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Abstract. In the paper The inversion formulae for automorphisms

of polynomial algebras and differential operators in prime charac-

teristic, J. Pure Appl. Algebra 212 (2008), no. 10, 2320–2337, see
also Arxiv:math.RA/0604477, Vladimir Bavula states the following

Conjecture:

(BC) Any endomorphism of a Weyl algebra (in a finite character-
istic case) is a monomorphism.

The purpose of this preprint is to prove BC for A1, show that
BC is wrong for An when n > 1, and prove an analogue of BC for

symplectic Poisson algebras.

The Weyl algebra An is an algebra over a field F generated by 2n ele-
ments x1, . . . xn; y1, . . . , yn which satisfy relations [xi, yj ](= xiyj − yjxi) =
δij , [xi, xj ] = 0, [yi, yj ] = 0, where δij is the Kronecker symbol and
1 ≤ i, j ≤ n. Weyl algebras appeared quite some time ago and initially were
considered only over the fields of characteristic zero. Arguably the most fa-
mous algebraic problem related to these algebras is the Dixmier conjecture
(see [D]) that any homomorphism of An is an automorphism if char(F ) = 0.
This problem is still open even for n = 1.

The finite characteristic case is certainly less popular but lately appears
to attract more attention because it helps to connect questions related to
the Weyl algebras and to the polynomial rings, e.g. to connect the famous
Jacobian Conjecture with the Dixmier conjecture (see [T1], [BK], and [AE]).
There is a striking difference between the zero characteristic and the finite
characteristic cases. While for characteristic zero the center of An is just
the ground field and An is infinite-dimensional over the center, when char-
acteristic is not zero the center of An is a polynomial ring in 2n generators
and An is a finite-dimensional free module over the center.

Supported by an NSA grant.
For the readers convenience the preprint contains the proofs of all necessary lemmas

eliminating the need to look for them elsewhere.
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A vector space B with two bilinear operations x ·y (a multiplication) and
{x, y} (a Poisson bracket) is called a Poisson algebra if B is a commutative
associative algebra under x · y, B is a Lie algebra under {x, y}, and B sat-
isfies the Leibniz identity: {x, y · z} = {x, y} · z + y · {x, z}.

Here we will be concerned with symplectic (Poisson) algebras Sn. For
each n algebra Sn is a polynomial algebra F [x1, . . . xn; y1, . . . , yn] with the
Poisson bracket defined by {xi, yj} = δij , {xi, xj} = 0, {yi, yj} = 0,
where δij is the Kronecker symbol and 1 ≤ i, j ≤ n. Hence {f, g} =∑

i

(
∂f
∂xi

∂g
∂yi
− ∂f

∂yi

∂g
∂xi

)
.

To distinguish Sn and An we will write Sn as F{x1, y1, . . . , xn, yn}. One
can think about Sn as a commutative approximation of An (and of An as
a quantization of Sn).

It is clear that Sn is a polynomial algebra with some additional structure.
It is less clear what is An. Of course, we can think about a Weyl algebra as a
factor algebra of a free associative algebra by the ideal I which corresponds
to the relations, but it is not obvious even that 1 6∈ I so the resulting factor
algebra may be the zero algebra.

Lemma on basis. Monomials yj1
1 x

i1
1 . . . yjn

n xin
n form a basis P of An

over F .

Proof. Any monomial µ in An (which in this consideration may be the
zero algebra) can be written as a product µ = µ1µ2 . . . µn where µi is a
monomial of xi, yi since different pairs (xj , yj) commute. Furthermore,
since xiyi = yixi + 1 any monomial in xi, yi can be written as a linear
combination of monomials yk

i x
l
i with coefficients in Z or in Zp depending

on characteristic of F .
It remains to show that the monomials in P are linearly independent

over F . This can be done by finding a homomorphic image of An in which
the images of monomials from P are linearly independent.

