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Abstract. In this paper we study differentiability properties of the

map T 7→ ϕ(T ), where ϕ is a given function in the disk-algebra and T
ranges over the set of contractions on Hilbert space. We obtain sharp

conditions (in terms of Besov spaces) for differentiability and existence

of higher derivatives. We also find explicit formulae for directional
derivatives (and higher derivatives) in terms of double (and multiple)

operator integrals with respect to semi-spectral measures.

1. Introduction

The purpose of this paper is to study differentiability properties of func-
tions

T 7→ ϕ(T ),

for a given function ϕ analytic in the unit open disk D and continuous in
the closed disk (in other words ϕ belongs to the disk-algebra CA), where
T ranges over the set of contractions (i.e., operators of norm at most 1) on
Hilbert space.

Recall that by von Neumann’s inequality,

(1.1) ‖ϕ(T )‖ ≤ max
|ζ|≤1

|ϕ(ζ)|

for an arbitrary contraction T on Hilbert space and an arbitrary polynomial
ϕ. This allows one to define a functional calculus

ϕ 7→ ϕ(T ), ϕ ∈ CA,

for an arbitrary contraction T . Moreover, for this functional calculus von
Neumann’s inequality holds (1.1) holds.

For contractions T andR on Hilbert space, we consider the one-parameter
family of contractions

Tt = (1− t)T + tR, 0 ≤ t ≤ 1,
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and we study differentiability properties of the map

(1.2) t 7→ ϕ(Tt)

for a given function ϕ in CA.
The study of the problem of differentiability of functions of self-adjoint

operators on Hilbert space was initiated By Daletskii and S.G. Krein in
[DK]. They showed that for a function f on the real line R of class C2 and
for bounded self-adjoint operators A and B the function

(1.3) t 7→ f(A+ tB)

is differentiable in the operator norm and the derivative can be computed
in terms of double operator integrals:

(1.4)
d

dt
f(A+ tB)

∣∣∣
t=0

=
∫∫

R×R

f(x)− f(y)
x− y

dEA(x)B dEA(y),

where EA is the spectral measure of A. The expression on the right is a
double operator integral. The beautiful theory of double operator integrals
due to Birman and Solomyak was created later in [BS1], [BS2], and [BS3]
(see also the survey article [BS4]).

The condition f ∈ C2 was relaxed by Birman and Solomyak in [BS3]:
they proved that the function (1.3) is differentiable and the Daletskii–Krein
formula (1.4) holds under the condition that f is differentiable and the
derivative f ′ satisfies a Hölder condition of order α for some α > 0. The
approach of Birman and Solomyak is based on their formula

(1.5) f(A+B)− f(A) =
∫∫

R×R

f(x)− f(y)
x− y

dEA+B(x)B dEA(y).

Actually, Birman and Solomyak showed in [BS3] that formula (1.5) is valid
under the condition that the divided difference Df is a Schur multiplier of
the space of all bounded linear operators (see § 2.2 for the definitions).

However, it follows from the results of Farforovskaya in [Fa] that the
condition f ∈ C1 is not sufficient for the differentiability of the map (1.3).

A further improvement was obtained in [Pe2]: it was shown that the
the function (1.3) is differentiable and (1.4) holds under the assumption
that f belongs to the Besov space B1

∞1(R) (see subsection 2.5). Moreover,
in [Pe2] a necessary condition was also found: f must locally belong to
the Besov space B1

1(R) = B1
11(R). This necessary condition also implies

that the condition f ∈ C1 is not sufficient. Actually, in [Pe2] a stronger
necessary condition was also obtained, see § 2.3 for a further discussion.
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Finally, we mention another sufficient condition obtained in [ABF] which is
slightly better than the condition f ∈ B1

∞1(R), though I believe it is more
convenient to work with Besov spaces.

Note that similar results were obtained in [Pe5] in the case when A is an
unbounded self-adjoint operator and B is a bounded self-adjoint operator.

The problem of the existence of higher derivatives of the function (1.3)
was studied in [St] where it was shown that under certain assumptions on f ,
the function (1.3) has second derivative that can be expressed in terms of
the following triple operator integral:

d2

dt2
f(A+ tB)

∣∣∣
t=0

=
∫∫∫

R×R×R

(
D2ϕ

)
(x, y, z) dEA(x)B dEA(y)B dEA(z),

where D2ϕ stands for the divided difference of order 2 (see § 2 for the defini-
tion). To interpret triple operator integrals, repeated integration was used
in [St]. However, the class of integrable functions in [St] was rather narrow
and the assumption on f imposed in [St] for the existence of the second
operator derivative was too restrictive. Similar results are also obtained in
[St] for the nth derivative and multiple operator integrals.

In [Pe9] a new approach to multiple operator integrals was given. It is
based on integral projective tensor products of L∞ spaces and gives a much
broader class of integrable functions than under the approach of [St]. It was
shown in [Pe9] that under the assumption that f belongs to the Besov space
Bn∞1(R) the function (1.3) has n derivatives and the nth derivative can be
expressed in terms of a multiple operator integral. Similar results were also
obtained in [Pe9] in the case of an unbounded self-adjoint operator A.

Note that Besov spaces Bn∞1(R) arise in operator theory on many differ-
ent occasions, see [Pe1], [Pe4], [Pe6], [Pe8].

Let us mention here another formula by Birman and Solomyak (see [BS4])
for commutators. Suppose that A is a self-adjoint operator and Q is a
bounded linear operator. Then

(1.6) f(A)Q−Qf(A) =
∫∫

R×R

f(x)− f(y)
x− y

dEA(x) (AB −BA) dEA(y),

which is also valid under the assumption that Df is a Schur multiplier of
the space of all bounded linear operators.

To study the problem of differentiability of functions of unitary operators,
we should consider a Borel function f on the unit circle T and the map

U 7→ f(U),

where U is a unitary operator on Hilbert space. If U and V are unitary
operators and V = eiAU , where A is a self-adjoint operator, we can consider
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the one-parametric family of unitary operators

eitAU, 0 ≤ t ≤ 1,

and study the question of the differentiability of the function

t 7→
(
eitAU

)
and the question of the existence of its higher derivatives. The results in the
case of unitary operators are similar to the results for self-adjoint operators,
see [BS3], [Pe2], [ABF], [Pe9].

In this paper we study the case of functions of contractions. This study
was initiated in [Pe3], where the Lipschitz property was studied. Recently,
in [KS] new results on operator Lipschitz functions of contractions were
obtained, see § 2.3 for more detailed information.

It turns out that the right tool to study differentiability properties of
functions of contractions is double (and multiple) operator integrals with
respect to semi-spectral measures. Note that even if both contractions T
and R are unitary operators, the differentiability problem for this pair is
different from the differentiability problem for unitary operators.

In § 3 we define double and multiple operator integrals with respect to
semi-spectral measures. In § 4 we obtain an analog of the Birman–Solomyak
formulae (1.5) and (1.6) for semi-spectral measures. Then we obtain in § 5
conditions on a function ϕ ∈ CA for the differentiability of the map (1.2) in
the operator norm as well as conditions for the existence of higher operator
derivatives. We also obtain in § 5 formuale for the derivatives of (1.2) in
terms of multiple operator integrals with respect to semi-spectral measures.
Finally, in § 6 we study the problem of differentiability of the function (1.2)
in the Hilbert–Schmidt norm.

