hyperbolic)u denotes the root of Riley’s equatigi (1, u) = O correspond-
ing to the discrete and faithful representation of the complete structure.

Remark21. As explained in SectioB.4, one can express the root of Riley’s equa-

tion ¢k (1,u) = 0 corresponding to the holonomy representation using the cusp
shaper. Equation/?) implies that the Reidemeister torsion at the holonomy rep-
resentation for twist knots can be expressed as a rational function evaluated at the
cusp shape. Such a formula is interesting because it expresses the twisted Reide-
meister torsion at the holonomy in terms of a hyperbolic—geometric quantity.

Tables1 and2 gives the twisted Reidemeister torsion for twist knots at the
holonomy (except in the case of the trefoil) with respect to the corresponding root
of Riley’s equation and to knot exterior’'s cusp shape.

Moreover we can know the approximate value of the cusp shape for the twist
knot complemenE;om by usingSnapPed25], which is a program for creating
and studying hyperbolic three—dimensional manifolds Hirdg Weeks. We give
the lists containing the approximate values of cusp shapes for twist knot comple-
ments and the results by substituting them into the formulas of the twisted Reide-
meister torsion in Table3 and4.
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Twisted torsion for J(2,2m) (1 < m< 10)

Torsion at the holonomi?‘j(z’zm) (ou) (divided by a sign-rg)

Result by substituting = 4/(c - 2) into T)#?™ (o), wherec is the cusp shape

3

3

1302 - 7u+ 19

(192 - 104c + 340)/(c — 2)

26u* — 17u® + 98u2 — 45u + 55

(55¢* — 6203 + 39682 — 1128 + 17424Y(c — 2)*

46U° — 34u° + 263* — 1578 + 4022 — 159 + 118

2(595 — 1026:° + 99364 — 529123 + 1805922 — 352032 + 369280) (¢ — 2)°

69u8 — 54u” + 540u° — 366U° + 136Qu* — 7338 + 118642 — 411U + 215

(21550847 +66072° —509040° + 2656966* —9378624° + 226136322 — 33723648+
26688768)(c — 2)°

99ul® - 81u° + 9718 — 71047 + 3406 — 2123.° + 50521 — 2469° + 287547 — 884u+ 353

(35310 - 10596° + 173188° — 174208067 + 12219808° — 61550208° + 228030592 —
612284416° + 1160955136 — 1411093504+ 903214080)(c — 2)1°

13212 — 112t + 1566410 — 1203.° + 70578 — 481007 + 149961° — 864 ° + 1504414 —
671013 + 607642 — 1678 + 539

(53912-1964811+38717610-47990406° + 42208784° - 274741248 + 1363062528 —
5187840006 + 15118560512 — 33001455616 + 51856091136 — 53202206720+
28544299008)¢c — 2)*2

17201 - 148013+ 2383112 - 1891t + 13098110 - 9475.° + 362581° - 231067 + 5288415 -
28275P° + 385181 — 157748 + 1163652 — 29141 + 780

4(19514-837413+19328812-284644811+300955681°—239812006° + 1487434755 -
7287857664 + 2840495232(F — 87772645888 + 21257983795¢ — 393068802048 +
529782681608 — 471281852416+ 218188021760 — 2)1

215016 — 18au15 + 341641 — 2796413 + 22210412 — 1676 + 76022110 — 518471° +
1466398 - 8760217 +157972:° — 7864 1° + 87864 — 33238° + 2065212 — 4730+ 1083

(108316 — 5357615 + 141787214 — 241775683 + 2984842242 — 28108755261 +
208895060480 — 124832580096 + 606632721926 - 2406783375360 +
7784342106118 — 20354210914304 + 42341634637824 — 68068269064193 +
80435317243904 — 6314243797811+ 25688198283264]c — 2)6

10

265018 — 235017 + 47316 — 396441° + 3552t — 2771113 + 14477612 — 10375 +
34815510 — 224404° + 5010558 — 28145817 + 417368° — 1942455 + 18350Q* —
6445488 + 345372 — 7285 + 1455

(145518 — 8152G17 + 243381216 — 47158406'° + 6657302401 — 7230947846\ +
625859310082 — 4408313794581 + 2561522930176° - 12371911213058 +
49827680770048 — 167134091640832 + 464297966682112 — 105631668961280D+
1931794260754432 -  2753296051208192 +  2901909811167232 -
2040504620417024 741196988416000): — 2)'8

TasLe 1. Table for the sequence of knal&2, 2m) (1 < m< 10)
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Twisted torsion for J(2,-2m) (1 < m< 10)

Torsion at the holonomi?‘j(z”zm)(pu) (divided by a sigrrg)

Result by substituting = 4/(c - 2) into T)®~?™ (o), wherex is the cusp shape

-3

-3

W +u2+14-5

—(56 - 86¢2 + 268 — 680)/(c — 2)°

170° + 8u* + 79u3 + 26u% + 73u + 1

(5 +282% — 18803 + 94882 — 22448 + 34848 (c — 2)°

34u7 + 2208 + 22505 + 110% + 4383 + 1622 + 229 + 22

2(11c” + 3045 - 3276:° + 254884 — 1124323 + 3598082 — 661824 + 738560)(c — 2)’