If charF = 0 there is a natural representation of An. Consider ho-
momorphisms Xi and Yj of R = F [y1, . . . , yn] defined by Xi(r) = ∂ r

∂ yi

and Yj(r) = yjr. A straightforward computation shows that α(xi) = Xi,
α(yj) = Yj defines a homomorphism of An into the ring of homomorphisms
of R and that the images of monomials from P are linearly independent.
Unfortunately this representation is not satisfactory when charF = p 6= 0:
it is easy to see that Xp

i = 0.
Here is a way to remedy the problem. Consider Rn = R[z1, . . . , zn], and

homomorphisms Xi, Yj , and Zk of Rn defined by Xi(r) = ∂ r
∂ yi

, Yj(r) = yjr
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and Zk(r) = zkr for r ∈ Rn. Since Zk commute with Xi and Yj , if we re-
place Xi by X̂i = Xi+Zi then [X̂i, Yj ] = [Xi, Yj ] and [X̂i, X̂j ] = 0. Now, for
σ =

∑
fijY

j1
1 X̂i1

1 . . . Y jn
n X̂in

n we have σ(1) =
∑
fijy

j1
1 z

i1
1 . . . yjn

n zin
n , which is

zero only if all fij = 0. �

Let us call the presentation of an element a ∈ An through the basis P
standard. Further we will use only the standard presentations of elements
of An. So An is isomorphic to a corresponding polynomial ring as a vector
space.

Remark 1. An is a domain (does not have zero divisors). To see it con-
sider a degree-lexicographic ordering of monomials in P first by the total
degree and then by y1 >> x1 >> y2 >> x2 . . . >> yn >> xn. Then the
commutation relations of An give |fg| = ||f ||g|| where |h| for h ∈ An \ 0
denotes the largest monomial appearing in h. �

If char(F ) = 0 then BC is very easy to prove (and is well-known) both for
An and Sn. Suppose that ϕ has a non-zero kernel. Let us take a non-zero
element in the kernel of ϕ of the smallest total degree deg possible. It is clear
that deg(ab) = deg(a) + deg(b) for a, b ∈ An because of the commutation
relations. Consider Sn first. If Λ is a “minimal” element of the kernel then
{xi,Λ} = ∂Λ

∂yi
and {yi,Λ} = − ∂Λ

∂xi
should be identically zero because of the

minimality of Λ. So ∂Λ
∂yi

= 0 and ∂Λ
∂xi

= 0 for all i. If char(F ) = 0 it means
that Λ ∈ F . But our homomorphism is over F , so Λ = 0. Similar proof
works for An where the elements [xi,Λ] and [yi,Λ] should be identically zero
which again shows that Λ = 0.

From now on in this preprint we assume that char(F ) = p 6= 0.

Let us start with purely computational observations.
A straightforward computation shows that [ab, c] = [a, c]b+a[b, c]. There-

fore [xk+1
1 , y1] = [xk

1 , y1]x1 + xk
1 [x1, y1] and since [x1, y1] = 1 induction on

k gives [xk
1 , y1] = kxk−1

1 . Similarly, [x1, y
k
1 ] = kyk−1

1 and index 1 can be
replaced by any i ∈ {1, 2, . . . , n}.

Denote [a, b] by ada(b). We will use the following equality: adp
a(B) =

adap(b). In order to prove it observe that ada(b) = (al − ar)(b) where al

and ar are the operators of left and right multiplication by a. It is clear
that al and ar commute. So adp

a(b) = (al−ar)p(b) = (ap
l −ap

r)(b) = adap(b).
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Lemma on center. (a) The center Z(An) of An = F [x1, . . . xn;
y1, . . . , yn] is the polynomial ring F [xp

1, . . . x
p
n; yp

1 , . . . , y
p
n].

(b) The Poisson center of Sn = F{x1, . . . xn; y1, . . . , yn} is the polyno-
mial ring F [xp

1, . . . x
p
n; yp

1 , . . . , y
p
n].

Proof. (a) Consider xp
1. It is clear from the definition of An that xp

1

commutes with all generators with a possible exception of y1. As we ob-
served above, [x1, y1] = 1 implies [xk

1 , y1] = kxk−1
1 . So [xp

1, y1] = pxp−1
1 = 0

and xp
1 is in the center of An. Similarly all xp

j and yp
j are in the center and

Z(An) ⊇ E where E = F [xp
1, . . . x

p
n; yp

1 , . . . , y
p
n].