In § 2 we give necessary information on Besov spaces, double and multiple
operator integrals, and semi-spectral measures.

I would like to express my gratitude to Victor Shulman for stimulating
discussions.

2. Preliminaries

We are going to collect in this section necessary information on Besov
spaces, double operator integrals, multiple operator itegrals, and semi--
spectral measures.

2.1. Besov spaces. Let 1 ≤ p, q ≤ ∞ and s ∈ R. The Besov class Bspq of
functions (or distributions) on T can be defined in the following way. Let
w be a piecewise linear function on R such that
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w ≥ 0, suppw ⊂
[

1
2
, 2
]
, w(1) = 1,

and w is a linear function on the intervals [1/2, 1] and [1, 2].
Consider the trigonometric polynomials Wn, and W#

n defined by

Wn(z) =
∑
k∈Z

w

(
k

2n

)
zk, n ≥ 1, W0(z) = z̄ + 1 + z,

and W#
n (z) = Wn(z), n ≥ 0.

Then for each distribution ϕ on T,

ϕ =
∑
n≥0

ϕ ∗Wn +
∑
n≥1

ϕ ∗W#
n .

The Besov class Bspq consists of functions (in the case s > 0) or distributions
ϕ on T such that{

‖2nsϕ ∗Wn‖Lp

}
n≥0
∈ `q and

{
‖2nsϕ ∗W#

n ‖Lp

}
n≥1
∈ `q

Besov classes admit many other descriptions. In particular, for s > 0, the
space Bspq admits the following characterization. A function ϕ belongs to
Bspq, s > 0, if and only if∫

T

‖∆n
τ f‖

q
Lp

|1− τ |1+sq
dm(τ) <∞ for q <∞

and

sup
τ 6=1

‖∆n
τ f‖Lp

|1− τ |s
<∞ for q =∞,

where m is normalized Lebesgue measure on T, n is an integer greater than
s and ∆τ is the difference operator: (∆τf)(ζ) = f(τζ)− f(ζ), ζ ∈ T.

We are going to use the notation Bsp for Bspp.
It is easy to see from the definition of Besov classes that the Riesz pro-

jection P+,

P+f =
∑
n≥0

f̂(n)zn,

is bounded on Bspq and functions in
(
Bspq

)
+

def= P+B
s
pq admit a natural

extension to the unit disk D, they are analytic in D and the functions in(
Bspq

)
+

admit the following description:

f ∈
(
Bspq

)
+
⇔
∫ 1

0

(1− r)q(n−s)−1‖f (n)
r ‖qp dr <∞, q <∞,
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and
f ∈

(
Bsp∞

)
+
⇔ sup

0<r<1
(1− r)n−s‖f (n)

r ‖p <∞,

where fr(ζ) def= f(rζ) and n is a nonnegative integer greater than s.
In a similar way one can define (homogeneous) Besov space Bspq of func-

tions (distributions) on R.
We refer the reader to [Pee] and [Pe7] for more detailed information on

Besov spaces.

2.2. Double operator integrals. In this subsection we give a brief intro-
duction in the theory of double operator integrals developed by Birman and
Solomyak in [BS1], [BS2], and [BS3], see also their survey [BS5].

Let (X1, E1) and (X2, E2) be spaces with spectral measures E1 and E2

on a Hilbert spaces H1 and H2. Let us first define double operator integrals

(2.1)
∫
X1

∫
X2

Φ(λ, µ) dE1(λ)QdE2(µ),

for bounded measurable functions ψ and operators Q : H2 → H1 of Hilbert
Schmidt class S2. Consider the set function F whose values are orthogonal
projections on the Hilbert space S2(H2,H1) of Hilbert–Schmidt operators
from H1 to H1, which is defined on measurable rectangles by

F (Λ×∆)T = E1(Λ)QE2(∆), Q ∈ S2(H2,H1),

Λ and ∆ being measurable subsets of X and Y. It was shown in [BS4]
that F extends to a spectral measure on X1 × X2 and if ψ is a bounded
measurable function on X1 ×X2, we define∫

X1

∫
X2

Φ(λ, µ) dE1(λ)QdE2(µ) =

 ∫
X1×X2

Φ dF

Q.

Clearly, ∥∥∥∥∥∥
∫
X1

∫
X2

Φ(λ, µ) dE1(λ)QdE2(µ)

∥∥∥∥∥∥
S2

≤ ‖Φ‖L∞‖T‖S2 .

It is easy to see from the definition of double operator integrals in the
case Q ∈ S2 that if {Φn}n≥1 is a sequence of measurable functions such
that

lim
n→∞

Φn(λ, µ) = Φ(λ, µ), λ ∈ X1, µ ∈ X2,

and
sup
n

sup
λ, µ∈X1×X2

|Φn(λ, µ)| <∞,
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then

(2.2) lim
n→∞

∥∥∥∥∥∥
∫
X1

∫
X2

Φn(λ, µ) dE1(λ)QdE2(µ)

−
∫
X1

∫
X2

Φ(λ, µ) dE1(λ)QdE2(µ)

∥∥∥∥∥∥
S2

= 0.

If the transformer

Q 7→
∫
X1

∫
X2

Φ(λ, µ) dE1(λ)QdE2(µ)

maps the trace class S1 into itself, we say that Φ is a Schur multiplier of S1

associated with the spectral measure E1 and E2. In this case the transformer

(2.3) Q 7→
∫
X2

∫
X1

Φ(λ, µ) dE2(µ)QdE1(λ), Q ∈ S2(H1,H2),

extends by duality to a bounded linear transformer on the space of bounded
linear operators from H1 to H2 and we say that the function Ψ on X2 ×X1

defined by
Ψ(µ, λ) = Φ(λ, µ)

is a Schur multiplier of the space of bounded linear operators associated with
E2 and E1. We denote the space of such Schur multipliers by M(E2, E1)

In [BS3] it was shown that if A is a self-adjoint operator (not necessarily
bounded), K is a bounded self-adjoint operator and if ϕ is a continuously
differentiable function on R such that the divided difference Dϕ defined by

(Dϕ)(λ, µ) =
ϕ(λ)− ϕ(µ)

λ− µ
is a Schur multiplier of the space of bounded linear operators with respect
to the spectral measures of A+K and A, then

(2.4) ϕ(A+K)− ϕ(A) =
∫∫

R×R

ϕ(λ)− ϕ(µ)
λ− µ

dEA+K(λ)K dEA(µ)

and
‖ϕ(A+K)− ϕ(A)‖ ≤ const ‖ϕ‖M‖K‖,

where ‖ϕ‖M is the norm of ϕ in M(EA+K , EA).
The same formula (4.1) holds in the case K is a Hilbert–Schmidt operator

and ϕ is a Lipschitz function (in this case Dϕ is not necessarily defined on
the diagonal of R× R and one can define Dϕ to be zero on the diagonal).



8 V.V. PELLER

It is easy to see that if a function Φ on X × Y belongs to the projec-
tive tensor product L∞(E)⊗̂L∞(F ) of L∞(E) and L∞(F ) (i.e., Φ admits a
representation

Φ(λ, µ) =
∑
n≥0

fn(λ)gn(µ),

where fn ∈ L∞(E), gn ∈ L∞(F ), and∑
n≥0

‖fn‖L∞‖gn‖L∞ <∞),

then Φ ∈ M(E,F ), i.e., Φ is a Schur multiplier of the space of bounded
linear operators. For such functions Φ we have∫

X

∫
Y

Φ(λ, µ) dE(λ)QdF (µ) =
∑
n≥0

∫
X

fn dE

Q

∫
Y

gn dF

 .

