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Abstract. In this paper we study the non–existence and the unique-
ness of limit cycles for the Liénard differential system of the form

ẍ − f(x)ẋ + g(x) = 0 where the functions f and g satisfy xf(x) > 0
and xg(x) > 0 for x 6= 0 but they can be discontinuous at x = 0.

In particular our results allow first to prove the non–existence
of limit cycles under suitable assumptions, and second to prove the
existence and uniqueness of a limit cycle in a class of discontinuous
Liénard systems which are relevant in engineering applications.

1. Introduction and statement of the main results

One of the main problems in the qualitative theory of planar differential
equations is to know the existence of limit cycles and its number. This
problem restricted to polynomial differential equations is the well known
16–th Hilbert’s problem [7]. Since Hilbert’s problem turned out a strongly
difficult one Smale [12] particularized it to Liénard differential systems in
his list of problems for the present century.

For Liénard systems there are many results about the non–existence,
existence and uniqueness of limit cycles, see for instance [3, 5, 9, 13, 14]. In
this paper we provide a new contribution to this subject which can be also
applied to Liénard differential systems with some kind of discontinuities.

We consider for x ∈ [a, b], where −∞ < a < 0 < b < ∞, the Liénard
differential equation

(1) x′′ − f(x)x′ + g(x) = 0,
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where the functions f and g are given by

(2) f(x) =

{

f1(x) if x < 0,
f2(x) if x > 0,

g(x) =

{

g1(x) if x < 0,
g2(x) if x > 0,

being f1, g1 continuously differentiable in [a, 0], and f2, g2 continuously
differentiable in [0, b]. Note that the functions f and g are not defined at
x = 0 so that, if we eventually define f(0) and g(0), they are allowed to
have a jump discontinuity at the origin.

By using the classical Liénard plane we can obtain the equivalent differ-
ential system

(3)
x′ = F (x) − y,
y′ = g(x),

where F (x) =

∫ x

0

f(s)ds,

and it is understood that F (0) = 0, while g(0) is not defined by now.
This system has associated the vector field

(4) X(x) =

{

X1(x) if x ≤ 0,
X2(x) if x ≥ 0,

where Xi(x) =

(

F (x) − y
gi(x)

)

,

with x = (x, y)T and standing i = 1 for x ≤ 0, and i = 2 for x ≥ 0. The
ambiguity in the definition of X(x) on x = 0 will be clarified later on.

Since the system can be discontinuous we must adopt some criterion in
order to define solutions starting at or passing through the allowed discon-
tinuity line x = 0. Typically this is done by using the so called Filippov
approach, see for instance [10]. However here only the vertical component of
the vector field (4) could be discontinuous at the y-axis, while its horizontal
component turns out to be continuous. In fact, we have x′ = −y on x = 0.
Thus if we consider for instance orbits starting at points with x < 0, then
these orbits are well defined whenever they do not touch the y-axis but they
can arrive at this straight line (obviously only at points (0, y) with y ≤ 0)
by extending g(x) as if g(0) were equal to g1(0). Now starting from the
point (0, y) with y < 0 we assume that g(0) = g2(0) and we continue the
orbit inside x > 0 using system (3).

From the above paragraph and using the standard terminology of planar
Filippov systems [10], the crossing set of the discontinuity line of system
(3) includes the negative y-axis. Similar arguments for x > 0 imply that
the crossing set is the y-axis without the origin. In [10] the origin is then
called a singular isolated sliding point.

In short, except orbits arriving at the origin and assuming that the system
is actually discontinuous, it is natural to allow concatenation of solutions in
an obvious way so that the system has no sliding (Filippov) solutions. The
only possible singular point may be the origin, where each vector field can



LIÉNARD DIFFERENTIAL EQUATIONS ALLOWING DISCONTINUITIES 3

Figure 1. The three main cases for the local phase plane
at the origin when it is not a boundary equilibrium point:
regular point, pseudo-saddle and pseudo-focus.

either vanish or have a tangency with the y-axis. If at least one vector field
vanishes at the origin we say that it is a boundary equilibrium point. If both
vector fields are not zero at the origin we still can have a pseudo-equilibrium
point when both vector fields are anti-collinear (i.e. g1(0)g2(0) < 0). Then
it behaves as an equilibrium point that may be reached in finite time. Its
stability and local phase portrait will be determined by studying its nearby
orbits, see Figure 1.

Proposition 1. For system (3) the following statements hold.

(a) If g1(0)g2(0) > 0 then the origin can be thought of a regular point.
(b) If g1(0)g2(0) = 0 then the origin is a boundary equilibrium point.
(c) If g1(0)g2(0) < 0 then the origin is a pseudo-equilibrium point, being

of saddle type if g1(0) > 0 and g2(0) < 0, and of focus type if
g1(0) < 0 and g2(0) > 0.

Proposition 1 will be proved in Section 2.
From the point of view of practical engineering problems the most inter-

esting case corresponds to the existence of a pseudo-equilibrium point or a
proper equilibrium point of focus type at the origin, because then it is pos-
sible that the system behaves locally or even globally as an oscillator. Thus
we will be mainly interested in possible periodic orbits. In this context,
to assure that there is no more singular points the following hypothesis is
assumed.

(H1) The function g satisfy xg(x) > 0 for x 6= 0.

We will require that the divergence of the vector field does not change its
sign in each side of the discontinuity line, i.e.

(H2) The function f satisfy xf(x) > 0 for x 6= 0.

