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Abstract. In 1979 Jouanolou showed that if the number of invariant
algebraic hypersurfaces of a polynomial vector field in Rn or Cn of

degree d is at least

�
d + n− 1

n

�
+ n, then the vector field has a

rational first integral. His proof used sophisticated tools of algebraic
geometry. We provide an easy and elementary proof of Jouanolou’s
result using linear algebra.

1. Introduction

Nonlinear ordinary differential equations appear in many branches of
applied mathematics, physics and, in general, in applied sciences. For a
differential system or a vector field defined in Rn or Cn the existence of a
first integral reduces the study of its dynamics in one dimension; of course
working with real or complex time, respectively. So a natural question is:
Given a vector field on Rn or Cn, how to recognize if this vector field has a
first integral? This question has no a satisfactory answer up to now. Many
different methods have been used for studying the existence of first integrals
of vector fields. Some of these methods based on: Noether symmetries [4],
the Darboux theory of integrability [7], the Lie symmetries [13], the Painlevé
analysis [2], the use of Lax pairs [11], the direct method [8] and [9], the linear
compatibility analysis method [14], the Carlemann embedding procedure [3]
and [1], the quasimonomial formalism [2], etc.

In this paper we shall study the existence of rational first integrals of a
polynomial vector field in Rn or Cn. The best answer to this question was
given by Jouanolou [10] in 1979 inside the Darboux theory of integrabil-
ity. This theory of integrability provides a link between the integrability of
polynomial vector fields and the number of invariant algebraic hypersurfaces
that they have.
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Darboux [7] showed how can be constructed a first integral of polynomial
vector fields in R2 or C2 possessing sufficient invariant algebraic curves. In
particular he proved that if a planar polynomial vector field in R2 or C2

of degree d has at least
(

d + 1
2

)
+ 1 invariant algebraic curves, then

it has a first integral, which can be computed using these invariant alge-
braic curves. Jouanolou [10] shows that if the number of invariant algebraic
curves of a planar polynomial vector field in R2 or C2 of degree d is at least(

d + 1
2

)
+ 2, then the vector field has a rational first integral, which also

can be computed using the invariant algebraic curves.
In fact the results of the previous paragraph for polynomial vector fields

in R2 or C2 extend to polynomial vector fields in Rn or Cn. Thus it is known
(see for instance [12]) that if a polynomial vector field of degree d in Rn or

Cn has at least
(

d + n− 1
n

)
+1 invariant algebraic hypersurfaces, then it

has a first integral, which can be computed using these invariant algebraic
hypersurfaces. Jouanolou [10] shows that if the number of invariant alge-
braic hypersurfaces of a polynomial vector field in Rn or Cn of degree d is at

least
(

d + n− 1
n

)
+ n, then the vector field has a rational first integral,

which again can be computed using these invariant algebraic hypersurfaces.
The proof of Jouanolou uses sophisticated techniques of algebraic geom-

etry. For polynomial vector fields in R2 or C2 an elementary proof of
Jouanolou’s result was given in [5, 6]. Up to now an easy proof of Jouanolou’s
result in Rn or Cn was not given. The goal of this paper is to provided such
elementary proof. Our proof is shorter, self–contained and only uses linear
algebra.

The paper is organized as follows. In Section 2 we provide the notation
and definitions, and we state the Jouanolou’s result. In Section 3 we work
with the notion of functionally independence and first integrals. Finally in
Section 4 we prove Jouanolou’s result.