More generally, Φ is a Schur multiplier if Φ belongs to the integral projec-
tive tensor product L∞(E)⊗̂iL

∞(F ) of L∞(E) and L∞(F ), i.e., Φ admits a
representation

(2.5) Φ(λ, µ) =
∫

Ω

f(λ, ω)g(µ, ω) dσ(ω),

where (Ω, σ) is a measure space, f is a measurable function on X × Ω, g is
a measurable function on Y × Ω, and

(2.6)
∫

Ω

‖f(·, ω)‖L∞(E)‖g(·, ω)‖L∞(F ) dσ(ω) <∞.

If Φ ∈ L∞(E)⊗̂iL
∞(F ), then

∫
X

∫
Y

Φ(λ, µ) dE(λ)QdF (µ) =
∫
Ω

∫
X

f(λ, ω) dE(λ)


Q

∫
Y

g(µ, ω) dF (µ)

 dσ(ω).

Clearly, the function

ω 7→

∫
X

f(λ, ω) dE(λ)

Q

∫
Y

g(µ, ω) dF (µ)


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is weakly measurable and∫
Ω

∥∥∥∥∥∥
∫
X

f(λ, ω) dE(λ)

T

∫
Y

g(µ, ω) dF (µ)

∥∥∥∥∥∥ dσ(ω) <∞.

Moreover, it can easily be seen that such functions Φ are Schur multipliers
of any symmetrically normed ideal of operators.

It turns out that all Schur multipliers of the space of bounded linear
operators can be obtained in this way. More precisely, the following result
holds (see [Pe2]):

Theorem on Schur multipliers. Let Φ be a measurable function on
X × Y. The following are equivalent:

(i) Φ ∈M(E,F );
(ii) Φ ∈ L∞(E)⊗̂iL

∞(F );
(iii) there exist measurable functions f on X × Ω and g on Y × Ω such

that (2.5) holds and

(2.7)
∥∥∥∥∫

Ω

|f(·, ω)|2 dσ(ω)
∥∥∥∥
L∞(E)

∥∥∥∥∫
Ω

|g(·, ω)|2 dσ(ω)
∥∥∥∥
L∞(F )

<∞.

Note that the implication (iii)⇒(ii) was established in [BS3]. Note also
that in the case of matrix Schur multipliers (this corresponds to discrete
spectral measures of multiplicity 1) the equivalence of (i) and (ii) was proved
in [Be].

It is interesting to observe that if f and g satisfy (2.6), then they also
satisfy (2.7), but the converse is false. However, if Φ admits a representation
of the form (2.5) with f and g satisfying (2.7), then it also admits a (possibly
different) representation of the form (2.5) with f and g satisfying (2.6).

Note that in a similar way we can define the projective tensor product
A⊗̂B and the integral projective tensor product A⊗̂iB of arbitrary Banach
functions spaces A and B.

Similar results also hold in the case of unitary operators.

2.3. Sufficient conditions and necessary conditions. We state here
results in the case of unitary operators. Birman and Solomyak proved in
[BS3] that if ϕ is a function on the unit circle such that the derivative of ϕ
satisfies a Hölder condition of order α > 0 then the divided difference Dϕ
belongs to M(E,F ), which implies that if U and V are unitary operators,
then

ϕ(U)− ϕ(V ) =
∫∫
T×T

ϕ(ζ)− ϕ(τ)
ζ − τ

dEU (ζ) (U − V ) dEV (τ),
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and so
‖ϕ(U)− ϕ(V )‖ ≤ const ‖U − V ‖,

i.e., ϕ is an operator Lipschitz function. Moreover, it was shown in [BS3]
that under the same assumptions the function ϕ is operator differentiable,
i.e., if V = eiAU , then the function s→ ϕ

(
eisAU

)
is differentiable and

d

ds

(
ϕ(eisAU)

)∣∣∣
s=o

= i
(∫∫

ϕ(ζ)− ϕ(τ)
ζ − τ

dEU (ζ)AdEU (τ)
)
U.

Later a much stronger result was obtained in [Pe2]. It was shown in [Pe2]
that the same conclusions can be made under the assumption that ϕ ∈ B1

∞1.
Moreover, it was shown in [Pe2] that if ϕ ∈ B1

∞1, then ϕ belongs to the
projective tensor product C(T)⊗̂C(T) of the space of continuous functions
on T with itself, i.e., there exist functions fn and gn, n ≥ 1 in C(T) such
that ∑

n≥1

‖fn‖∞‖gn‖∞ <∞

and
ϕ(ζ)− ϕ(τ)

ζ − τ
=
∑
n≥1

fn(ζ)gn(τ).

This implies that functions in B1
∞1 are operator Lipschitz and operator

differentiable. Moreover, this also implies that functions in B1
∞1 satisfy the

inequality
‖ϕ(U)− ϕ(V )‖S ≤ const ‖U − V ‖S

for arbitrary unitary operators U and V and for an arbitrary symmetrically
normed ideal S.

Similar results hold for (not necessarily bounded) self-adjoint operators,
see [Pe5] and [Pe9].

It was proved in [Pe2] that if ϕ is an operator Lipschitz function on T
(or if ϕ is operator differentiable), then ϕ ∈ B1

1 . This implies that∑
n≥0

2n
∣∣ϕ̂(2n)∣∣ <∞,

and so the condition ϕ ∈ C1(T) is not sufficient for ϕ to be operator Lips-
chitz or operator differentiable. An even stronger necessary condition found
in [Pe2] (see also [Pe6] where that necessary condition was reformulated
with the help of a remark by S. Semmes) says that if ϕ is operator Lipschitz
(or operator differentiable), then

ϕ ∈ L def= {ϕ : |∇2ϕ| dx dy is a Carleson measure in D},
where ∇2ϕ is the second gradient of the harmonic extension of ϕ to the unit
disk.
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M. Frazier observed that actually L is the Triebel–Lizorkin space F 1
∞1.

Note that the definition of the Triebel–Lizorkin spaces Ḟ spq on Rn for p =∞
and q > 1 can be found in [T], § 5.1. A definition for all q > 0, which
is equivalent to Triebel’s definition when q > 1, was given by Frazier and
Jawerth in [FrJ]. Their approach did not use harmonic extensions, but a
straightforward exercise in comparing kernels shows that Frazier and Jaw-
erth’s definition of Ḟ 1

∞1 is equivalent to the definition requiring |∇2u|dxdy
to be a Carleson measure on the upper half-space. Our space L is the
analogue for the unit disc.

It was observed in [Pe3] that if ϕ is an analytic function in
(
B1
∞1

)
+

, then
the divided difference Dϕ belongs to the projective tensor product CA⊗̂CA
of the disk-algebra CA with itself, and so if ϕ ∈

(
B1
∞1

)
+

, then for arbitrary
contractions T and R and an arbitrary symmetrically normed ideal S the
following inequality holds:

‖ϕ(T )− ϕ(R)‖S ≤ const ‖T −R‖S .
Recently in [KS] it was proved that if ϕ ∈ CA, the the following are

equivalent:
(i) ‖ϕ(U) − ϕ(V )‖ ≤ const ‖U − V ‖ for arbitrary unitary operators U

and V ;
(ii) ‖ϕ(T )− ϕ(R)‖ ≤ const ‖T −R‖ for arbitrary contractions T and R.