Under the last hypothesis we have positive divergence for x > 0 and neg-
ative divergence for x < 0. Then in order to have some periodic orbit
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surrounding the origin, there must be some balance between the x-positive
and x-negative parts of the interior of the bounded region limited by the
periodic orbit. This idea will be precisely stated below in Lemma 7 but
in the same spirit of comparing the x-positive and x-negative half-planes
and following [1], it will be useful to introduce some auxiliary functions as
follows.

Under Hypothesis H2 and recalling the definition of F in (3), we define
a variable p = p(x) = F (x). As p′(x) = f(x), then p(x) ≥ 0 for all x, and
sgn(p′(x)) = sgn(x) for x 6= 0. We deduce that the function p(x) has inverse
functions both for x ≤ 0 and for x ≥ 0, namely the non-positive decreasing
function

(5) x1 : [0, F (a)] → [a, 0], such that F (x1(p)) = p,

and the non-negative increasing function

(6) x2 : [0, F (b)] → [0, b], such that F (x2(p)) = p.

Hence for x 6= 0 we have that both systems (3) and (4) are equivalent to
the two differential equations

(7)
dy(xi(p))

dp
=

g(xi(p))

F (xi(p)) − y

1

f(xi(p))
=

1

p − y

g(xi(p))

f(xi(p))
,

where i = 1, 2, according to x < 0 or x > 0 respectively, and these new dif-
ferential equations are both meaningful only for p > 0. Now by considering
the functions

(8) hi(p) =
g (xi(p))

f (xi(p))
,

equations (7) can be written in the more compact form

(9)
dy (xi(p))

dp
=

hi(p)

p − y
.

Note that hi(p) > 0 for p > 0 and i = 1, 2, and that the effect of considering
equations (9) instead of the original systems (3) or (4) can be thought of as
if the plane (x, y) had been folded into the half-plane (p, y) with p > 0.

When h1(p) = h2(p) for p sufficiently small and the origin is a topological
focus it is not difficult to show that we have indeed a center, see for instance
Theorem 11.3 in [8]. We add a third hypothesis precluding such possibility.
It is written in a dual way to facilitate the checking of its validity in the
applications.

(H3) Assume that there exist the two limits

lim
x→0−

g(x)

f(x)
= lim

p→0+
h1(p) = l1, lim

x→0+

g(x)

f(x)
= lim

p→0+
h2(p) = l2



LIÉNARD DIFFERENTIAL EQUATIONS ALLOWING DISCONTINUITIES 5

satisfying
0 ≤ l2 ≤ l1 < ∞,

and if l2 = l1 then h2(p) < h1(p) for p > 0 and sufficiently small
(when l2 < l1 this last requirement is always fulfilled).

It is worth mentioning that this hypothesis implies that the origin is
topologically an unstable focus when l2 > 0, see Lemma 11. Next result
states a necessary condition for the existence of periodic orbits under the
above hypotheses.

Theorem 2. Let f and g be the functions defined in (2) such that fi and
gi are of class C1 in [a, 0] and [0, b] for i = 1, 2, respectively, where −∞ <
a < 0 < b < ∞. Let F and hi be the functions defined in (3) and (8) and
assume that hypotheses H1-H3 are fulfilled. If system (3) has a periodic
orbit contained in the band a < x < b, then the system

(10) F (x1) = F (x2),
g(x1)

f(x1)
=

g(x2)

f(x2)
,

has at least one solution (x1, x2) = (s1, s2) with a < s1 < 0 < s2 < b, or
equivalently there exists at least one solution p̂ ∈ (0, F (a))∩(0, F (b)) for the
equation h1(p) = h2(p).

Theorem 2 is proved in Section 2.
Now we give a result on uniqueness of limit cycles for Liénard equations

where discontinuities are allowed at x = 0.

Theorem 3. Under the same conditions of Theorem 2, assume that system
(10) has exactly one solution (x1, x2) = (s1, s2) with a < s1 < 0 < s2 < b,
or equivalently there exists exactly one solution p̂ ∈ (0, F (a))∩ (0, F (b)) for
the equation h1(p) = h2(p). The following statement holds.

If the positive function

(11) α(x) =
g(x)

f(x)F (x)

is increasing for x ∈ (a, 0), or equivalently the positive function

(12)
h1(p)

p

is decreasing for p ∈ (0, F (a)), then system (3) has at most one periodic orbit
contained in the band a < x < b, and if it exists has a negative characteristic
exponent.

Theorem 3 is proved in Section 2.
Although our main motivation is the case of discontinuous systems, it

should be noted that the above results can be useful also for continuous
differential equations. For instance we can state the following result.
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Proposition 4. The following Liénard system

(13)
x′ = αx2 + βx3 + x4 − y,
y′ = x,

where β > 0 and 9β2 − 32α < 0 has no limit cycles in the plane.

Proposition 4 is proved in Section 4.
We finish by considering an application of the above results to discon-

tinuous piecewise linear differential systems. This class is increasingly used
in engineering and applied sciences to model a large variety of technolog-
ical devices and physical systems [2, 15]. Similar differential systems had
been considered before in [6] but under the assumption of continuity for the
corresponding vector field.

Theorem 5. Consider the Liénard piecewise linear differential system

(14)

{

ẋ = t1x − y,
ẏ = d1x + a1,

if x < 0,

{

ẋ = t2x − y,
ẏ = d2x + a2,

if x ≥ 0,

where it is assumed

t1 < 0, d1 > 0, a1 < 0, t2 > 0, d2 > 0, a2 > 0.

Then the following statements hold.

(a) If a2/t2 < a1/t1 then a necessary condition for the existence of
periodic orbits is d2/t22 > d1/t21. If the system has periodic orbits,
then it has a unique periodic orbit which is a stable limit cycle.