Any element a ∈ An can be written as a =
∑
ci,jy

j1
1 x

i1
1 . . . yjn

n xin
n = a0+σ

where 0 ≤ is < p and 0 ≤ js < p, ci,j ∈ E, a0 ∈ E, and σ is the sum of all
monomials of a which do not belong to E. If a ∈ Z(An) then [x1, a] = 0.
Now, [x1, y

j1
1 x

i1
1 . . . yjn

n xin
n ] = [x1, y

j1
1 ]xi1

1 . . . yjn
n xin

n = j1y
j1−1
1 xi1

1 . . . yjn
n xin

n

and we have similar formulae when x1 is replaced by any xi or yj . So if one
of the monomials in σ is not zero we can take the commutator of a with
an appropriate xi or yj and obtain a non-trivial linear dependence between
monomials of P contrary to Lemma on basis.

(b) An element a belongs to the Poisson center Z(A) of a Poisson algebra
A if {a, b} = 0 for all b ∈ A. If f ∈ Z(Sn) then ∂f

∂xi
= {f, yi} = ∂f

∂yi
=

{xi, f} = 0 for all i which is possible only if f ∈ F [xp
1, . . . x

p
n; yp

1 , . . . , y
p
n]. �

Nousiainen Lemma. Let ϕ be a homomorphism of An or Sn corre-
spondingly. Then (a) An = Z(An)[ϕ(x1), . . . ϕ(xn); ϕ(y1), . . . , ϕ(yn)];

(b) Sn = Z(Sn)[ϕ(x1), . . . ϕ(xn); ϕ(y1), . . . , ϕ(yn)].

Proof. (a) Let E = F [xp
1, . . . x

p
n; yp

1 , . . . , y
p
n]. From Lemma on center

Z(An) = E. Algebra An is a finite-dimensional module over E since any
element a ∈ An can be written as a =

∑
ci,jy

j1
1 x

i1
1 . . . yjn

n xin
n where 0 ≤ is <

p, 0 ≤ js < p, and ci,j ∈ E. Let K = F (xp
1, . . . x

p
n; yp

1 , . . . , y
p
n) be the filed

of fractions of E and let Dn = K[x1, . . . xn; y1, . . . , yn]. Algebra Dn is a
skew-field since Dn is a finite-dimensional vector space over K and Dn does
not have zero divisors according to Remark 1. (Recall that xp

i , y
p
j ∈ K, so

any f ∈ Dn satisfies a non-zero relation
∑N

i=0 kif
i = 0 where ki ∈ K and

N ≤ p2n.)
Monomials yj1

1 x
i1
1 . . . yjn

n xin
n where 0 ≤ is < p, 0 ≤ js < p are linearly in-

dependent over K. Indeed, if Λ =
∑
ci,jy

j1
1 x

i1
1 . . . yjn

n xin
n = 0 where ci,j ∈ K

then [xm,Λ] = [ym,Λ] = 0 and we can obtain from a non-trivial dependence
Λ a “smaller” one. So we can invoke induction on, e.g. the sum of the total
degrees of monomials in Λ.
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Since any element a ∈ Dn can be written as a =
∑
ci,jy

j1
1 x

i1
1 . . . yjn

n xin
n

where 0 ≤ is < p, 0 ≤ js < p, and ci,j ∈ K, the dimension of Dn over K is
p2n .

Consider now monomials vj1
1 u

i1
1 . . . vjn

n uin
n where ui = ϕ(xi), vj = ϕ(yj),

0 ≤ is < p, and 0 ≤ js < p. Let us check that they are also linearly
independent over K. If Λ =

∑
ci,jv

j1
1 u

i1
1 . . . vjn

n uin
n = 0 then [um,Λ] =

[vm,Λ] = 0 and, since the commutation relations are the same as above, we
obtain from a non-trivial dependence Λ a “smaller” one.

Since there is exactly p2n of these monomials, they also form a basis
of Dn over K and any element a ∈ An ⊂ Dn can be written as a =∑
ci,jv

j1
1 u

i1
1 . . . vjn

n uin
n where ci,j ∈ K.