2.4. Multiple operator integrals. The equivalence of (i) and (ii) in the
Theorem on Schur multipliers suggests the idea explored in [Pe9] to define
multiple operator integrals.

To simplify the notation, we consider here the case of triple operator
integrals; the case of arbitrary multiple operator integrals can be treated in
the same way.

Let (X , E), (Y, F ), and (Z, G) be spaces with spectral measures E, F ,
and G on Hilbert spaces H1, H2, and H3. Suppose that ψ belongs to the
integral projective tensor product L∞(E)⊗̂iL

∞(F )⊗̂iL
∞(G), i.e., ψ admits

a representation

(2.8) Φ(λ, µ, ν) =
∫

Ω

f(λ, ω)g(µ, ω)h(ν, ω) dσ(ω),

where (Ω, σ) is a measure space, f is a measurable function on X × Ω, g is
a measurable function on Y ×Ω, h is a measurable function on Z ×Ω, and∫

Q

‖f(·, x)‖L∞(E)‖g(·, x)‖L∞(F )‖h(·, x)‖L∞(G) dσ(x) <∞.

Suppose now that T1 is a bounded linear operator from H2 to H1 and
T2 is a bounded linear operator from H3 to H2. For a function Φ in
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L∞(E)⊗̂iL
∞(F )⊗̂iL

∞(G) of the form (2.8), we put∫
X

∫
Y

∫
Z

Φ(λ, µ, ν) dE(λ)T1 dF (µ)T2 dG(ν)

def=
∫
Ω

∫
X

f(λ, ω)dE(λ)

T1

∫
Y

g(µ, ω)dF (µ)

T2

∫
Z

h(ν, ω)dG(ν)

dσ(ω).

(2.9)

The following lemma from [Pe9] (see also [ACDS] for a different proof)
shows that the definition does not depend on the choice of a representation
(2.8).

Lemma 2.1. Suppose that ψ ∈ L∞(E)⊗̂iL
∞(F )⊗̂iL

∞(G). Then the
right-hand side of (2.9) does not depend on the choice of a representation
(2.8).

It is easy to see that the following inequality holds∥∥∥∥∥∥
∫
X

∫
Y

∫
Z

ψ(λ, µ, ν) dE(λ)T1 dF (µ)T2 dG(ν)

∥∥∥∥∥∥≤‖ψ‖L∞⊗̂iL∞⊗̂iL∞
· ‖T1‖ · ‖T2‖.

In particular, the triple operator integral on the left-hand side of (2.9) can
be defined if Φ belongs to the projective tensor product
L∞(E)⊗̂L∞(F )⊗̂L∞(G), i.e. Φ admits a representation

Φ(λ, µ, ν) =
∑
n≥1

fn(λ)gn(µ)hn(ν),

where fn ∈ L∞(E), gn ∈ L∞(F ), hn ∈ L∞(G) and∑
n≥1

‖fn‖L∞(E)‖gn‖L∞(F )|‖hn‖L∞(G) <∞.

In a similar way one can define multiple operator integrals, see [Pe9].
For a function ϕ on the circle the divided differences Dkϕ of order k are

defined inductively as follows:

D0ϕ
def= ϕ;

if k ≥ 1, then in the case λ1, λ2, · · · , λk+1 are distinct points in T,

(Dkϕ)(λ1, · · · , λk+1)

def=
(Dk−1ϕ)(λ1, · · · , λk−1, λk)− (Dk−1ϕ)(λ1, · · · , λk−1, λk+1)

λk − λk+1
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(the definition does not depend on the order of the variables). Clearly,

Dϕ = D1ϕ.

If ϕ ∈ Ck(T), then Dkϕ extends by continuity to a function defined for all
points λ1, λ2, · · · , λk+1.

It was shown in [Pe9] that if ϕ ∈ Bn∞1, then Dnϕ belongs to the projective
tensor product C(T)⊗̂ · · · ⊗̂C(T)︸ ︷︷ ︸

n+1

. Moreover, it was shown in [Pe9] if U and

V are unitary operators, V = eiAU , then the function

t 7→ eitAU

has n derivatives in the norm and
dn

dtn

((
ϕ(eitAU

))∣∣∣
s=0

=inn!

∫ · · · ∫︸ ︷︷ ︸
n+1

(Dnϕ)(λ1, · · · , λn+1) dEU (λ1)A · · ·AdEU (λn+1)

Un.

The reasoning given in [Pe9] shows that

(2.10) ϕ ∈
(
Bn∞1

)
+
⇒ Dnϕ ∈ CA⊗̂ · · · ⊗̂CA︸ ︷︷ ︸

n+1

Note that recently in [JTT] Haagerup tensor products were used to define
multiple operator integrals. However, it is not clear whether this can lead
to a broader class of functions ϕ, for which Dnϕ can be integrated.

2.5. Semi-spectral measures. Let H be a Hilbert space and let (X ,B)
be a measurable space. A map E from B to the algebra B(H) of all bounded
operators on H is called a semi-spectral measure if

E(∆) ≥ 0, ∆ ∈ B,
E(∅) = 0 and E(X ) = I,

and for a sequence {∆j}j≥1 of disjoint sets in B,

E

 ∞⋃
j=1

∆j

 = lim
N→∞

N∑
j=1

E(∆j) in the weak operator topology.

If K is a Hilbert space, (X ,B) is a measurable space, E : B → B(K) is a
spectral measure, and H is a subspace of K, then it is easy to see that the
map E : B → B(H) defined by

(2.11) E(∆) = PHE(∆)
∣∣H, ∆ ∈ B,
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is a semi-spectral measure. Here PH stands for the orthogonal projection
onto H.

Naimark proved in [N] (see also [SNF]) that all semi-spectral measures
can be obtained in this way, i.e., a semi-spectral measure is always a com-
pression of a spectral measure. A spectral measure E satisfying (2.11) is
called a spectral dilation of the semi-spectral measure E .

A spectral dilation E of a semi-spectral measure E is called minimal if

K = clos span{E(∆)H : ∆ ∈ B}.

It was shown in [MM] that if E is a minimal spectral dilation of a semi-
spectral measure E , then E and E are mutually absolutely continuous and
all minimal spectral dilations of a semi-spectral measure are isomorphic in
the natural sense.

If ϕ is a bounded complexed-valued measurable function on X and
E : B → B(H) is a semi-spectral measure, then the integral

(2.12)
∫
X
f(x) dE(x)

can be defined as

(2.13)
∫
X
f(x) dE(x) = PH

(∫
X
f(x) dE(x)

)∣∣∣∣H,
where E is a spectral dilation of E . It is easy to see that the right-hand side
of (2.13) does not depend on the choice of a spectral dilation. The integral
(2.12) can also be computed as the limit of sums∑

f(xα)E(∆α), xα ∈ ∆α,

over all finite measurable partitions {∆α}α of X .
If T is a contraction on a Hilbert space H, then by the Sz.-Nagy dilation

theorem (see [SNF]), T has a unitary dilation, i.e., there exist a Hilbert
space K such that H ⊂ K and a unitary operator U on K such that

(2.14) Tn = PHU
n
∣∣H, n ≥ 0,

where PH is the orthogonal projection onto H. Let EU be the spectral
measure of U . Consider the operator set function E defined on the Borel
subsets of the unit circle T by

E(∆) = PHEU (∆)
∣∣H, ∆ ⊂ T.