(b) If a1/t1 < a2/t2 then a necessary condition for the existence of
periodic orbits is d1/t21 > d2/t22. If the system has periodic orbits,
then it has a unique periodic orbit which is an unstable limit cycle.

(c) If a2/t2 = a1/t1 then either the system has no periodic orbits when
d1/t21 6= d2/t22, or it has a center at the origin when d1/t21 = d2/t22.

Theorem 5 is proved in Section 5. Observe that statement (c) of Theorem
5 when 0 < a2/t2 = a1/t1 and d1/t21 = d2/t22 says that the origin is a center
even when the dynamics of the linear differential system in each half–plane
could be of node type. This situation happens when

di

t2i
≤ 1

4

for i = 1, 2. When both dynamics are of focus type and we are under the
assumptions of statements (a) and (b) of Theorem 5 the necessary condition
for the existence of limit cycles is also sufficient, as stated in our last main
result.
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Theorem 6. Under the assumptions of Theorem 5 and if

di

t2i
>

1

4

for i = 1, 2, then the following statements hold.

(a) If a2/t2 < a1/t1 then the system has periodic orbits if and only if
d2/t22 > d1/t21, and in such case it has a unique periodic orbit which
is a stable limit cycle.

(b) If a1/t1 < a2/t2 then the system has periodic orbits if and only if
d1/t21 > d2/t22, and in such case it has a unique periodic orbit which
is an unstable limit cycle.

Theorem 6 is proved in Section 5.

2. On the origin and the periodic orbits

In this section we prove Proposition 1 and we give some preliminary
results necessary for the proof of Theorem 2.

Proof of Proposition 1. The vector fields at the origin are X1(0, 0) =
(0, g1(0)) and X2(0, 0) = (0, g2(0)), see (4). Then from (1) we have x′′(0) =
−gi(0) for i = 1, 2. Therefore if g1(0) and g2(0) are both positive or both
negative then X1(0, 0) and X2(0, 0) are collinear and the orbits of both
vector fields in a neighborhood of the origin have the same convexity. Con-
sequently we can define the vector field at the origin in such a way the orbit
through the origin has a quadratic tangency with the y-axis. This completes
the proof of statement (a).

Statement (b) follows directly from the definitions.
If g1(0)g2(0) < 0 then the vector fields at the origin are anti-collinear

and so the origin is a pseudo-equilibrium point. Assume g1(0) > 0 and
g2(0) < 0. Then the vector field X1 has a visible quadratic tangency, that
is, the orbit of x′ = X1(x) through the origin is locally contained in x ≤ 0
for backward and forward times. Similarly, the vector field X2 has also a
visible quadratic tangency in x ≥ 0, see Figure 1. Hence the origin is a
topological saddle.

When g1(0) < 0 and g2(0) > 0 the vector fields X1 and X2 have invisible
quadratic tangencies. That is, the unique point of the orbit of x′ = X1(x)
through the origin locally contained in x ≤ 0 for backward and forward
times is the origin itself, and similarly for X2; see Figure 1. Now the origin
is a topological focus. This ends the proof of statement (c). �

Now we extend a necessary condition for the existence of periodic orbits
fulfilled by smooth vector fields to the case of our discontinuous differential
systems.
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Lemma 7. Consider the functions f and g defined as in (2). If system (3)
has a periodic orbit Γ and the interior of the bounded region limited by Γ
includes the origin and it is denoted by ∆, then Γ crosses the y-axis in two
points different from the origin, and the function f satisfies the condition

∫∫

∆

f(x)dxdy = 0.

Proof. Since x′ = −y on x = 0 and the origin is in ∆, it follows that
Γ intersects the y-axis in two points M = (0, yM ) and N = (0, yN ) with
yM < 0 < yN .

We define ∆1, Γ1, and ∆2 , Γ2 to be the parts of ∆ and Γ contained in
x < 0 and x > 0 respectively. We denote by Λ the oriented segment on
the y-axis from the point M to the point N while the same segment with
the opposite orientation is denoted by −Λ. Then by applying the Green’s
Theorem we have

∫∫

∆

f(x)dxdy =

∫∫

∆1

f(x)dxdy +

∫∫

∆2

f(x)dxdy

=

∫

Γ1

[F (x) − y]dy−g(x)dx+

∫

Λ

[F (x)−y]dy−g(x)dx+
∫

Γ2

[F (x)−y]dy−g(x)dx+

∫

−Λ

[F (x)−y]dy−g(x)dx

= 0 +

∫ yN

yM

(−y)dy + 0 +

∫ yM

yN

(−y) dy = 0,

and the conclusion follows. �

3. Proof of Theorems 2 and 3

First we prove Theorem 2.

Proof of Theorem 2. We start by noticing that if system (3) has singular
points they must be on the y-axis because xg(x) > 0 if x 6= 0. Also we
have g1(0) ≤ 0 and g2(0) ≥ 0. Since x′ = −y when x = 0 the unique
possible singular point is the origin, and from Proposition 1 it is a boundary
equilibrium point or a pseudo-focus because g1(0)g2(0) ≤ 0.

Assume that system (3) has a periodic orbit Γ contained in the band
a < x < b. As a consequence of the Poincaré-Bendixson Theorem for phase
portraits in the plane (see for instance [4]) the interior of the bounded region
limited by Γ must contain a singular point. Such point in our system must
be the origin.