It remains to show that all ci,j ∈ E. Order monomials vj1
1 u

i1
1 . . . vjn

n uin
n

degree-lexicographically as in Remark 1. Let µ = vj1
1 u

i1
1 . . . vjn

n uin
n be the

largest monomial. Then adin
vn

adjn
un
. . . adi1

v1
adj1

u1
(a)=(−1)I

∏n
m=1(im)!(jm)!ci,j

where I =
∑n

m=1 im belongs to An. Since (−1)I
∏n

m=1(im)!(jm)! 6= 0 we
conclude that ci,j ∈ An

⋂
K = E, replace a by a − ci,jµ, and finish by

induction on the number of monomials of a.
(b) Let Tn be the field of rational functions F (x1, . . . xn; y1, . . . , yn) endowed
with the same bracket as Sn : {f, g} =

∑
i

(
∂f
∂xi

∂g
∂yi
− ∂f

∂yi

∂g
∂xi

)
. Then Tn

becomes a Poisson algebra and we can think of Sn as a subalgebra of Tn.
It is clear that Z(Tn) = F (xp

1, . . . x
p
n; yp

1 , . . . , y
p
n) and that Tn is a p2n-

dimensional vector space over Z(Tn).
Denote ui = ϕ(xi), vi = ϕ(yi). To show that monomials vj1

1 u
i1
1 . . . vjn

n uin
n

where 0 ≤ is < p and 0 ≤ js < p are linearly independent over Z(Tn) we,
as above, can consider a “minimal” relation Λ =

∑
ci,jv

j1
1 u

i1
1 . . . vjn

n uin
n = 0

and get “smaller” relations by taking {um,Λ} and {vm,Λ}.
If a ∈ Sn is presented as a =

∑
ci,jv

j1
1 u

i1
1 . . . vjn

n uin
n where 0 ≤ is < p,

0 ≤ js < p, and ci,j ∈ Z(Tn) then all ci,j ∈ Z(Sn); to see it just replace in
the considerations above adz by Adz defined by Adz(b) = {z, b}. �

Corollary. There are no homomorphisms from An into An−1.

Proof. Assume that we have a homomorphism φ : An → An−1. Con-
sider images ui = φ(xi) and vi = φ(yi). According to Nousiainen Lemma
An−1 is a vector space over the center of An−1 with a basis consisting of
monomials vj1

1 u
i1
1 . . . v

jn−1
n−1 u

in−1
n−1 , 0 ≤ is < p, 0 ≤ js < p. Therefore un and

vn are in the center of An−1 and hence commute with each other. �

Remark 2. This Lemma is similar to a lemma from Pekka Nousi-
ainen’s PhD thesis (Pennsylvania State University, 1981) which was never



6 LEONID MAKAR-LIMANOV

published (see [BCW]). Nousiainen proved his Lemma in a commutative
setting for a Jacobian set of polynomials, i. e. he proved that if z1, . . . , zn ∈
F [y1, . . . , yn] and the Jacobian J(z1, . . . , zn) = 1 then F [y1, . . . , yn] =
F [yp

1 , . . . , y
p
n; z1, . . . , zn]. This shows immediately that F [y1, . . . , yn]

= F [yP
1 , . . . , y

P
n ; z1, . . . , zn] where P = pm and m is a natural number.

Indeed, if say y1 =
∑
ciz

i1
1 . . . zin

n where ci ∈ F [yp
1 , . . . , y

p
n] then yp

1 =∑
cpi (zi1

1 . . . zin
n )p and cpi ∈ F [yp2

1 , . . . , yp2

n ].
The same is true for the symplectic algebras. But it is wrong even for A1.
Take e.g. u = x, v = y2x− y when p = 2. Then u2 = x2, v2 = y4x2 and

D1 6= F (x4, y4)[u, v] since u2 and v2 are linearly dependent over F (x4, y4).
Here, of course, A1 6= F [x4, y4;u, v].

Nousiainen Lemma for Weyl algebras is proved in [T2] and [AE]. �

Theorem 1. BC is true for Poisson algebras Sn.