54u° + 3908 + 4747 + 30008 + 1411° + 730u* + 16193 + 586U2 + 551U + 65

(65¢°+10348-165287 + 1755208 - 1125280° + 5374144% — 17783040° + 42336768 —
62848768 + 53377536)(c — 2)°

81ul! + 63ut0+ 8721° + 611L8 + 34627 + 2104s° + 616 7° + 3036U* + 47148 + 16152 +
11291+ 137

(13711 + 150210 — 3434Q° + 468616° — 39409667 + 25007808° — 117308544 +
420442368" — 1109472006 + 2123257344 — 2628703232+ 1806428160)(c — 2)*

112013 + 90u? + 142541 + 106210 + 7105.° + 47478 + 1728617 + 995@.° + 210455 +
9752s% + 1161Q83 + 372442 + 207Qu + 245

(24518 + 191012 — 626961 + 105755210 — 11025808° + 871967048 — 5261800967 +
2499806726 — 9272200448 + 26825366016' — 58773907456 + 94191718406 —
99494326272+ 57088598016)(c — 2)13

148015+ 12401+ 219913+ 171112+ 1312511+ 9354419+ 404530 + 2569818 + 680707 +
370448 + 60745° + 26422* + 25394:3 + 7604,2 + 3502 + 396

4(99:15 + 53214 — 2606013 + 52985612 — 6606166 + 625955260 — 460836032 +
2719805952 — 12910096128 + 49528327168 — 152285103104 + 370984124416 —
695663718408 + 961422573568 — 884915453952+ 436376043520 ¢ — 2)15

188ul7 + 161016 + 3172115 + 255201 + 2217112 + 165412 + 82961 + 56366110 +
179181° + 1080298 +22419Q7 + 1152048 + 15403 1° + 6291614 + 506508 + 1417212 +
5570 + 597

(597c17+198216-1614401°+388576014-56503104°+6241081601%-5417133568 1+
38142084096 - 219869856256 + 1045959103488 - 4105465389058 +
13257704030208 — 34864687169538 + 73473552449536 — 120432383098888 +
146315203575808 — 119078046597120+ 51376396566528]c — 2)17

10

235019 + 205018 + 4434417 + 365 + 35404115 + 2736 + 1556813 + 111176112 +
4109641 + 26625510 + 665399° + 3809358 + 6473461 + 314408° + 353985° +
13598Q* + 940418 + 2463712 + 844Qu + 855

(85519 + 127018 — 23634817 + 664925616 — 110706240 + 139743680614 —
139651960323 + 1141559383042 — 7730684431361 + 4380077954048°0 —
20842143467528 + 83401615028224 — 279834167951360 + 782314999349248 —
1800640172326912 +  3349441682210816 -  4881403696185344  +
5296224268058622 — 3862939033141248- 1482393976832000) — 2)°

TasLe 2. Table for the sequence of knal2, —2m) (1 < m< 10)
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Table of cusp shape and twisted torsion fod(2, 2m) (1 < m < 10)

The cusp shape d ;2 2m) by SnapPea

m Result by substituti it g ivi i
y substituting the cusp shape mﬁéz (pu) (divided by a sign-7g)

1 6
3

2 2.490244668+ 2.979447066
-4.11623+ 1.84036i

3 2.08126429145 2.36227823937
—7.90122+ 4.10883i

4 2.0276856933 2.1860003244
-157856+ 9.8702i

5 2.012780611 2.113453657
—28639+ 19.945i

6 2.006968456+ 2.076533648
-47.61+ 3551i

7 2.0042238896+ 2.0551565883
-739+58i

8 2.0027560835- 2.0416569961
-10871+ 87.94i

9 2.001898908 2.032581856
-15325+ 127.23i

10 2.0013643244- 2.026185478%

—20874+ 176385i

TasLe 3. Approximate values of cusp shape and torsionJ@; 2m)
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Table of cusp shape and twisted torsion fod(2, —2m) (1 < m < 10)

The cusp shape ;2 -2m by SnapPea

m Result by substituti it —2m ivi i
y substituting the cusp shape m‘ﬁéz (ou) (divided by a sigrro)

1 2V3i
-3

2 1.8267382783- 2.5647986322
-3.56727+ 4.42520i

3 1.9550035735- 2.2522368192
—7.65836+ 10.2328i

4 19816823033 2.1429951300
-15613+ 20.31i

5 1.9907131276- 2.0922630798
—28493+ 35.873i

6 19946330273 2.0645297541
—-47.48+ 5813i

7 1.9966145588- 2.0476951383
-7377+883i

8 1.9977257728- 2.0367007634
-108586+ 127.59i

9 1.9983978648- 2.0291212618
-15313+ 177.2i

10 1.9988285125- 2.0236732778

—-2086 + 2384

TasLe 4. Approximate values of cusp shape and torsionJi@; —2m)

45
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