Then E is a semi-spectral measure. It follows immediately from (2.14) that

(2.15) Tn =
∫

T
ζn dE(ζ) = PH

∫
T
ζn dEU (ζ)

∣∣∣H, n ≥ 0.
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Such a semi-spectral measure E is called a semi-spectral measure of T. Note
that it is not unique. To have uniqueness, we can consider a minimal unitary
dilation U of T , which is unique up to an isomorphism (see [SNF]).

It follows easily from from (2.15) that

ϕ(T ) = PH

∫
T
ϕ(ζ) dEU (ζ)

∣∣∣H
for an arbitrary function ϕ in the disk-algebra CA.

3. Double operator integrals with respect to semi-spectral
measures

In this section we extend the Birman–Solomyak theory of double operator
integrals to the case of semi-spectral measures.

Suppose that (X1,B1) and (X2,B2) are measurable spaces, H1 and H2

are Hilbert spaces, and E1 : B1 → B(H1) and E2 : B2 → B(H2) are semi-
spectral measures. For a bounded measurable function Φ on X1 × X2 and
an operator Q : H2 → H1 we consider double operator integrals

(3.1)
∫∫
X1×X2

Φ(x1, x2) dE1(x1)QdE2(X2).

In the case when Q is a Hilbert–Schmidt operator, integrals of the form (3.1)
can be interpreted as in the case of double operator integrals with respect
to spectral measures (see § 2.2). Indeed, we define the map F on the set of
all measurable rectangles ∆1 ×∆2 by

F(∆1 ×∆2)Q = E1(∆1)QE2(∆2), Q ∈ S2(H2,H1).

Clearly, F(∆1 ×∆2) is a bounded linear operator on S2(H2,H1) that sat-
isfies the inequalities 0 ≤ F(∆1 ×∆2) ≤ I.

Lemma 3.1. F extends to a semi-spectral measure on B1 × B2.

Proof. Let E1 and E2 be spectral dilations of E1 and E2 on Hilbert
spaces K1 and K2. Define the map F on measurable rectangles ∆1×∆2 by

F (∆1 ×∆2)Q = E1(∆1)QE2(∆2), Q ∈ S2(H2,H1).

By the theorem of Birman and Solomyak (see [BS4]), F extends to a spectral
measure (which will also be denoted by F ) defined on X1 ×X2. Clearly,

F(∆1 ×∆2)Q = PH1F (∆1 ×∆2)
(
PH1QPH2

)∣∣∣H2, Q ∈ S2(H2,H1).

We can define now the operator F(Ω) for an arbitrary Ω ∈ X1 ×X2 by

F(Ω)Q = PH1F (Ω)
(
PH1QPH2

)∣∣∣H2, Q ∈ S2(H2,H1).
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It is easy to see that F is a semi-spectral measure on the Hilbert space
S2(H2,H1). �

Given a bounded measurable function Φ on X1 × X2 and a Hilbert–
Schmidt operator Q : H2 → H1, we can define the double operator integral∫∫

X1×X2

Φ(x1, x2) dE1(x1)QdE2(x2)

as in the case of integration with respect to spectral measures:∫∫
X1×X2

Φ(x1, x2) dE1(x1)QdE2(x2) def=
(∫
X1×X2

Φ dF
)
Q.

It is easy to see that∫∫
X1×X2

Φ(x1, x2) dE1(x1)QdE2(x2)

= PH1

∫∫
X1×X2

Φ(x1, x2) dE1(x1)QdE2(x2)
∣∣H2.

Clearly,
(3.2)∥∥∥∥∥∥

∫∫
X1×X2

Φ(x1, x2) dE1(x1)QdE2(x2)

∥∥∥∥∥∥
S2

≤ sup
x1∈X1,x2∈X2

|Φ(x1, x2)| · ‖Q‖S2 .

We need the following fact.

Lemma 3.2. Suppose that E1 and E2 are semi-spectral measure as above
and Q is a Hilbert-Schmidt operator. If {Φn}n≥1 is a sequence of measurable
functions such that

lim
n→∞

Φn(λ, µ) = Φ(λ, µ), λ ∈ X1, µ ∈ X2,

and

sup
n

sup
λ, µ∈X1×X2

|Φn(λ, µ)| <∞,

then

lim
n→∞

∥∥∥∥∥∥
∫
X1

∫
X2

Φn(λ, µ) dE1(λ)QdE2(µ)−
∫
X1

∫
X2

Φ(λ, µ) dE1(λ)QdE2(µ)

∥∥∥∥∥∥
S2

=0.
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Proof. The result follows immediately from the same fact in the case of
spectral measures, see (2.2). �

Let us proceed now to double operator integrals (3.1) with bounded op-
erators Q.

Suppose that E1 and E2 are semi-spectral measures and E1 and E2 are
their minimal spectral dilations. If Φ is a Schur multiplier of the space of
bounded linear operators, then the double operator integral

(3.3)
∫∫
X1×X2

Φ(x1, x2) dE1(x1)QdE2(x2)

is defined as

PH1

∫∫
X1×X2

Φ(x1, x2) dE1(x1)QdE2(x2)
∣∣H2.

It is easy to see that if Φ ∈ L∞(E1)⊗̂iL
∞(E2) and

Φ(x1, x2) =
∫

Ω

f(x1, ω)g(x2, ω) dσ(ω)

with ∫
Ω

‖f(·, ω)‖L∞(E1)‖g(·, ω)‖L∞(E2) dσ(ω) <∞,

then Φ is a Schur multiplier of the space of bounded linear operators, the
integral (3.3) is equal to∫

Ω

∫
X1

f(x1, ω) dE1(x1)

Q

∫
X2

g(x2, ω) dE2(x2)

 dσ(ω)

and its norm is less than or equal to

‖Q‖
∫

Ω

‖f(·, ω)‖L∞(E1)‖g(·, ω)‖L∞(E2) dσ(ω).

We can define now multiple operator integrals in the same way as in the
case of semi-spectral measures. Suppose that H1,H2, · · · ,Hn are a Hilbert
spaces and for j = 1, 2, · · · , n−1, Qj is a bounded linear operator fromHj+1

to Hj . Suppose also that E1, · · · , En are semi-spectral measures defined on
σ-algebras of X1, · · · ,Xn, Ej takes valued in the space B(Hj), and Φ is a
function on X1 × · · · × Xn of class L∞(E1)⊗̂i · · · ⊗̂iL

∞(En), i.e., Φ admits a
representation

(3.4) Φ(x1, · · · , xn) =
∫

Ω

f1(x1, ω) · · · fn(xn, ω) dσ(ω),
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in which

(3.5)
∫

Ω

‖f1(, ·, ω)‖L∞(E1) · · · ‖fn(, ·, ω)‖L∞(En) dσ(ω) <∞.

