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Abstract. Let SpΣ be the category of symmetric spectra, regarded

as having the stable model structure. We prove that the category
of small categories enriched over SpΣ admits a model category struc-

ture. The method of proof applies to other categories than symmetric

spectra as well, as long as these categories are linked to the category
of simplicial sets via a certain strong monoidal Quillen pair.

1. Introduction

Let SpΣ be the category of symmetric spectra. It admits a closed sym-
metric monoidal structure given by the smash product ([8], 2.2.10). A spec-
tral category is a category enriched over SpΣ and a spectral functor between
two spectral categories is a structure preserving map which satisfies natural
associativity and unit conditions. We refer the reader to Kelly’s book [10]
for an introduction to enriched category theory in general. This determines
the category SpΣCat of spectral categories. A spectral category can be
large, but we shall only consider small (with respect to some fixed universe)
ones.

The category SpΣ supports many Quillen model category structures, see
e.g. [8] and [12], some of them being compatible in a certain sense with
the smash product of symmetric spectra. For general purposes we shall
work with the stable model structure, as defined in ([8], 3.4), whose weak
equivalences are called stable equivalences.

The fact that the stable model structure is compatible with the smash
product allows one to define a notion of “weak equivalence” of spectral cate-
gories, which is a natural generalisation of the notion of equivalence of spec-
tral categories (in the sense of enriched category theory [10]). In detail, to
every spectral category A one can associate a category ho(A) enriched over
the homotopy category Ho(SpΣ). A spectral functor f : A → B is said to be
Dwyer-Kan equivalence if the functor ho(f) : ho(A) → ho(B) is an equiva-
lence of Ho(SpΣ)-categories. This notion is the symmetric spectra analogue
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of the notion of (Dwyer-Kan) equivalence of simplicial categories [3]. The
purpose of this note is to prove

Theorem 1.1. The category SpΣCat admits a Quillen model category
structure with the class of Dwyer-Kan equivalences as weak equivalences.

The above statement is sloppy as one must specify the class of cofibrations
or fibrations as well, but this is not important now. Theorem 1.1 is actually
a corollary of a more general result which we prove as theorem 2.3. It will
be apparent from theorem 2.3 that one can prove an analogue of theorem
1.1 for other model structures on symmetric spectra than the stable one.
For example, one can consider on SpΣ the stable S-model structure [15].

The paper is organized as follows. In section 2 we set up the general
frame, we recall the analogous model structure on simplicial categories [1]
and we prove theorem 2.3. A technical result about pushouts of enriched
categories, needed in the proof of theorem 2.3, is the content of section 3.

2. A general theorem

Let Cat be the category of small categories. It has a natural model struc-
ture in which a cofibration is a functor monic on objects, a weak equivalence
is an equivalence of categories and a fibration is an isofibration [9]. The fi-
bration weak equivalences are the equivalences surjective on objects.

Let V be a cofibrantly generated monoidal model category [13] with cofi-
brant unit I. The small V-categories together with the V-functors between
them form a category written VCat. If S is a set, we denote by VCat(S)
the category of V-categories with fixed set of objects S. The morphisms in
VCat(S) are the V-functors which are the identity on objects.

Let M be a class of maps of V. Following [11], we say that a V-functor
f : A → B is locally in M if for each pair x, y ∈ A of objects, the map
fx,y : A(x, y) → B(f(x), f(y)) is in M. When M is the class of isomor-
phisms of V, a V-functor which is locally an isomorphism is called full and
faithful.

We denote by W (resp. Fib) the class of weak equivalences (resp. fibra-
tions) of V. We have a functor [ ]V : VCat → Cat obtained by change of
base along the (symmetric monoidal) composite functor

V
γ // Ho(V)

HomHo(V)(I, )
// Set.

Definition 2.1. Let f : A → B be a morphism in VCat.
1. The morphism f is homotopy essentially surjective if the induced

functor [f ]V : [A]V → [B]V is essentially surjective.
2. The morphism f is a DK-equivalence if it is homotopy essentially

surjective and locally in W.
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3. The morphism f is a DK-fibration if f is locally in Fib and [f ]V is
an isofibration.