2. Definitions and statement of the main result

Since any polynomial differential system in Rn can be thought as a poly-
nomial differential system inside Cn we shall work only in Cn. If our initial
differential system is in Rn, once we get a complex first integral of this sys-
tem thought inside Cn taking the square of the modulus of this complex
integral we have a real first integral. Moreover if that complex first integral
is rational, the real one defined as before also is rational. In short in the
rest of the paper we work all the time in Cn.
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As usual C[x] = C[x1, . . . , xn] denotes the ring of all complex polynomials
in the variables x1, . . . , xn. We consider the polynomial vector field in Cn

(1) X =
n∑

i=1

Pi(x1, . . . , xn)
∂

∂xi
, (x1, . . . , xn) ∈ Cn,

where Pi = Pi(x1, . . . , xn) ∈ C[x] for i = 1, . . . , n. The integer d =
max{degP1, . . ., degPn} is the degree of the vector field X . Usually for
simplicity the vector field X will be represented by (P1, . . . , Pn).

Let f = f(x) ∈ C[x]. We say that {f = 0} ⊂ Cn is an invariant algebraic
hypersurface of the vector field X if there exists a polynomial k ∈ C[x] such
that

Xf =
n∑

i=1

Pi
∂f

∂xi
= kf.

The polynomial k is called the cofactor of f = 0. Note that from this
definition the degree of k is at most d− 1, and also that if an orbit x(t) of
the vector field X has a point on {f = 0}, then the whole orbit is contained
in {f = 0}. This justifies the name of invariant algebraic hypersurface, it is
invariant by the flow of the vector field X .

Let D be an open subset of Cn having full Lebesgue measure in Cn. A
non–constant holomorphic function H : D → C is a first integral of the
polynomial vector field X on D if it is constant on all orbits x(t) of X
contained in D; i.e. H(x(t)) = constant for all values of t for which the
solution x(t) is defined and contained in D. Clearly H is a first integral of
X on D if and only if XH = 0 on D. Of course a rational first integral is a
first integral given by a rational function.

The Jouanolou’s result mentioned in the introduction can be stated as
follows.

Theorem 1. Let X be a polynomial vector field defined in Cn of degree

d > 0. Then X admits
(

d + n− 1
n

)
+ n irreducible invariant algebraic

hypersurfaces if and only if X has a rational first integral.

Under the assumptions of Theorem 1 all the orbits of the vector field X
are contained in invariant algebraic hypersurfaces.

3. Preliminary result

Assume that Hj(x) for j = 1, . . . , m are holomorphic first integrals of
system (1) defined in a full Lebesgue measurable subset D1 of Cn. For each
x ∈ D1 let r(x) be the rank of the m vectors ∇H1(x), . . . ,∇Hm(x) in Cn,
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where ∇Hk(x) denotes the gradient of the function Hk(x) with respect to
x.

We say that H1, . . . , Hm are functionally independent in D1 if r(x) = m
for all x ∈ D1 except possibly a subset of Lebesgue measure zero.

We say that H1, . . . ,Hm are k–functionally independent in D1 if there
exist k of these H1, . . . ,Hm which are functionally independent in D1, and
any k+1 elements of {H1, . . . , Hm} are not functionally independent in any
positive Lebesgue measurable subset of D1.

It is easy to check that if m first integrals H1, . . . , Hm of a polynomial
vector field in Cn are k–functionally independent then k ≤ n− 1.

Theorem 2. For k < m we assume that H1, . . . , Hm are k–functionally
independent first integrals of the polynomial vector field X given by (1).
Without loss of generality we can assume that H1, . . . , Hk are functionally
independent.

(a) For each s ∈ {k + 1, . . . , m} there exist holomorphic functions
Cs1(x), . . ., Csk(x) defined on a full Lebesgue measurable subset
of Cn such that

(2) ∇Hs(x) = Cs1(x)∇H1(x) + . . . + Csk(x)∇Hk(x).

(b) For every s ∈ {k +1, . . . , m} and j ∈ {1, . . . , k} the function Csj(x)
(if not a constant) is a first integral of system (1).

Proof. Let D1 be the full Lebesgue measurable subset of Cn where the first
integrals H1, . . . ,Hm are k–functionally independent.