We define the multiple operator integral∫
· · ·
∫

︸ ︷︷ ︸
n

Φ(x1, · · · , xn) dE1(x1)Q1 · · ·Qn−1 dEn(xn)

as
(3.6)∫

Ω

(∫
X1

f1(x1, ω) dE1(x1)
)
Q1 · · ·Qn−1

(∫
Xn

f1(xn, ω) dEn(xn)
)
dσ(ω).

Certainly, we have to prove that the multiple operator integral is well de-
fined. In other words, we have to show that the value of (3.6) does not
depend on the choice of a representation (3.4), which is a consequence of
the following lemma.

Lemma 3.3. Suppose that∫
Ω

f1(x1, ω) · · · fn(xn, ω) dσ(ω) = 0, x1 ∈ X1, · · · , xn ∈ Xn,

and (3.5) holds. Then
(3.7)∫

Ω

(∫
X1

f1(x1, ω) dE1(x1)
)
Q1 · · ·Qn−1

(∫
Xn

fn(xn, ω) dEn(xn)
)
dσ(ω)

is the zero operator.

Proof. We deduce the lemma from the corresponding fact for multiple
operator integrals with respect to spectral measures. Suppose that Ej is
a minimal spectral dilation of Ej and Ej takes values in B(K). Then the
integral in (3.7) is equal to

(3.8) PH

(∫
Ω

(∫
X1

f1(x1, ω) dE1(x1)
)
B1

· · ·Bn−1

(∫
Xn

fn(xn, ω) dEn(xn)
)
dσ(ω)

) ∣∣∣H,
where Bj

def= PHj
QjPHj+1 , 1 ≤ j ≤ n − 1. It follows now from Lemma 2.1

that the operator in (3.8) is the zero operator. �
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4. Analogs of the Birman–Solomyak formulae

In this section we obtain analogs of the Birman–Solomyak formulae (1.5)
and (1.6) for contractions.

If T is a contraction on Hilbert space, then ET denotes a semi-spectral
measure of T.

Recall that if ϕ′ ∈ CA, the function Dϕ extends to the diagonal

∆ def=
{

(ζ, ζ) : ζ ∈ T
}

by continuity: (Dϕ)(ζ, ζ) = ϕ′(ζ), ζ ∈ T.

Theorem 4.1. Let ϕ ∈
(
B1
∞1

)
+

. Then for contractions T and R on
Hilbert space the following formula holds:

(4.1) ϕ(T )− ϕ(R) =
∫∫
T×T

ϕ(ζ)− ϕ(τ)
ζ − τ

dET (ζ) (T −R) dER(τ).

Recall that it follows from the results of [Pe2] that the function Dϕ
belongs to the projective tensor product CA⊗̂CA (see § 2.2), and so the
right-hand side of (4.1) is well defined.

Proof of Theorem 4.1. Suppose that

(Dϕ)(ζ, τ) =
ϕ(ζ)− ϕ(τ)

ζ − τ
=
∑
n≥0

fn(ζ)gn(τ),

where fn ∈ CA, gn ∈ CA, and∑
n≥0

‖fn‖∞‖gn‖∞ <∞.

We have∫∫
T×T

ϕ(ζ)−ϕ(τ)
ζ−τ

dET (ζ)(T−R) dER(τ)=
∑
n≥0

fn(T )(T−R)gn(R)

=
∑
n≥0

Tfn(T )gn(R)−
∑
n≥0

fn(T )gn(R)R.

Clearly, ∑
n≥0

Tfn(T )gn(R) =
∫∫
T×T

ζfn(ζ)gn(τ) dET (ζ) dER(τ)

=
∫∫
T×T

ζ(Dϕ)(ζ, τ) dET (ζ) dER(τ)
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and ∑
n≥0

fn(T )gn(R)R =
∫∫
T×T

fn(ζ)gn(τ)τ dET (ζ) dER(τ)

=
∫∫
T×T

τ(Dϕ)(ζ, τ) dET (ζ) dER(τ).

Thus∫∫
T×T

(Dϕ)(ζ, τ) dET (ζ)(T −R) dER(τ) =
∫∫
T×T

ζ(Dϕ)(ζ, τ) dET (ζ) dER(τ)

−
∫∫
T×T

τ(Dϕ)(ζ, τ) dET (ζ) dER(τ)

=
∫∫
T×T

(ζ−τ)(Dϕ)(ζ, τ) dET (ζ) dER(τ)

=
∫∫
T×T

(
ϕ(ζ)− ϕ(τ)

)
dET (ζ) dER(τ)

= ϕ(T )− ϕ(R). �

Let us consider the case when T−R ∈ S2. The following result establishes
formula (4.1) for functions with derivatives in CA.

Theorem 4.2. Let ϕ be a function analytic in D such that ϕ′ ∈ CA. If
T and R are contractions such that T −R ∈ S2, then formula (4.1) holds.

Proof. Let {ϕn}n≥1 be a sequence of polynomials such that

‖ϕ′ − ϕ′n‖∞ → 0 as n→∞.
It follows from Theorem 4.1 that

ϕn(T )− ϕn(R) =
∫∫
T×T

ϕn(ζ)− ϕn(τ)
ζ − τ

dET (ζ) (T −R) dER(τ).

By von Neumann’s inequality,

lim
n→∞

‖ϕn(T )− ϕ(T )‖ → 0 and lim
n→∞

‖ϕn(R)− ϕ(R)‖ → 0.

The result follows now from the trivial observation that

sup
ζ,τ∈T

|(Dϕn)(ζ, τ)− (Dϕ)(ζ, τ)| → 0 as n→∞
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which implies that

lim
n→∞

∥∥∥∥∥∥
∫∫
T×T

(
(Dϕn)(ζ, τ)− (Dϕ)(ζ, τ)

)
dET (ζ) (T −R) dER(τ)

∥∥∥∥∥∥
S2

= 0. �

Consider now the more general case when ϕ′ ∈ H∞.

Theorem 4.3. Let ϕ′ ∈ H∞ and let Φ be the function on T×T defined
by

(4.2) Φ
∣∣∣(T× T \∆

)
= (Dϕ)

∣∣∣(T× T \∆
)

and Φ
∣∣∣∆ = 0.

If T and R are contractions such that T −R ∈ S2, then

ϕ(T )− ϕ(R) =
∫∫
T×T

Φ(ζ, τ) dET (ζ) (T −R) dER(τ).

Proof. Let ϕn be the nth Cesáro mean of the Fourier series of ϕ. Then
ϕn ∈

(
B1
∞1

)
+

and by Theorem 4.1,

ϕn(T )− ϕn(R) =
∫∫
T×T

ϕn(ζ)− ϕn(τ)
ζ − τ

dET (ζ) (T −R) dER(τ)

=
∫∫
T×T

(
ϕn(ζ)− ϕn(τ)

)
dET (ζ) dER(τ)

=
∫∫

(T×T)\∆

(
ϕn(ζ)− ϕn(τ)

)
dET (ζ) dER(τ).

The same reasoning as in the proof of Theorem 4.1 shows that∫∫
(T×T)\∆

ϕn(ζ)− ϕn(τ)
ζ − τ

dET (ζ) (T −R) dER(τ)

=
∫∫

(T×T)\∆

(
ϕn(ζ)− ϕn(τ)

)
dET (ζ) dER(τ).