4. The morphism f is a trivial fibration if it is a DK-equivalence and a
DK–fibration.

5. The morphism f is a cofibration if it belongs to the saturated class
generated by the map u : ∅ → I, where ∅ is the initial V-category and I is
the V-category with a single object ∗ and I(∗, ∗) = I, together with the maps

2̄i : 2̄A → 2̄B ,

where i is a generating cofibration of V. Here the V-category 2̄A has objects
0 and 1, with 2̄A(0, 0) = 2̄A(1, 1) = I, 2̄A(0, 1) = A and 2̄A(1, 0) = ∅.

It follows from the above definitions that (a) a V-functor is a trivial
fibration iff it is surjective on objects and locally a trivial fibration, and (b)
a V-functor is a cofibration iff it has the left lifting property with respect to
the trivial fibrations.
V is said to be DK-admissible if the category VCat admits a Quillen

model category structure with DK-equivalences as weak equivalences and
trivial fibrations as above. One has the fundamental result

Theorem 2.2. [1] Let S be the category of simplicial sets, regarded as having
the classical model structure. Then S is DK-admissible. The fibrations are
the DK-fibrations. A generating set of trivial cofibrations consists of

(B1) {2̄j}, where j is a horn inclusion, and

(B2) inclusions I δy→ H, where {H} is a set of representatives for the iso-
morphism classes of simplicial categories on two objects which have count-
ably many simplices in each function complex. Furthermore, each such H
is required to be cofibrant and weakly contractible in SCat({x, y}). Here
{x, y} is the set with elements x and y and δy omits y.

With this we prove

Theorem 2.3. Let V be a cofibrantly generated monoidal model category
with cofibrant unit and satisfying the monoid axiom. Suppose furthermore
that V satisfies the following technical condition (see [7], Thm. 2.1): if I
(resp. J) denote a generating set of cofibrations (resp. trivial cofibrations)
of V, then the domains of I (resp. J) are required to be small relative to
V ⊗ I-cell (resp. V ⊗ J-cell).

Let
F : S � V : G

be a Quillen pair such that F is strong symmetric monoidal and preserves
the unit object. Then V is DK-admissible. The fibrations are the DK-
fibrations. The model structure is right proper if the model structure on V
is right proper.
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Proof. The adjoint pair (F,G) induces adjoint pairs

F ′ : SCat � VCat : G′

and
F : Ho(S) � Ho(V) : RG.

The functor G′ preserves the trivial fibrations and the functor F ′ preserves
the DK-equivalences. The functor F is strong symmetric monoidal and
preserves the unit object. We have a natural isomorphism of functors

η : [ ]V ∼= [ ]SG′ : VCat→ Cat

such that for all A ∈ VCat, ηA is the identity on objects.
To prove theorem 2.3 we shall use ([6], 2.1.19). We take in loc. cit.:
-the set I to be the set described in definition 2.1.5;
-the set J to be F ′(B2) ∪ {2̄j}, where j is a horn inclusion;
-the class W to be the class of DK-equivalences.
It is enough to prove that J-cof ⊂W and that W∩J-inj = I-inj. Notice

that I-inj is the class of trivial fibrations, and that by definition we have
W ∩ J-inj = I-inj. Thus, it remains to prove that if δy : I → H is a map
belonging to the set B2 in theorem 2.2 and A is any V-category, then in the
pushout diagram

F ′I x //

F ′δy

��

A

��
F ′H // B

the map A → B is a DK-equivalence. We factor the map δy as I (δy)u

−→
u∗H → H where u = Ob(δy) and then we take consecutive pushouts:

F ′I x //

F ′δu
y

��

A
j

��
F ′u∗H

��

// A′

��
F ′H // B.

Recall that u∗H has {x} as set of objects and u∗H(x, x) = H(x, x). By
Lemma 2.4 the map (δy)u is a trivial cofibration in the category of simplicial
monoids, therefore the map j is a trivial cofibration in VCat(Ob(A)). By
proposition 3.1 the map A′ → B is a full and faithful inclusion, therefore
the map A → B is a DK-equivalence. This finishes the proof that V is
DK-admissible. Right properness is standard. �
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Lemma 2.4. Let A be a cofibrant simplicial category. Then for each a ∈
Ob(A) the simplicial monoid a∗A is cofibrant (as a monoid).