Next some geometrical properties of the periodic orbit Γ will be estab-
lished. First since x′ = −y on the y-axis, the orbit Γ is run in counter-
clockwise sense. Let A = (xA, yA) and B = (xB , yB) be the points on Γ
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A

B
C

L

M

N

O

K

Λ

Γ

Γ̃

Ω

Figure 2. Notable points associated to a periodic orbit
(thick line). For x < 0, it is sketched the orbit passing
through (xC, yC), where yB = yC = F (xC). The line AOB
is the graph of the curve y = F (x).

for which the variable x assumes its minimum and maximum values, then
xA < 0 < xB. Since for x 6= 0 we have

(15)
dx

dy
=

F (x) − y

g(x)
,

and this derivative vanishes for x = xA and x = xB , one obtains yA = F (xA)
and yB = F (xB). Moreover this derivative only vanishes at the points A
and B. Indeed when dx/dy = 0 the second derivative is given by

d2x

dy2
=

(

dF
dx

dx
dy

− 1
)

g(x) − [F (x) − y] dg
dx

dx
dy

g(x)2

∣

∣

∣

∣

∣

∣

dx
dy

=0

= − 1

g(x)
,

which has a definite sign, in fact the opposite sign to x. Then the derivative
(15) vanishes only once for x > 0 and only once for x < 0, and so the points
A and B are the unique points where the orbit Γ intersects the curve defined
by the equation y = F (x) denoted by Ω.

It follows that Γ intersects any straight line L defined by x = q with
xA < q < xB in exactly two points (q, yα) and (q, yβ) with yα < F (q) < yβ .
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In particular for q = 0 such points are denoted by M = (0, yM ) and N =
(0, yN ) with yM < 0 < yN . Moreover the path Γ can be described as the
graph of y = yl(x) on the lower arc AMB and by the graph of y = yu(x) on
the upper arc ANB. Clearly yl(x) < F (x) < yu(x), that is Γ is below the
curve Ω on the lower arc AMB, while it is over the curve Ω on the upper
arc ANB, see Figure 2.

Differential equations (9) can be continuously extended to x = 0 by
putting hi(0) = li, so that they define the orbits of the following two differ-
ential systems, both defined for p ≥ 0:

(16)

dp

dτ
= p − y,

dy

dτ
= hi(p),

for i = 1, 2. The arc MAN of the periodic orbit Γ can be parameterized as

Γ1(p) =

{

yl(x1(p)) if yl(x1(p)) ≤ yA,
yu(x1(p)) if yA ≤ yu(x1(p)),

while the arc MBN of Γ can be parameterized as

Γ2(p) =

{

yl(x2(p)) if yl(x2(p)) ≤ yB,
yu(x2(p)) if yB ≤ yu(x2(p)),

where
(17)

yl(x1(0)) = yl(x2(0)) = yM < 0 and yu(x1(0)) = yu(x2(0)) = yN > 0.

Before proceeding further we state now some results from the theory of
differential inequalities, providing their proof for sake of completeness.

Lemma 8. Assume that the graphs of the two continuous functions yi :
[c, d] → R are solution curves for the Lipschitz differential systems

dp

dτ
= p − y,

dy

dτ
= φi(p),

for i = 1, 2, respectively. Assume also that the inequalities

p − y1(p) > 0, and p − y2(p) > 0, for all p ∈ (c, d),

and

0 < φ1(p) < φ2(p), for all p ∈ (c, d),

are satisfied. The following statements hold.

(a) If y1(c) ≤ y2(c) then y1(p) < y2(p) for all p ∈ (c, d].
(b) If y1(d) ≥ y2(d) then y1(p) > y2(p) for all p ∈ [c, d).
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A A

B
BC

LL

L1

MM

M2

N NN2

O O

K K

K1

x
p

p

l1
l2

s1 s2

y = F (x) h1(p)

h2(p)

yl(x1(p))
yl(x2(p))

yu(x1(p))
yu(x2(p))

y = p

p = p̂

x1(p) x2(p)

Figure 3. In the new coordinates (p, y) both semi-orbits
are in the halfplane p > 0, and they must enclose the same
area.

Proof. For all p ∈ (c, d) such that y1(p) ≤ y2(p) we have

dy1

dp
=

φ1(p)

p − y1(p)
≤ φ1(p)

p − y2(p)
<

φ2(p)

p − y2(p)
=

dy2

dp
,

so that the function y2−y1 is strictly increasing in (c, d) and the conclusion
of statement (a) follows easily.

To show statement (b) suppose on the contrary that there exists p̄ ∈
[c, d) such that y1(p̄) ≤ y2(p̄). Then by statement (a) we conclude that
y1(p) < y2(p) for all p ∈ (p̄, d], and in particular that y1(d) < y2(d), which
is a contradiction. �

Remark 9. An analogous result for Lemma 8 is also true by reversing all
the inequalities in the statements when p− y1(p) < 0 and p− y2(p) < 0 (i.e.
when the orbits are in the region y > p) while 0 < φ1(p) < φ2(p) still holds
for all p ∈ (c, d).

From the hypotheses we get that 0 ≤ h2(0) ≤ h1(0) and h2(p) < h1(p)
for 0 < p ≪ 1. Then from (9) and (17) and using statement (a) of Lemma
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8 in the interval [0, p̄] with p̄ sufficiently small, we obtain

yl (x2(p)) < yl (x1(p)) for 0 < p ≪ 1.

On the other hand by using Remark 9 we have analogously

(18) yu (x1(p)) < yu (x2(p)) for 0 < p ≪ 1.