From the assumptions there exists a full measurable subset D2 ⊂ D1

such that for each x ∈ D2, ∇H1(x), . . . ,∇Hk(x) are linearly independent
in Cn, and such that for each x ∈ D2, s ∈ {k + 1, . . . , m}, the vector
∇Hs(x) is linearly dependent on ∇H1(x), . . . ,∇Hk(x) in Cn. So there
exist functions Cs1(x), . . . , Csk(x) such that the equality (2) holds for every
x ∈ D2. These functions Cs1(x), . . . , Csk(x) defined on D2 can be expressed
in function of the ∇Hj ’s for j = 1, . . . , k, s using the Cramer’s rule. So
they are holomorphic in D2 because the functions H1, . . . , Hk and Hs are
holomorphic and the gradient vectors of the functions H1, . . . , Hk has rank
k. This proves statement (a).

The points x which appear in the following expressions are points of D2.
For any i, j ∈ {1, . . . , n} from (2) we have

∂Hs

∂xi
= Cs1(x)

∂H1

∂xi
+ . . . + Csk(x)

∂Hk

∂xi
,

∂Hs

∂xj
= Cs1(x)

∂H1

∂xj
+ . . . + Csk(x)

∂Hk

∂xj
.
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Derivating these two equations with respect to xj and xi respectively, and
subtracting the two resulting equations we get

(3)
∂Cs1

∂xi

∂H1

∂xj
− ∂Cs1

∂xj

∂H1

∂xi
+ . . . +

∂Csk

∂xi

∂Hk

∂xj
− ∂Csk

∂xj

∂Hk

∂xi
= 0.

Since k ≤ n− 1. We consider two cases. First we assume that k = n− 1.
From (3) we get

∑

1≤i<j≤n

((
∂Cs1

∂xi

∂H1

∂xj
− ∂Cs1

∂xj

∂H1

∂xi
+ . . . +

∂Csk

∂xi

∂Hk

∂xj
− ∂Csk

∂xj

∂Hk

∂xi

)
·

∑

σ(k1,k2...,kn−2)

(−1)τ(ijk1k2...,kn−2)
∂H2

∂xk1

∂H3

∂xk2

. . .
∂Hn−1

∂xkn−2


 = 0,

where σ is a permutation of {1, . . . , n} \ {i, j} and the second summation
is taken over all these possible permutations; τ evaluated on a permuta-
tion of {1, . . . , n} is the minimum number of transpositions for passing the
permutation to the identity. In fact this last equation can be written as

(4)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Cs1

∂x1

∂Cs1

∂x2
. . .

∂Cs1

∂xn

∂H1

∂x1

∂H1

∂x2
. . .

∂H1

∂xn
...

...
. . .

...
∂Hn−1

∂x1

∂Hn−1

∂x2
. . .

∂Hn−1

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

This equality follows from the following two facts
∑

1≤i<j≤n

(
∂Cs1

∂xi

∂H1

∂xj
− ∂Cs1

∂xj

∂H1

∂xi

)
×

∑

σ(k1,k2...,kn−2)

(−1)τ(ijk1k2...,kn−2)
∂H2

∂xk1

∂H3

∂xk2

. . .
∂Hn−1

∂xkn−2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Cs1

∂x1

∂Cs1

∂x2
. . .

∂Cs1

∂xn

∂H1

∂x1

∂H1

∂x2
. . .

∂H1

∂xn
...

...
. . .

...
∂Hn−1

∂x1

∂Hn−1

∂x2
. . .

∂Hn−1

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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and for l = 2, . . . , k

∑
1≤i<j≤n

(
∂Csl

∂xi

∂Hl

∂xj
− ∂Csl

∂xj

∂Hl

∂xi

)
×

∑
σ(k1,k2...,kn−2)

(−1)τ(ijk1k2...,kn−2)
∂H2

∂xk1

∂H3

∂xk2

. . .
∂Hn−1

∂xkn−2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Csl

∂x1

∂Csl

∂x2
. . .

∂Csl

∂xn

∂Hl

∂x1

∂Hl

∂x2
. . .

∂Hl

∂xn

∂H2

∂x1

∂H2

∂x2
. . .