Proof. a∗A is the simplicial category with one object a and a∗A(a, a) =
A(a, a). Let S = Ob(A). A is cofibrant iff it is cofibrant as an object
of SCat(S). The cofibrant objects of SCat(S) are characterised in ([4],
7.6): they are the retracts of free simplicial categories. Therefore it suf-
fices to prove that if A is a free simplicial category then a∗A is a free
simplicial category for all a ∈ S. There is a full and faithful functor
ϕ : SCat → Cat∆op

given by Ob(ϕ(A)n) = Ob(A) for all n ≥ 0 and
ϕ(A)n(a, a′) = A(a, a′)n. Recall ([4], 4.5) that A is a free simplicial cate-
gory iff (i) for all n ≥ 0 the category ϕ(A)n is a free category on a graph
Gn, and (ii) for all epimorphisms α : [m]→ [n] of ∆, α∗ : ϕ(A)n → ϕ(A)m
maps Gn to Gm.

Let a ∈ S. The category ϕ(a∗A)n is a full subcategory of ϕ(A)n with
set of objects {a}, hence it is free as well. A set Ga

∗A
n of generators can be

described as follows. An element of Ga
∗A
n is a path from a to a such that

every arrow in the path belongs to Gn and there is at most one arrow in
the path with source and target a. Since every epimorphism α : [m] → [n]
of ∆ has a section, α∗ maps Ga

∗A
n to Ga

∗A
m . �

Proof of Theorem 1.1. Let Σ be the symmetric groupoid ([8], 2.1.1). Let
S• be the category of pointed simplicial sets and let ∧ be the smash product
of pointed simplicial sets. We let S• have the standard model structure;
we shall denote it by (S•,∧, 1+). Consider on SΣop

• the projective model
structure: the fibrations and weak equivalences are defined pointwise. We
have adjoint pairs

S
( )+// (S•,∧, 1+)oo

( )[0] // (SΣop

• ,�,1)
Γ0

oo
−�S // SpΣ

ploo
Id //

SpΣ

Id
oo

in which

A[0](n) =

{
A, if n = 0
∅, if n 6= 0,

� denotes the Day convolution product, 1 its unit, Γ0(X)=HomSΣop
•

(1, X),
S is the sphere spectrum and SpΣ

pl denotes the projective level model struc-
ture on symmetric spectra ([8], Thm. 5.1.2). The left adjoints are strong
symmetric monoidal and preserve the unit. The composite adjunction is a
Quillen pair.
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3. On certain pushouts of enriched categories

Let V be a cocomplete closed symmetric monoidal category with tensor
product ⊗ and unit I. We recall that a V-graph is a V-category without
composition and unit maps. We shall denote by VGraph the category of
small V-graphs.

We also recall (section 2) that a V-functor which is locally an isomorphism
is called full and faithful. The notion makes sense for morphisms of V-graphs
as well.

Proposition 3.1. ([5], Prop. 5.2) Let A, B and C be three small V-
categories and let i : A ↪→ B be a full and faithful inclusion. Then in
the pushout diagram

A i //

f

��

B
g

��
C i′ // D

the map i′ : C → D is a full and faithful inclusion.

Proof. We shall construct D explicitly, as was done in the proof of ([5],
Prop. 5.2). We put Ob(D) = Ob(C)t (Ob(B)−Ob(A)) and D(p, q) = C(p, q)
if p, q ∈ Ob(C). For p ∈ Ob(C) and q ∈ (Ob(B)−Ob(A)) we define

D(p, q) =
∫ x∈Ob(A)

B(x, q)⊗ C(p, f(x)).

For p ∈ (Ob(B)−Ob(A)) and q ∈ Ob(C) we define

D(p, q) =
∫ x∈Ob(A)

C(f(x), q)⊗ B(p, x).

For p, q ∈ (Ob(B)−Ob(A)) we define D(p, q) to be the pushout
R x∈Ob(A) B(x, q)⊗ B(p, x) //

��

R x∈Ob(A) R y∈Ob(A) B(x, q)⊗ C(f(y), f(x))⊗ B(p, y)

��
B(p, q) // D(p, q).

We shall describe a way to see that, with the above definition, D is indeed
a V-category.

Let (B−A)+ be the preorder with objects all finite subsets S ⊆ Ob(B)−
Ob(A), ordered by inclusion. For S ∈ (B − A)+, let AS be the full sub-V-
category of B with objects Ob(A) ∪ S. Then B = lim

(B−A)+
AS . On the other

hand, a filtered colimit of full and faithful inclusions of V-categories is a
full and faithful inclusion. This is because the forgetful functor to VGraph
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preserves filtered colimits ([11], Cor. 3.4) and a filtered colimit of full and
faithful inclusions of V-graphs is a full and faithful inclusion. Therefore one
can assume from the beginning that Ob(B) = Ob(A)∪{q}, where q 6∈ Ob(A).