Next we will show that both paths Γ1(p) and Γ2(p) cross themselves at
least at one point. It can be easily seen that the system

(19)











dp

dτ
= −p − y,

dy

dτ
= −h1(−p),

if p < 0,











dp

dτ
= p − y,

dy

dτ
= h2(p),

if p > 0,

has a counterclockwise periodic orbit Γ̂ constituted by a path Γ̂1 which is
the symmetrical one with respect to the y-axis of the path Γ1(p) along with
the path Γ2(p). System (19) is the Liénard system

dp

dτ
= |p| − y,

dy

dτ
= h(p),

where

h(p) =

{

h2(p) if p > 0,
−h1(−p) if p < 0.

Then by applying Lemma 7 we have

(20)

∫∫

∆

sgn(x)dxdy = 0 = −S1 + S2,

where ∆ is the interior of the region limited by Γ̂, S1 and S2 are the areas
of ∆ on the left and on the right hand side of the line x = 0 respectively. If
the path Γ1(p) does not cut the path Γ2(p), then S1 6= S2 and (20) cannot
be fulfilled. So the path Γ1(p) must cut the path Γ2(p).

Assume now that h2(p) < h1(p) for 0 < p ≤ min {yA, yB}. Since
yl (x2(p)) and yl (x1(p)) are solutions of the equations

dy

dp
=

h2(p)

p − y
,

dy

dp
=

h1(p)

p − y
,

respectively, with yl (x2(0)) = yl (x1(0)), then by statement (a) of Lemma
8 we must have yl (x2(p)) < yl (x1(p)) for 0 < p ≤ min {yA, yB} . Similarly,
by using Remark 9 we must have yu (x1(p)) < yu (x2(p)) for 0 < p ≤
min {yA, yB} , and then the paths Γ1(p) and Γ2(p) do not cross themselves,
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which is a contradiction. Hence there must exist p̂ such that h1(p̂) = h2(p̂),
i.e. the system

p̂ = F (x1) = F (x2),
f(x1)

g(x1)
=

f(x2)

g(x2)

must have a solution (x1, x2) = (s1, s2) with xA < s1 < 0 < s2 < xB , and
Theorem 2 is proved. �

Proof of Theorem 3. We start by assuming again the existence of a periodic
orbit Γ contained in the band a < x < b with all the geometric properties
already established in the proof of Theorem 2. Furthermore we assume
that there is a unique value p̂ < min {yA, yB} such that h2(p) < h1(p) for
0 < p < p̂, and h1(p) < h2(p) for p > p̂.

We claim first that yA > yB, as shown in Figure 2. Now we start the
proof of the claim. By using statement (a) of Lemma 8 in the interval [0, p̂]
it follows that

yl (x2(p)) < yl (x1(p)) for 0 < p ≤ p̂,

and analogously, by using Remark 9 for the upper part, we have

yu (x1(p)) < yu (x2(p)) for 0 < p ≤ p̂.

From the above inequalities we see that when the paths start to separate
from the y–axis the two arcs of path Γ2(p) are farther from the p–axis than
the two arcs of path Γ1(p), see Figure 3. We already know from the proof of
Theorem 2 that both paths intersect and now from the relative position of
their beginning arcs at the y–axis we can assure that their crossing points
must appear in an even number counting multiplicities. In fact due to the
uniqueness of solutions of system (10), we conclude now that there exist a
unique value δ1 > p̂ such that

yl (x2(p)) < yl (x1(p)) for 0 < p < δ1,
yl (x2(p)) > yl (x1(p)) for δ1 < p < min {yA, yB} .

This lower crossing point at p = δ1 for yl (x1(p)) and yl (x2(p)) must be
unique because resorting to Lemma 8(a) in the interval [δ1, min {yA, yB}]
we have yl (x1(p)) < yl (x2(p)) in such interval. Similarly, by using Remark
9 there is a unique value δ2 > p̂ such that for the upper parts

yu (x1(p)) < yu (x2(p)) for 0 < p < δ2,
yu (x1(p)) > yu (x2(p)) for δ2 < p < min {yA, yB} .

Therefore, as these two crossing points are only possible when yA > yB, if
system (3) has a periodic orbit then the condition yA > yB holds and our
first claim is proved.
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We now claim that the characteristic exponent of a periodic orbit of
system (3) is negative, that is the periodic orbit is a stable limit cycle.
Hence the system has at most one periodic orbit because we cannot have
two consecutive stable periodic orbits. This should complete the proof of
Theorem 3. Now we prove this second claim.

Let C = (xC , yC) be the point on the curve Ω for which xA < xC < 0 and

yC = F (xC) = F (xB) = yB > yl(xC), and let Γ̃ be the orbit of (3) passing

through the point C. Then the orbit Γ̃ meets the y-axis in the points K and
L (see Figure 3), where yM < yK < 0 < yL < yN . The orbit Γ̃ is given by
the graph of y = ỹl(x) on the arc CK and by the graph of y = ỹu(x) on
the arc LC. Since yM = yl(0) < yK = ỹl(0), Lemma 8.a in the interval [0, p̂]
implies

(21) yl(x2(p)) < ỹl(x1(p)) for 0 ≤ p ≤ p̂.

The previous inequality can be extended to assure that

(22) yl(x2(p)) < ỹl(x1(p)) for p̂ ≤ p ≤ yB.

by using statement (b) of Lemma 8 in the interval [p̂, yB] because we know
that yl (x2(yB)) = yB = yC = ỹl (x1(yB)) and that h1(p) < h2(p) for p > p̂.

By using Remark 9 in an analogous way, we can show that

(23) ỹu(x1(p)) < yu(x2(p)) for 0 < p < yB.