Proof. In Nousiainen Lemma we proved that Sn = Z(Sn)[u1, . . . un;
v1, . . . , vn] where ui = ϕ(xi), vi = ϕ(yi). So a =

∑
ci,jv

j1
1 u

i1
1 . . . vjn

n uin
n

where ci,j ∈ Z(Sn) = F [xp
1, . . . x

p
n; yp

1 , . . . , y
p
n] for any a ∈ Sn. Therefore

ap =
∑

cpi,jv
pj1
1 upi1

1 . . . vpjn
n upin

n where cpi,j ∈ F [xp2

1 , . . . , x
p2

n ; yp2

1 , . . . , yp2

n ].

Hence

F [xp
1, . . . , x

p
n; yp

1 , . . . , y
p
n] ⊂ F [xp2

1 , . . . , x
p2

n ; yp2

1 , . . . , yp2

n ]

[up
1, . . . , u

p
n; vp

1 , . . . , v
p
n]

and a =
∑
di,jv

j1
1 u

i1
1 . . . vjn

n uin
n where

di,j ∈ F [xp2

1 , . . . x
p2

n ; yp2

1 , . . . , yp2

n ][up
1, . . . u

p
n; vp

1 , . . . , v
p
n].

So Sn = F [xp2

1 , . . . , x
p2

n ; yp2

1 , . . . , yp2

n ][u1, . . . , un; v1, . . . , vn]. By iterating
this process we will get that Sn = F [xP

1 , . . . x
P
n ; yP

1 , . . . , y
P
n ]

[u1, . . . , un; v1, . . . , vn] where P = pm for any positive integer m.
It is clear that uP

i , v
P
j ∈ F [xP

1 , . . . , x
P
n ; yP

1 , . . . , y
P
n ] so Sn is spanned over

F [xP
1 , . . . , x

P
n ; yP

1 , . . . , y
P
n ] by monomials vj1

1 u
i1
1 . . . , vjn

n uin
n where 0≤ is<P ,

0 ≤ js < P . Of course, Sn is spanned over F [xP
1 , . . . x

P
n ; yP

1 , . . . , y
P
n ] by

monomials yj1
1 x

i1
1 . . . yjn

n xin
n where 0 ≤ is < P, 0 ≤ js < P and these

monomials are linearly independent over F [xP
1 , . . . x

P
n ; yP

1 , . . . , y
P
n ].

So F [x1, . . . xn; y1, . . . , yn] is a free module over F [xP
1 , . . . x

P
n ; yP

1 , . . . , y
P
n ]

of dimension P 2n.
If ϕ is not an injection then there is a linear dependence over F between

monomials vj1
1 u

i1
1 . . . vjn

n uin
n where 0 ≤ is < P, 0 ≤ js < P provided P is

sufficiently large. But it is impossible since these monomials are linearly
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independent over F [xP
1 , . . . x

P
n ; yP

1 , . . . , y
P
n ]. �

We prove now using Gelfand-Kirillov dimension that a homomorphism
of A1 into An is an embedding. Here is a definition of the Gelfand-Kirillov
dimension (GKdim) suitable for our purpose. Let R be a finitely-generated
associative algebra over F : R = F [r1, . . . , rm]. Consider a free associative
algebra Fm = F 〈z1, . . . , zm〉 and linear subspaces Fm,N of all elements of
Fm with the total degree at most N . Let α be a homomorphism of Fm

onto R defined by α(zi) = ri and let RN = α(Fm,N ). Each RN is a finite-
dimensional vector space (over F ); denote dN = dim(RN ).

GKdim(R) = limN→∞
ln(dN )
ln(N)

.

Though this definition uses a particular system of generators, it is pos-
sible to prove that GKdim(R) does not depend on such a choice (see [GK]
or [KL]). It is not difficult to show that in the commutative case Gelfand-
Kirillov dimension coincides with the transcendence degree.

Lemma on GK-dimension. Let R = F [z1, . . . , zm] be a ring of poly-
nomials. If a, b ∈ R are algebraically dependent then GKdim(S) ≤ 1 for
any finitely generated subalgebra S ⊂ A = F [a, b].

Proof. If a, b ∈ F then F [a, b] = F and any subalgebra of A is F . So
in this case GKdim(S) = 0. Assume now that a 6∈ F , i. e. deg(a) > 0.
If deg(b) = 0 then A = F [a] and dN = N + 1 where dN = dim(AN ),
so GKdim(A) = 1. Let S be a subalgebra of A generated by a1, . . . , am.
Then ai = qi(a) where qi are polynomials. Assume that degrees of all these
polynomials do not exceed d. Therefore a polynomial g(a1, . . . , am) of the
total degree N can be rewritten as a polynomial in a of degree at most dN .
Hence N < dN ≤ dN + 1 if any of ai is not in F and GKdim(S) = 1. If all
ai ∈ F then GKdim(S) = 0.