∂H2

∂xn
...

...
. . .

...
∂Hn−1

∂x1

∂Hn−1

∂x2
. . .

∂Hn−1

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

From (4) we have that for each x ∈ D2 the vector ∇Cs1(x) belongs to the
n − 1 dimensional vectorial space generated by {∇H1(x), . . . ,∇Hn−1(x)},
denoted by Pn−1(x). By the definition of first integral we have that for all
x ∈ D2

∂Hj(x)
∂x1

P1(x) + . . . +
∂Hj(x)

∂xn
Pn(x) = 0, for j = 1, . . . , n− 1.

So for each x ∈ D2 the vector X (x) = (P1(x), . . . , Pn(x)) is orthogonal to
the n− 1 dimensional vectorial space Pn−1(x). Hence we have

∂Cs1(x)
∂x1

P1(x) + . . . +
∂Cs1(x)

∂xn
Pn(x) = 0, for all x ∈ D2.

This proves that the function Cs1 (if not a constant) is a first integral of
the vector field X defined on D2.

Similar arguments can verify that the functions Csj (if not constants),
j = 2, . . . , k, are also first integrals of X . Hence statement (b) is proved if
k = n− 1.

Now we suppose that k < n−1. Working in a similar way to the proof of
the case k = n − 1 and taking into account that the functions H1, . . . ,Hm

are k–functionally independent in D2, for any i1, . . . , ik+1 such that 1 ≤
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i1 < i2 < . . . < ik+1 ≤ n and for each x ∈ D2 we have that

(5)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Cs1

∂xi1

∂Cs1

∂xi2

. . .
∂Cs1

∂xik+1

∂H1

∂xi1

∂H1

∂xi2

. . .
∂H1

∂xik+1

...
...

. . .
...

∂Hk

∂xi1

∂Hk

∂xi2

. . .
∂Hk

∂xik+1

.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

This implies for all x ∈ D2 that ∇Cs1(x) belongs to the k-dimensional
vectorial space generated by {∇H1(x), . . . ,∇Hk(x)}, denoted by Pk(x).

On the other hand since the functions Hj(x) for j = 1, . . . , k are first
integrals of the vector field X , for each x ∈ D2 the vector X (x) is orthogonal
to the vectorial space Pk(x), and so X (x) is orthogonal to ∇Cs1(x). This
means that Cs1(x) is a first integral of the vector field X defined on D2.
Similar arguments show that Csj for j = 2, . . . , k are also first integrals of
system (1). This completes the proof of statement (b). ¤

4. Proof of Theorem 1

The “if” part of Theorem 1 is obvious. In what follows we shall prove
the “only if” part.

Let {fi(x) = 0} for i = 1, . . . ,

(
d + n− 1

n

)
+ n be invariant algebraic

hypersurfaces of the polynomial vector field X with the cofactor ki(x). Then
deg ki(x) ≤ d − 1. We note that each polynomial ki(x) is uniquely deter-
mined by its coefficients and so it is a vector of the vectorial space V formed
by all polynomials of C[x] of degree less than or equal to d − 1. It is easy

to check that N =
(

d + n− 1
n

)
is the dimension of the vectorial space V

over the field C.
Let p be the dimension of the vectorial subspace of V generated by

{k1(x), . . ., kN+n(x)}. Then we have p ≤ N . Now in order to simplify the
proof and the notation we shall assume that p = N and that k1(x),. . . , kN (x)
are linearly independent in V. If p < N the proof would follows exactly equal
using the same arguments.

For each s ∈ {1, . . . , n} there exists a vector (σs1, . . . , σsN , 1) ∈ CN+1

such that

(6) σs1k1(x) + . . . + σsNkN (x) + kN+s(x) = 0.
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From the definition of the invariant algebraic hypersurface {fi = 0} we get
that ki = Xfi/fi. Now equation (6) can be written as

X (log (fσs1
1 . . . fσsN

N fN+s)) = 0.