Next we compute the characteristic exponent ρ of the periodic orbit Γ,
i.e.

ρ =

∫

Γ

f(x(t))dt,

where the line integral is described in the sense of the flow, that is counter-
clockwise.

The periodic orbit Γ = {(x(t), y(t))} intersects the line x = s2 in the

points M2 and N2, and the orbit Γ̃ = {(x̃(t), ỹ(t))} intersects the line x = s1

in the points K1 and L1, see Figure 3. We first compute the integral

I =

∫

MBN

f(x(t))dt +

∫

LCK

f(x̃(t))dt

along the arc MBN of the periodic orbit Γ and along the arc LCK of the
path Γ̃.
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To this end we compute the following integrals

I1 =

∫

Γ:MM2

f(x(t))dt +

∫

Γ̃:K1K

f(x̃(t))dt =

s2
∫

0

f(x)

F (x) − yl(x)
dx +

0
∫

s1

f(x)

F (x) − ỹl(x)
dx =

p̂
∫

0

dp

p − yl (x2(p))
−

p̂
∫

0

dp

p − ỹl (x1(p))
=

p̂
∫

0

[yl (x2(p)) − ỹl (x1(p))] dp

[p − yl (x2(p))] [p − ỹl (x1(p))]
,

and from (21) we conclude that I1 < 0. Now we consider

I2 =

∫

Γ:M2B

f(x(t))dt +

∫

Γ̃:CK1

f(x̃(t))dt =

xB
∫

s2

f(x)

F (x) − yl(x)
dx +

s1
∫

xC

f(x)

F (x) − ỹl(x)
dx =

yB
∫

p̂

dp

p − yl (x2(p))
−

yB
∫

p̂

dp

p − ỹl (x1(p))
=

lim
η→yB

η
∫

p̂

[yl (x2(p)) − ỹl (x1(p))] dp

[p − yl (x2(p))] [p − ỹl (x1(p))]
,

and from (22) we conclude that I2 < 0. We have

I3 =

∫

Γ:BN2

f(x(t))dt +

∫

Γ̃:L1C

f(x̃(t))dt =

s2
∫

xB

f(x)

F (x) − yu(x)
dx +

xC
∫

s1

f(x)

F (x) − ỹu(x)
dx =

yB
∫

p̂

dp

yu (x2(p)) − p
−

yB
∫

p̂

dp

ỹu (x1(p)) − p
=

lim
η→yB

η
∫

p̂

[ỹu (x1(p)) − yu (x2(p))] dp

[yu (x2(p)) − p] [ỹu (x1(p)) − p]
,
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and from (23) we conclude that I3 < 0. We compute

I4 =

∫

Γ:N2N

f(x(t))dt +

∫

Γ̃:LL1

f(x̃(t))dt =

0
∫

s2

f(x)

F (x) − yu(x)
dx +

s1
∫

0

f(x)

F (x) − ỹu(x)
dx =

p̂
∫

0

dp

yu (x2(p)) − p
−

p̂
∫

0

dp

ỹu (x1(p)) − p
=

p̂
∫

0

[ỹu (x1(p)) − yu (x2(p))] dp

[yu (x2(p)) − p] [ỹu (x1(p)) − p]
,

and from (23) we conclude that I4 < 0. Hence I = I1 + I2 + I3 + I4 < 0 and

ρ = I +

∫

Γ:NAM

f(x(t))dt −
∫

Γ̃:LCK

f(x̃(t))dt.

We define

J1 =

∫

Γ:NA

f(x(t))dt −
∫

Γ̃:LC

f(x̃(t))dt,

J2 =

∫

Γ:AM

f(x(t))dt −
∫

Γ̃:CK

f(x̃(t))dt,

so that ρ = I + J1 + J2. Now we will show that J1 < 0 and J2 < 0.
We compute the integral

J1 =

yA
∫

0

dp

p − yu (x1(p))
−

yB
∫

0

dp

p − ỹu (x1(p))

=

yA
∫

0

dp

p − yu (x1(p))
−

yA
∫

0

dp

p − ŷu (p)

=

yA
∫

0

yu (x1(p)) − ŷu (p)

[p − yu (x1(p))] [p − ŷu (p)]
dp

where the function ŷu (p) is given by

ŷu (p) = µỹu

(

x1

(

µ−1p
))

and µ =
yA

yB

> 1.

Clearly the function ŷu (p) is a solution of the differential equation

dy

dp
=

ĥ1 (p)

p − y
,
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where ĥ1 (p) = µh1

(

µ−1p
)

.
The function α defined in (11), which can be written for x < 0 as

α (x1(p)) =
g (x1(p))

f (x1(p)) p
=

h1(p)

p
,

is an increasing function of x1, and so a decreasing function of p. Then

h1

(

µ−1p
)

> µ−1h1 (p) , so h1(p) < µh1

(

µ−1p
)

= ĥ1 (p) for p ≥ 0. We
recall that for y = yu (x1(p)) we knew that

dy

dp
=

h1 (p)

p − y
.

Now from the equality

ŷu (yA) =
yA

yB

ỹu

(

x1

(

yB

yA

yA

))

= yA = yu (x1(yA)) ,

and using the statement (b) corresponding to Remark 9 for h1 and ĥ1 in the
interval [0, yA] we get yu (x1(p)) < ŷu(p) for 0 < p < yA, and consequently
J1 < 0.