Now, let deg(b) > 0. Since a and b are algebraically dependent,
Q(a, b) = 0 for a non-zero polynomial Q. Order monomials aibj by the
total degree i + j and then lexicographically by a >> b. If µ = akbl is
the largest monomial in Q we can write µ = Q1(a, b) where all monomials
of Q1 are less than µ. So we can replace any monomial ν = aibj where
i ≥ k, j ≥ l by a linear combination of monomials which are less than ν.
Hence any c ∈ A of the total degree at most N can be written as a linear
combination of monomials aibj where i + j ≤ N and either i < k or j < l.
There is less than (k + l)(N + 1) and more than N monomials satisfying
these properties. Therefore N < dN < (k + l)(N + 1) and GKdim(A) = 1.
If S is a subalgebra of A generated by a1, . . . , am then ai = qi(a, b) where
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qi are polynomials of the total degrees bounded by some d. If we take a
polynomial g(a1, . . . , am) of the total degree N then g(a1, . . . , am) can be
rewritten as a polynomial in a and b of the degree at most dN . Therefore
N < dN ≤ (k + l)(dN + 1) if any of ai is not in F and GKdim(S) = 1. If
all ai ∈ F then GKdim(S) = 0. �

Denote by deg the total degree function on An and by a the element of
A which is deg homogeneous and such that deg(a − a) < deg(a). We will
refer to a as the leading form of a. From the commutation relations in An

it follows that ab = ba and that deg([a, b]) < deg(ab).
We will think about leading forms not as elements of An but rather as

commutative polynomials. Then ab = ab = ba.

Lemma on dependence. Let a and b be algebraically dependent non-
zero homogeneous polynomials and q = deg(a), r = deg(b). Then ar and bq

are proportional, i. e. there exists an f ∈ F so that ar − fbq = 0.

Proof. Polynomials a and b are algebraically dependent, so there is a
non-zero polynomial Q for which Q(a, b) =

∑
i,j fija

ibj = 0. Since a and b
are homogeneous we may assume that qi+ rj is the same for all monomials
of Q. Indeed, any Q can be presented as Q =

∑
iQk where Qk are q, r-

homogeneous. Then either Qk(a, b) = 0 or deg(Qk(a, b)) = k and different
components cannot cancel out.

Therefore over an algebraic closure F of F we can write Q =
f0a

kbl
∏

i(a
r′ − fib

q′) where fi ∈ F , r′ = r
d , q

′ = q
d , and d is the greatest

common divisor of r and q. Hence ar′ − fib
q′ = 0 for some fi ∈ F . But

then ar′b−q′ ∈ F since it is a constant rational function defined over F and
arb−q = (ar′b−q′)d ∈ F . �

Lemma on independence. Let ϕ be a homomorphism of A1 into An.
Then the image of A1 contains two elements with algebraically independent
leading forms.

Proof. Let u = ϕ(x) and v = ϕ(y) where x and y are generators of A1

and let B = F [u, v] be the image of A1 in An. If u and v are independent,
we are done. If not, then by Lemma on dependence there exists a pair
of relatively prime natural numbers (q, r) and f ∈ F such that uq = fvr.
Either q or r is not divisible by p. For arguments sake assume that it is q.

We can find k for which kp + 1 ≡ 0 (mod q), f1 ∈ F and a positive
integer s so that ukp+1 = f1vs. Let us replace the pair (u, v) by the pair
(u1 = ukp+1 − f1v

s, v1 = v). The commutator [u1, v1] = ukp is a non-zero
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element of the center Z(B) of B. If u1 and v1 are independent we are done,
otherwise repeat the step above to get (u2, v2), etc.. We claim that after a
finite number of steps we produce a pair of elements of B with independent
leading forms.