Clearly, ‖ϕn−ϕ‖∞ → 0 as n→∞, and so by von Neumann’s inequality,

ϕn(T )− ϕn(R)→ ϕ(T )− ϕ(R)

in the operator norm.
On the other hand, since

lim
n→∞

ϕn(ζ)− ϕn(τ)
ζ − τ

=
ϕ(ζ)− ϕ(τ)

ζ − τ
, ζ, τ ∈ T,
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and

sup
n

sup
ζ,τ∈T

∣∣∣∣ϕn(ζ)− ϕn(τ)
ζ − τ

∣∣∣∣ <∞,
it follows from Lemma 3.2 that∥∥∥∥∥∥∥

∫∫
(T×T)\∆

(
ϕn(ζ)− ϕn(τ)

ζ − τ
− ϕ(ζ)− ϕ(τ)

ζ − τ

)
dET (ζ) (T −R) dER(τ)

∥∥∥∥∥∥∥
S2

→ 0

as n→∞.
To complete the proof, it remains to observe that∫∫

(T×T)\∆

ϕ(ζ)−ϕ(τ)
ζ−τ

dET (ζ) (T−R) dER(τ)=
∫∫
T×T

Φ(ζ, τ) dET (ζ) (T−R) dER(τ).�

The following result is an immediate consequence of Theorem 4.3; it was
obtained recently in [KS] by a completely different method.

Corollary 4.4. Suppose that ϕ is a function analytic in D such that
ϕ′ ∈ H∞. If T and R are contractions on Hilbert space such that T−R ∈ S2,
then

ϕ(T )− ϕ(R) ∈ S2 and ‖ϕ(R)− ϕ(T )‖S2 ≤ ‖ϕ′‖H∞‖T −R‖S2 .

Let us obtain now analogs of formula (1.6).

Theorem 4.5. Let ϕ ∈
(
B1
∞1

)
+

. Then for a contraction T and a
bounded linear operator Q on Hilbert space the following formula holds:

ϕ(T )Q−Qϕ(T ) =
∫∫
T×T

ϕ(ζ)− ϕ(τ)
ζ − τ

dET (ζ) (TQ−QT ) dET (τ).

The following result is a Hilbert–Schmidt version of Theorem 4.5.

Theorem 4.6. Let ϕ′ ∈ H∞ and let Φ be the function on T×T defined
by (4.2). Suppose that T is a contraction and Q is a bounded linear operator
such that

(4.3) TQ−QT ∈ S2.

Then

ϕ(T )Q−Qϕ(T ) =
∫∫
T×T

Φ(ζ, τ) dET (ζ) (TQ−QT ) dET (τ).

Theorems 4.5 and 4.6 can be proved in the same way as Theorems 4.1
and 4.3.

The following inequality is an immediate consequence of Theorem 4.6;
recently it was proved in [KS] by a different method.
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Corollary 4.7. Suppose that ϕ′ ∈ H∞, T is a contraction and Q is a
bounded linear operator on Hilbert space such that (4.3) holds. Then

ϕ(T )Q−Qϕ(T ) ∈ S2

and
‖ϕ(T )Q−Qϕ(T )‖S2 ≤ ‖ϕ′‖H∞‖TQ−QT‖S2 .

5. Differentiability of operator functions in the operator norm

Let T and R be contractions on a Hilbert space H. For t ∈ [0, 1], consider
the operator Tt defined by

(5.1) Tt = (1− t)T + tR.

Clearly, Tt is a contraction.
In this section for a functions ϕ ∈ CA we consider the problem of differ-

entiability of the function

(5.2) t 7→ ϕ(Tt), 0 ≤ t ≤ 1.

and the problem of the existence of higher derivatives. We also compute
the derivatives in terms of multiple operator integrals with respect to semi-
spectral measures.

Let Et be a semi-spectral measure of Tt on the unit circle T, i.e.,

Tnt =
∫
T

ζn dEt(ζ), n ≥ 0.

Put E def= E0.

Theorem 5.1. Suppose that ϕ ∈
(
B1
∞1

)
+

. Then the function (5.2) is
differentiable in the norm and

d

ds
ϕ(Ts)

∣∣∣
s=t

=
∫∫
T×T

ϕ(ζ)− ϕ(τ)
ζ − τ

dEt(ζ) (R− T ) dEt(τ).

Proof. We have

1
s

(
ϕ(Tt+s)− ϕ(Tt)

)
=

1
s

∫∫
T×T

ϕ(ζ)− ϕ(τ)
ζ − τ

dEt+s(ζ) (Tt+s − Tt) dEt(τ)

=
∫∫
T×T

ϕ(ζ)− ϕ(τ)
ζ − τ

dEt+s(ζ) (R− T ) dEt(τ).
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As we have mentioned in § 2.3, it was shown in [Pe2] that Dϕ admits a
representation

(5.3)
ϕ(ζ)− ϕ(τ)

ζ − τ
=
∑
n

fn(ζ)gn(τ),

where fn, gn ∈ CA and

(5.4)
∑
n

‖fn‖∞‖gn‖∞ <∞.

The following identities hold:∫∫
T×T

ϕ(ζ)− ϕ(τ)
ζ − τ

dEt+s(ζ) (R− T ) dEt(τ)x

=
∑
n

∫∫
T×T

fn(ζ)gn(τ) dEt+s(ζ) (R− T ) dEt(τ)

=
∑
n

fn(Tt+s)(R− T )gn(Tt).

Clearly,

lim
s→0
‖fn(Tt+s)− fn(T )‖ = 0

and in view of (5.4),

lim
s→0

1
s

(
ϕ(Tt+s)− ϕ(Tt)

)
=
∑
n

fn(Tt)(R− T )gn(Tt)

in the norm. It remains to observe that by (5.3),

lim
s→0

∑
n

fn(Tt+s)(R− T )gn(Tt) =
∑
n

fn(Tt)(R− T )gn(Tt)

=
∑
n

∫∫
T×T

fn(ζ)gn(τ) dEt(ζ) (R− T ) dEt(τ)

=
∫∫
T×T

ϕ(ζ)− ϕ(τ)
ζ − τ

dEt(ζ) (R− T ) dEt(τ).�

In what follows to simplify the notation, we will not specify the domain
of integration: all double or multiple integrals will be taken over unit tori.



DIFFERENTIABILITY OF FUNCTIONS OF CONTRACTIONS 25

Theorem 5.2. Let ϕ ∈ (B2
∞,1)+. Then the function (5.2) has second

derivative in the norm and
(5.5)
d2

ds2
ϕ(Ts)

∣∣∣
s=t

= 2
∫∫∫

(D2ϕ)(ζ, τ, υ) dEt(ζ) (R− T ) dEt(τ) (R− T ) dEt(υ).

Proof. We prove (5.5) for t = 0. For all other t the proof is the same.
By Theorem 5.1,

1
t

(
d

ds

(
ϕ(Ts)

)∣∣∣
s=t
− d

ds

(
ϕ(Ts)

)∣∣∣
s=0

)

=
1
t

(∫∫
(Dϕ)(ζ, υ)dEt(ζ)(R−T )dEt(υ)−

∫∫
(Dϕ)(τ, υ)dE(τ)(R−T )dE(υ)

)

=
1
t

(∫∫
(Dϕ)(ζ, υ)dEt(ζ)(R−T )dEt(υ)−

∫∫
(Dϕ)(τ, υ)dE(τ)(R−T )dEt(υ)

)

+
1
t

(∫∫
(Dϕ)(ζ, υ)dE(ζ)(R−T )dEt(υ)−

∫∫
(Dϕ)(ζ, τ)dE(ζ)(R−T )dE(τ)

)
.