Similarly we can show that J2 < 0, and the proof is complete. �

4. Proof of Proposition 4

Hypotheses H1 clearly holds for system (13).
We see that f(x) = x(2α + 3βx + 4x2). Obviously α > 0 and since

the discriminant of the quadratic factor is negative Hypotheses H2 holds.
Regarding Hypothesis H3 we see that

g(x)

f(x)
=

1

2α + 3βx + 4x2
,

so that l1 = l2 = 1/(2α) but since β > 0 it is clear that h2(p) < h1(p) for
p > 0 and sufficiently small because x1(p) < 0 but x2(p) > 0.

Now we look for solutions (x1, x2) = (s1, s2) with s1 < 0 < s2 of system

αx2
1 + βx3

1 + x4
1 = αx2

2 + βx3
2 + x4

2,
1

2α + 3βx1 + 4x2
1

=
1

2α + 3βx2 + 4x2
2

,

or equivalently of system

α(x2
2 − x2

1) + β(x3
2 − x3

1) + x4
2 − x4

1 = 0, 3β(x2 − x1) + 4(x2
2 − x2

1) = 0.

After removing the obvious factor x2 − x1 > 0 we get the system

α(x1+x2)+β(x2
1+x1x2+x2

2)+x3
1+x2

1x2+x1x
2
2+x3

2 = 0, 3β+4(x1+x2) = 0.

Substituting the second equation in the first one multiplied by 4, we get

−3αβ+4β(x2
1+x1x2+x2

2)−3β(x2
1−x1x2+x2

2)−3βx1x2 = 0, 3β+4(x1+x2) = 0,
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and new simplifications lead to the quadratic system

−3α + x2
1 + 4x1x2 + x2

2 = 0, 3β + 4(x1 + x2) = 0.

A new substitution in the first equation multiplied by 16 gives the system

9β2 − 48α + 32x1x2 = 0, 3β + 4(x1 + x2) = 0.

So the solutions x1 and x2 must be roots of the quadratic

x2 +
3β

4
x +

48α − 9β2

32
= 0,

which has real different solutions only if 9β2 −32α > 0, and this is contrary
to the initial assumption. Then from Theorem 2 no limit cycles are possible.

5. Proof of Theorems 5 and 6

First we show Theorem 5.

Proof of Theorem 5. We first check the hypotheses H1–H3 in order to see
that both Theorem 2 and Theorem 3 can be applied.

Hypotheses H1 and H2 are immediate.
We will use the functions hi in checking Hypothesis H3, and noting that

xi(p) = p/ti for i = 1, 2, we have

hi(p) =
di

t2i
p +

ai

ti
,

for i = 1, 2. Now Hypothesis H3 is fulfilled whenever l2 = a2/t2 < l1 =
a1/t1, or if a2/t2 = a1/t1 when d2/t22 < d1/t21. The equation h1(p) = h2(p)
becomes equivalent to

(24)

(

d1

t21
− d2

t22

)

p =
a2

t2
− a1

t1
,

which has a unique positive solution only if
(

d1

t21
− d2

t22

) (

a2

t2
− a1

t1

)

> 0.

Now statement (a) of Theorem 5 is a direct consequence of Theorems 2 and
3.

Statement (b) can be shown by using statement (a) applied to the system
{

ẋ = (−t2)x − y,
ẏ = d2x + (−a2),

if x ≤ 0,

{

ẋ = (−t1)x − y,
ẏ = d1x + (−a1),

if x > 0,

which corresponds to systems (14) after doing the change of variable (x, τ) →
(−x,−τ).

Regarding statement (c), it is obvious that equation (24) has no solutions
different from zero when d1/t21−d2/t22 6= 0 and the first assertion then comes
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−y−y

−P (y)

y = py = p y = −p

pp

P2(y)

−P (y) = −P−1
1 (P2(y))

ε1

ε2

Figure 4. Building the Poincaré map near the origin by
using the half–return maps P1 and P2.

from Theorem 2. In the remaining case we have h1(p) = h2(p) for all p and
the conclusion on having a center comes from the application of Theorem
11.3 in [8] to system (19). This completes the proof of Theorem 5. �

Starting from system (19) corresponding to system (14), when both dy-
namics are of focus type (stable for x < 0, unstable for x > 0) it is pos-
sible to define globally a Poincaré return map by introducing a transver-
sal section to the flow. We select for that the negative y–axis and define
P : (0,∞) → (0,∞) which maps the coordinate y > 0 of the point (0,−y)
into the vertical coordinate P (y) of the point (0,−P (y)), where both points
are the initial and the final point, respectively, of one orbit that gives coun-
terclockwise a complete turn around the origin. For more details on the
definition of this Poincaré map see the proof of Lemma 10. The explicit
computation of this map P should solve the problem of determining the ex-
act number of periodic orbits; however this is not possible in general. The
following result will be needed later.

Lemma 10. Under the assumptions of Theorem 6 the derivative of the
Poincaré map P satisfy

lim
y→∞

dP

dy
= eπ(κ2−κ1),
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where for i = 1, 2,

κi =
1

√

4di

t2
i

− 1
.

Proof. To work in a more compact way we choose the folded plane, that is
systems (16), namely

dp

dτ
= p − y,

dy

dτ
=

di

t2i
p +

ai

ti
,

for p ≥ 0, and we define

ωi =

√

di

t2i
− 1

4
, pe

i = −aiti
di

for i = 1, 2. Integrating both linear systems taking as initial point (0,−y),
we have

(

pi(τ) − pe
i

yi(τ) − ye
i

)

= exp
(τ

2

)

Ci(τ)

(

0 − pe
i

−y − ye
i

)

where ye
i = pe

i , and

Ci(τ) =











cos(ωiτ) +
sin(ωiτ)

2ωi

− sin(ωiτ)

ωi

di sin(ωiτ)

t2i ωi

cos(ωiτ) − sin(ωiτ)

2ωi











.