Consider a function def(a, b) = deg(ab)− deg([a, b]) on An. Let us check
that def(ui+1, vi+1) < def(ui, vi). We will do it for the first step since the
computations are the same for every step.

Since ukp+1 = f1vs we see that deg(u1) < (kp+1) deg(u). So def(u1, v1)=
deg(u1v1)−deg([ukp+1−fvr, v])=deg(u1)+deg(v)−kp deg(u)−deg([u, v]))<
deg(u)+deg(v)−deg([u, v] = def(u, v) since [ukp+1−fvr, v] = ukp[u, v] and
deg(u1) < (kp+ 1) deg(u).

By definition, def(a, b) > 0 if both a and b are not zero, so after at most
def(u, v) steps we either get a pair with zero element or a pair U, V ∈ B
with independent U and V . Since [u, v] = 1 the pair we start with does
not contain zero. Similarly, since [ui, vi] 6= 0 we cannot get a pair with zero
element. �

We can now see that GKdim(B) ≥ 2. Indeed, U and V are “polynomi-
als” of u and v and we may assume that the degrees of these polynomials
are at most d. Then the space of all polynomials in u, v of degree at most
N contains all polynomials in U, V of degree at most N

d . Since U and V are
algebraically independent the leading forms U iV j are linearly independent
over F and hence U iV j are linearly independent over F . There is about
N2

2d2 of these monomials with i + j ≤ N
d (exactly

(
[ N

d ]+2
2

)
where [N

d ] is the
integral part of N

d ). So the dimension dN > N2

2d2 and GKdim(B) ≥ 2.

Theorem 2. Let ϕ be a homomorphism of A1 into An. Then ϕ is an
embedding.

Proof. Let A1 = F [x; y] and u = ϕ(x), v = ϕ(y). If ϕ has a non-zero
kernel take an element a in the kernel of the smallest total degree possible.
Since both [x, a] and [y, a] are also in the kernel of ϕ and have smaller to-
tal degrees, a ∈ Z(A1) = F [xp, yp]. Therefore up and vp are algebraically
dependent and by Lemma on GK-dimension GKdim(F [up, vp]) ≤ 1 (recall
that up and vp commute). But GKdim(Z(B)) = GKdim(B) forB = F [u, v].
Indeed, B =

∑
uivjZ(B) where 0 ≤ i, j < p by Lemma on center. So

dN (B) ≤ p2dN
p

(Z(B)) and dN (B) ≥ dN
p

(Z(B)). We showed above that
GKdim(B) ≥ 2. So up and vp are algebraically independent and the kernel
of ϕ consists of zero only. �
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Theorem 2 cannot be extended to A2. Take z = x1 + yp−1
1 x2, y1, y2.

Then [z, y1] = 1, [z, y2] = yp−1
1 , and [zp, y2] = adp

z(y2) = adp−1
z (yp−1

1 ) = (p−
1)! = −1. For u1 = z+ zpyp−1

1 , v1 = y1; u2 = y2, v2 = zp the commutation
relations of A2 are satisfied. So φ which is defined by φ(xi) = ui and φ(yi) =
vi is a homomorphism of A2. If B = φ(A2) then B = F [u1, u2; v1, v2] =
F [z, y1, y2]. Hence up

1 ∈ Z(B) and up
1 ∈ Z(F [z, y1]) = F [zp, yp

1 ] since u1 ∈
F [z, y1]. But up

1 should commute with u2 = y2. Therefore up
1 ∈ F [zp2

, yp
1 ] =

F [vp
2 , v

p
1 ], up

1, v
p
1 , v

p
2 are algebraically dependent, and φ has a non-zero

kernel.
It is an exercise to check that GKdim(B) = 3. On the other hand,

GKdim(A2) = 4 since dN =
(
N+2n

2n

)
for An which gives GKdim(An) = 2n.

A question about possible GK-dimensions of images of An under homo-
morphisms seems reasonable in this setting because clearly the size of the
kernel is large when the size of the image is small. Say, GKdim(ϕ(An)) ≤ 2n
and if ϕ is an injection then GKdim(ϕ(An)) = 2n.

Theorem 3. GKdim(ϕ(An)) can be n + i where i = 1, 2, . . . , n for a
homomorphism ϕ of An into An.