This means that the functions Hs = log (fσs1
1 . . . fσsN

N fN+s) for s = 1, . . . , n
are holomorphic first integrals of the vector field X , defined on a convenient
full Lebesgue measurable subset D3 of Cn.

We claim that the n first integrals Hi’s are functionally dependent on
any positive Lebesgue measurable subset of D3. Otherwise there exists a
positive Lebesgue measurable subset D4 of D3 where they are functionally
independent, then from the definition of first integral we have for i = 1, . . . , n

∂Hi(x)
∂x1

P1(x) + . . . +
∂Hi(x)

∂xn
Pn(x) = 0, for all x ∈ D4,

and from the functionally independence this last homogeneous linear system
of dimension n only has the trivial solution Pi(x) = 0 for i = 1, . . . , n on
D4, and consequently the vector field X ≡ 0 in Cn, in contradiction with
the fact that X has degree d > 0. So the claim is proved.

We define

r(x) = rank{∇H1(x), . . . ,∇Hn(x)} and m = max{r(x) : x ∈ D3}.
Then there exists an open subset O of D3 such that m = r(x) for each x ∈ O
and m < n. Without loss of generality we can assume that {∇H1(x), . . . ,
∇Hm(x)} has the rank m for all x ∈ O. Therefore, by Theorem 2(a) for
each x ∈ O there exist Ck1(x), . . . , Ckm(x) such that

(7) ∇Hk(x) = Ck1(x)∇H1(x)+ . . .+Ckm(x)∇Hm(x), k = m+1, . . . , n.

By Theorem 2(b) it follows that the function Ckj(x) (if not a constant) for
j ∈ {m + 1, . . . , n} is a first integral of the vector field X defined on O.

From the construction of Hi’s we know that each ∇Hi is a vector of
rational functions. Since the vectors {∇H1(x), . . . ,∇Hm(x)} are linearly
independent for each x ∈ O, solving system (7) we get a unique solution
(Ck1(x), . . . , Ckm(x)) on O for every k = m+1, . . . , n. Clearly each function
Ckj(x) for j ∈ {1, . . . ,m} is rational and by Theorem 2(b) it satisfies

∂Ckj

∂x1
P1 + . . . +

∂Ckj

∂xn
Pn = 0 on O.

Since O is an open subset of Cn and Ckj(x) is rational, it should satisfy
the last equation in Cn except possibly a subset of Lebesgue measure zero
where Ckj is not defined. Hence if some of the functions Ckj(x)’s is not a
constant, it is a rational first integral of the vector field X .
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Now we shall prove that some function Ckj is not a constant. Equation
(7) implies that if all functions Ck1, . . . , Ckm are constants, then Hk(x) =
Ck1H1(x)+. . . + CkmHm(x) + log Ck, where Ck is a constant. So we have
fσk1
1 . . . fσkN

N fN+k = Ck (fσ11
1 . . . fσ1N

N fN+1)
Ck1 . . . (fσm1

1 . . . fσmN

N fN+m)Ckm

for k ∈ {m + 1, . . . , n}. This is in contradiction with the fact that the poly-
nomials f1, . . . , fN+m are irreducible and pairwise different. Hence we must
have a non–constant function Ck0j0(x) for some j0 ∈ {1, . . . ,m} and some
k0 ∈ {m + 1, . . . , n}. This completes the proof of Theorem 1.

Acknowledgements

The first author is partially supported by a MCYT/FEDER grant num-
ber MTM 2005-06098-C02-01 and by a CICYT grant number 2005SGR
00550. The second author is partially supported by NNSF of China grant
10671123 and NCET of China grant 050391. He thanks the Centre de Re-
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Bellaterra, Barcelona, Catalonia, Spain

E-mail address: jllibre@mat.uab.cat

2 Department of Mathematics, Shanghai Jiaotong University, Shanghai,
200240, China

E-mail address: xzhang@sjtu.edu.cn