After one half–turn around the origin following these solutions (pi(τ), yi(τ)),
we will arrive up to the positive part of the y–axis for certain values τi such
that pi(τi) = 0 with 0 < ωiτi < π, see Figure 4. The corresponding values
of yi(τi) allows to define the half–return maps

Pi : (0,∞) → (0,∞) with Pi(y) = yi(τi) and pi(τi) = 0 with 0 < ωiτi < π,

for i = 1, 2. Now the return map P (y) of system (19) corresponding to
system (14) can be recovered by taking P (y) = P−1

1 (P2(y)).
As it is shown in [6] for the continuous case, the study of such half–return

Poincaré maps is not possible explicitly and must be done in a parametric
way. Thus introducing the notation θi = ωiτi and κi = 1/(2ωi) for i = 1, 2,
the map Pi is determined by the equation

eκiθi





cos θi+κi sin θi −2κi sin θi

1+κ2
i

2κi
sin θi cos θi−κi sin θi





(

−pe
i

−y − pe
i

)

=

(

−pe
i

Pi(y) − pe
i

)
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and it is parametrically described for each value of θi ∈ (0, π) as follows,

y = −pe
i

e−κiθi − cos θi + κi sin θi

2κi sin θi

,

Pi(y) = −pe
i

eκiθi − cos θi − κi sin θi

2κi sin θi

,

for i = 1, 2. Hence a straightforward computation now shows that for the
derivatives we also have the parametric representation

dPi

dy
(θi) =

1 − eκiθi(cos θi − κi sin θi)

1 − e−κiθi(cos θi + κi sin θi)
= e2κiθi

y

Pi(y)
,

so that

lim
y→∞

dPi(y)

dy
= lim

θi→π−

1 − eκiθi(cos θi − κi sin θi)

1 − e−κiθi(cos θi + κi sin θi)
=

1 + eκiπ

1 + e−κiπ
= eκiπ.

We can conclude by the chain rule and the inverse function theorem that

lim
y→∞

dP (y)

dy
= lim

y→∞

dP−1
1 (P2(y))

dy
=

1

eκ1π
eκ2π = eπ(κ2−κ1),

and the lemma follows. �

This last result can be also obtained by resorting to the techniques fol-
lowed in [11].

We finish by giving the proof of Theorem 6. For that we show first
another technical result

Lemma 11. Hypothesis H3 implies that the origin is an unstable topological
focus if l2 > 0.

Proof. We will show that when y > 0 is sufficiently small the Poincaré map
introduced in this section satisfies P (y) > y. Taking a point (εi, εi) on the
line y = p sufficiently near the origin, we know that for the orbit passing
through this point

dpi

dy
= 0,

d2pi

dy2
= − 1

hi(εi)
,

and then the corresponding orbits can be approximated by

pi(y) = εi −
1

2hi(εi)
(y − εi)

2 + O(y − εi)
3,

which cuts the y–axis in the points

y±

i ≈ ±
√

2hi(εi)εi + εi ≈ ±
√

2liεi + εi.

Note that for εi sufficiently small we have that y−

i < 0.
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We choose ε1 and ε2 for the systems with i = 1, 2, in such a way that the
two quadratic approximations for the orbits coincide in the positive y–axis,
namely

(25) ε1 +
√

2h1(ε1)ε1 = ε2 +
√

2h2(ε2)ε2.

From Remark 9 and considering only the part of the orbits contained in the
region y > p we can assure that ε1 < ε2, see Figure 4. Now taking y = −y−

2

we can make the approximation P (y) ≈ −y−

1 so that

P (y) − y ≈ −(ε1 −
√

2h1(ε1)ε1) + ε2 −
√

2h2(ε2)ε2 = 2(ε2 − ε1) > 0,

where we have taken into account the equality (25). This implies that the
origin is an unstable topological focus, see Figure 4. �

Proof of Theorem 6. Reasoning like in the proof of Theorem 5 we must only
show statement (a).

From Lemma 11 we know that the origin is unstable and in particular
that for the Poincaré map P introduced in this section we have P (y) > y
for y > 0 and sufficiently small.

The assumptions assure that d2/t22 > d1/t21, and using that the function
1/

√
4x − 1 is decreasing for x > 1/4 we see that κ2 − κ1 < 0. Therefore

from Lemma 10 we have

L = lim
y→∞

dP

dy
= eπ(κ2−κ1) < 1.

We will now claim that there exists y∗ > 0 with P (y∗) < y∗ so that from
the intermediate value theorem we deduce the existence of a periodic orbit.
Then the conclusion of the theorem follows from Theorem 3.

Effectively we can assure that there exists a certain value ȳ such that for
y ≥ ȳ we have

dP

dy
<

1 + L

2
= L̄ < 1.

If P (ȳ) < ȳ we are done. Otherwise taking y∗ > ȳ and invoking the Mean
Value Theorem we have

P (y∗) − P (ȳ) < L̄(y∗ − ȳ),

which implies that

P (y∗) − y∗ < P (ȳ) − L̄ȳ − (1 − L̄)y∗,

which is clearly negative if y∗ is big enough and the claim is true. �
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08193 Bellaterra, Barcelona, Spain

E-mail:jllibre@mat.uab.cat

Enrique Ponce and Francisco Torres,

E.T.S. Ingenieros, Camino de los Descubrimientos, 41092 Sevilla, Spain,

E-mail:eponcem@us.es, ftorres@us.es