Proof. Denote ϕ(An) by B and by ui = ϕ(xi), vi = ϕ(yi). It is
sufficient to show that GKdim(B) = n + 1 is possible for any n because
combining u1, . . . , um; v1, . . . , vm of an appropriate map of Am to Am with
xm+1, . . . , xn; ym+1, . . . , yn we will get an image of An of GK-dimension
m+ 1 + 2(n−m).

Now we shall find ϕ such that GKdim(B) = n+ 1.
Consider elements z0,0 = 0, zm,0 = xm − yp−1

m zm−1,0 for m = 1, . . . , n,
and zm,i = zpi

m,0. Then [zi,0, yi] = 1, [zi−k,0, yi] = 0 and [zi−k,0, xi] = 0
if k > 0, and [zi,0, zj,0] = 0. Therefore [zk,i, zm,j ] = 0. We can get a
relation between zi,j using equality (yx)p − yx = ypxp if [x, y] = 1 (ob-
serve that adyx = ad(yx)p). Take ymzm,0 = ymxm − yp

mzm−1,0. Then
the summands is the right side commute and (ymzm,0)p = (ymxm)p −
yp2

m zp
m−1,0. So zp

m,0 = y−p
m [(ymxm)p − yp2

m zp
m−1,0 − ymxm + yp

mzm−1,0] =

y−p
m [yp

mx
p
m − yp2

m zp
m−1,0 + yp

mzm−1,0] = zm−1,0 − yp(p−1)
m zp

m−1,0 + xp
m, i. e.

zm,1 = zm−1,0 − yp(p−1)
m zm−1,1 + xp

m. Since all summands in the right side
of this equality commute

zm,i+1 = zm−1,i − ypi+1(p−1)
m zm−1,i+1 + xpi+1

m

and

zm−1,i = zm,i+1 + ypi+1(p−1)
m zm−1,i+1 − xpi+1

m .
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Then by induction we can prove that

zm−1,i =
m−i−2∑

k=0

cm−1,i,kzm,i+1+k + cm−1,i

and that

zm−j,i =
m−i−j−1∑

k=0

cm−j,i,kzm,i+j+k + cm−j,i

where ci,j , ci,j,k ∈ Z(An). The sums are finite because zm,m ∈ Z(An)
(can be proved by induction on m starting with z0,0 = 0 since zm,m =
zm−1,m−1 − ypm(p−1)

m zm−1,m + xpm

m ).
Now we can show that all ci,j,k ∈ F [yp

1 , . . . , y
p
2 ].

Since [zm,i, yj ] = [zm−1,i−1, yj ] − ypi(p−1)
m [zm−1,i, yj ], we can deduce by

induction onm that [zm,i, yj ] is zero if j > m−i, one if j = m−i, and belongs
to F [yp

1 , . . . , y
p
n] if j < m− i. Since zm−j,i =

∑m−i−j−1
k=0 cm−j,i,kzm,i+j+k +

cm−j,i we have [zm−j,i, yl] =
∑m−i−j−1

k=0 cm−j,i,k[zm,i+j+k, yl]; this allows
using l = m− j − i, . . . , 1 to check that all cm−j,i,k ∈ F [yp

1 , . . . , y
p
n].

All these computations were done to confirm that

zm,0 =
m−1∑
k=0

dm,kzn,n−m+k + dm

where dm ∈ Z(An) and dm,k ∈ F [yp
1 , . . . , y

p
n].

Recall that xm = zm,0 + yp−1
m zm−1,0 and so

xm =
m−1∑
k=0

dm,kzn,n−m+k + dm + yp−1
m (

m−2∑
k=0

dm−1,kzn,n−m+1+k + dm−1).

Therefore

um = xm − dm − yp−1
m dm−1 ∈ B = F [y1, . . . , yn; zn,0].

Finally, u1, . . . , un; y1, . . . , yn define a homomorphism of An into B and
since any monomial in B can be written as yj1

1 . . . yjn
n zi

n,0 Theorem
is proved. �

By looking at ϕ(F [x1, . . . , xn]) it is possible to show that
GKdim(ϕ(An)) ≥ n. This and Theorem 2 suggest the following

Conjecture. GKdim(ϕ(An)) > n.
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