We have∫∫
(Dϕ)(ζ, υ) dEt(ζ) (R− T ) dEt(υ)−

∫∫
(Dϕ)(τ, υ) dE(τ) (R− T ) dEt(υ)

=
∫∫∫

(Dϕ)(ζ, υ) dEt(ζ) dE(τ) (R− T ) dEt(υ)

−
∫∫∫

(Dϕ)(τ, υ) dEt(ζ) dE(τ) (R− T ) dEt(υ)

=
∫∫∫

(D2ϕ)(ζ, τ, υ)(ζ − τ) dEt(ζ) dE(τ) (R− T ) dEt(υ)

= t

∫∫∫
(D2ϕ)(ζ, τ, υ) dEt(ζ) (R− T ) dE(τ) (R− T ) dEt(υ).

Similarly,∫∫
(Dϕ)(ζ, υ) dE(ζ) (R− T ) dEt(υ)−

∫∫
(Dϕ)(ζ, τ) dE(ζ) (R− T ) dE(τ)

= t

∫∫∫
(D2ϕ)(ζ, τ, υ) dE(ζ)(R− T ) dE(τ) (R− T ) dEt(υ).
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Thus

1
t

(
d

ds

(
ϕ(Ts)

)∣∣∣
s=t
− d

ds

(
ϕ(Ts)

)∣∣∣
s=0

)

=
∫∫∫

(D2ϕ)(ζ, τ, υ) dEt(ζ) (R− T ) dE(τ) (R− T ) dEt(υ)

+
∫∫∫

(D2ϕ)(ζ, τ, υ) dE(ζ) (R− T ) dE(τ) (R− T ) dEt(υ).

As we have mentioned in § 2.4, it follows from the results of [Pe9] that
D2ϕ ∈ CA⊗̂CA⊗̂CA, i.e., there exist sequences {fn}, {gn}, and {hn} in CA
such that

(D2ϕ)(ζ, τ, υ) =
∑
n≥0

fn(ζ)gn(τ)hn(υ)

and

(5.6)
∑
n≥0

‖fn‖∞‖gn‖∞‖hn‖∞ <∞.

Put

Q
def= R− T.

We have∫∫∫
(D2ϕ)(ζ, τ, υ) dEt(ζ)QdE(τ)QdEt(υ) =

∑
n≥0

fn(Tt)Qgn(T )Qhn(Tt).

It follows from (5.6) that

lim
t→0

∑
n≥0

fn(Tt)Qgn(T )Qhn(Tt) =
∑
n≥0

fn(T )Qgn(T )Qhn(T )

in the operator norm.
Thus

lim
t→0

∫∫∫
(D2ϕ)(ζ, τ, υ) dEt(ζ)QdE(τ)QdEt(υ)

=
∑
n≥0

fn(T )Qgn(T )Qhn(T )

=
∫∫∫

(D2ϕ)(ζ, τ, υ) dE(ζ)QdE(τ)QdE(υ).
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Similarly,

lim
t→0

∫∫∫
(D2ϕ)(ζ, τ, υ) dE(ζ)QdE(τ)QdEt(υ)

=
∫∫∫

(D2ϕ)(ζ, τ, ω) dE(ζ)QdE(τ)QdE(ω)

which proves the result. �
The same method allows us to prove the following generalization of The-

orem 5.2.

Theorem 5.3. Suppose that ϕ ∈
(
Bn∞1

)
+

. Then the function (5.2) has
nth derivative in the norm

dn

dsn
ϕ(Ts)

∣∣∣
s=t

= n!
∫
· · ·
∫

︸ ︷︷ ︸
n+1

(Dnϕ)(ζ1, · · · , ζn+1) dEt(ζ1) (R− T ) · · · (R− T ) dEt(ζn+1).

6. Differentiability of operator functions in the Hilbert–Schmidt
norm

Suppose that T and R are contractions on Hilbert space such that T−R ∈
S2. We are going to obtain in this section results on the differentiability of
the function (5.2) in the Hilbert–Schmidt norm.

Theorem 6.1. Let ϕ be a function analytic in D such that ϕ′ ∈ CA.
Suppose that T and R are contractions on Hilbert space such that T−R ∈ S2

and and Tt is defined by (5.1). Then the function (5.2) is differentiable in
the Hilbert–Schmidt norm and

d

ds
ϕ(Ts)

∣∣∣
s=0

=
∫∫

ϕ(ζ)− ϕ(τ)
ζ − τ

dE(ζ) (R− T ) dE(τ),

where E is a semi-spectral measure of T .

Proof. Let ϕn be the nth Cesáro mean of the Taylor series of ϕ. Then
‖ϕ′n − ϕ′‖∞ → 0 as n → ∞. Let Et be a semi-spectral measure of Tt. We
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have
1
s

(
ϕ(Ts)− ϕ(T )

)
=
∫∫

ϕ(ζ)− ϕ(τ)
ζ − τ

dEs(ζ) (R− T ) dE(τ)

=
∫∫

ϕn(ζ)− ϕn(τ)
ζ − τ

dEs(ζ) (R− T ) dE(τ)

+
∫∫

(ϕ− ϕn)(ζ)− (ϕ− ϕn)(τ)
ζ − τ

dEs(ζ) (R− T ) dE(τ).

Let ε > 0. There exists a natural number N such that

(6.1) sup
ζ,τ

∣∣∣∣ (ϕ− ϕn)(ζ)− (ϕ− ϕn)(τ)
ζ − τ

∣∣∣∣ < ε

whenever n ≥ N .
Let n ≥ N . Since ϕn is a polynomial, it is easy to see that∫∫

ϕn(ζ)− ϕn(τ)
ζ − τ

dEs(ζ) (R− T ) dE(τ)

tends to ∫∫
ϕn(ζ)− ϕn(τ)

ζ − τ
dE(ζ) (R− T ) dE(τ)

in the Hilbert–Schmidt norm. Let δ > 0 be a number such that∣∣∣∣∫∫ ϕn(ζ)− ϕn(τ)
ζ − τ

dEs(ζ) (R− T ) dE(τ)

−
∫∫

ϕn(ζ)− ϕn(τ)
ζ − τ

dE(ζ) (R− T ) dE(τ)
∣∣∣∣ < ε

whenever s ≤ δ.
To conclude the proof, we observe that inequalities (6.1) and (3.2) imply

that ∥∥∥∥∫∫ (ϕ− ϕn)(ζ)− (ϕ− ϕn)(τ)
ζ − τ

dEs(ζ) (R− T ) dE(τ)
∥∥∥∥

S2

< ε

and ∥∥∥∥∫∫ (ϕ− ϕn)(ζ)− (ϕ− ϕn)(τ)
ζ − τ

dE(ζ) (R− T ) dE(τ)
∥∥∥∥

S2

< ε

whenever n ≥ N , and so∥∥∥∥1
s

(
ϕ(Ts)− ϕ(T )

)
−
∫∫

ϕ(ζ)− ϕ(τ)
ζ − τ

dE(ζ) (R− T ) dE(τ)
∥∥∥∥

S2

< 3ε

whenever s ≤ δ. �
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