Case 1: f is full and faithful. In this case the pushout giving D(q, q) is
simply B(q, q), all the other formulas remain unchanged. Then to show that
D is a V-category is straightforward.

Case 2: f is the identity on objects. The map i induces an adjoint pair

i! : VCat(Ob(A)) � VCat(Ob(B)) : i∗.

One has

i!A(a, a′) =


A(a, a′), if a, a′ ∈ Ob(A),
∅, otherwise,
I, if a = a′ = q,

and i factors as A → i!A → B, where i!A → B is the obvious map in
VCat(Ob(B)). Then the original pushout can be computed using the dia-
gram

A //

f

��

i!A //

i!f

��

B

��
C // i!C // D

where the square on the right is a pushout in VCat(Ob(B)).
Recall [2] that the category VGraph(Ob(B)) of V-graphs with fixed set

of objects Ob(B) is a (nonsymmetric) monoidal category with monoidal
product

X�Y (a, b) =
∐

z∈Ob(B)

X(a, z)⊗ Y (z, b)

and unit

IOb(B)(a, b) =

{
I, if a = b

∅, otherwise.

The category VCat(Ob(B)) is precisely the category of monoids in
VGraph(Ob(B)) with respect to −�−.

We claim that D can be calculated as the pushout in the category BModB
of (B,B)-bimodules of the diagram

B�i!AB
B�i!Ai!f�i!AB //

��

B�i!Ai!C�i!AB

m

��
B // D.



8 ALEXANDRU E. STANCULESCU

For this we have to show that D is a monoid in BModB. We first show that
B�i!Ai!C�i!AB is a monoid in BModB. There is a canonical isomorphism

i!C�i!Ai!C ∼= i!C�i!AB�i!Ai!C

of (i!A, i!A)-bimodules which is best seen pointwise, using coends. This
provides a multiplication for B�i!Ai!C�i!AB which is again best seen to be
associative by working pointwise, using coends. To define a multiplication
for D consider the cube diagrams

B · i!A · B ·B B · i!A · B //

))TTTTTTTTTTTT

��

B ·B B · i!A · B

&&NNNNNNNNN

��

B · i!C · B ·B B · i!A · B //

��

D ·B B · i!A · B

��

B · i!A · B ·B B · i!C · B //

))TTTTTTTTTTTT B ·B B · i!C · B

&&NNNNNNNNN

B · i!C · B ·B B · i!C · B // D ·B B · i!C · B

and

B ·B B · i!A · B //

((RRRRRRRRRRRRR

��

B ·B B

((QQQQQQQQQQQQQ

��

D ·B B · i!A · B //

��

D ·B B

��

B ·B B · i!C · B //

((RRRRRRRRRRRRR B ·B D

((QQQQQQQQQQQQQ

D ·B B · i!C · B // D ·B D.

For space considerations we have suppressed tensors (always over i!A, unless
explicitly indicated) from notation. The right face of the first cube is the
same as the left face of the latter cube. Let PO1 (resp. PO2) be the pushout
of the left (resp. right) face of the first cube diagram. Let PO3 be the
pushout of the right face of the second cube diagram. We have pushout
digrams

PO1
//

��

PO2
//

��

PO3

��
B · i!C · B ·B B · i!C · B // D ·B B · i!C · B // D ·B D
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Using these pushouts and the fact that B�i!Ai!C�i!AB is a monoid one can
define in a canonical way a map µ : D ·B D → D. We omit the long verifica-
tion that µ gives D the structure of a monoid. The map µ was constructed
in such a way that m becomes a morphism of monoids. The fact that D has
the universal property of the pushout in the category VCat(Ob(B)) follows
from its definition.

Case 3: f is arbitrary. Let u = Ob(f). We factor f as A fu

→ u∗C → C,
where fu is a map in VCat(Ob(A)). One has u∗C(a, a′) = C(f(a), f(a′))
(a, a′ ∈ Ob(A)) and u∗C → C is full and faithful. Take consecutive pushouts

A i //

fu

��

B

��
u∗C

��

// A′

��
C // D

and apply cases 2 and 1. �
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