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Abstract. We extend the theory of Quillen adjunctions by combin-
ing ideas of homotopical algebra and of enriched category theory. Our

results describe how the formulas for homotopy colimits of Bousfield

and Kan arise from general formulas describing the derived functor
of the weighted colimit functor.

1. Introduction

There are two classical formulas for the homotopy colimit of a diagram
of simplicial sets A : I→ SSet. The first formula arises by considering the
category SSet as equipped with Quillen’s model structure, for which Kan
complexes are the fibrant objects [26]. The homotopy colimit of A is then
expressed as the colimit

(1) lim
→

QProj(A) ,

where QProj(A) denotes the cofibrant replacement of A with respect to the
so-called projective model structure on the functor category [I, SSet]. This
is the model structure for which the weak equivalences and the fibrations are
defined as the natural transformations whose components are weak equiv-
alences and fibrations in SSet, respectively. The second formula, which
originates in [4], expresses the homotopy colimit of A as the coend

(2)
∫ i∈I

N(i ↓ I)op ×Ai ,

where N(− ↓ I)op : I → SSet is the functor that maps i ∈ I into the
nerve of the opposite of the coslice category i ↓ I. We refer to (1) as the
Quillen formula, and to (2) as the Bousfield-Kan formula for homotopy
colimits. The Quillen formula fits perfectly in the existing theory of Quillen

Date: January 25th, 2008.
2000 Mathematics Subject Classification. 18G55, 18D20, 55U35, 18G30.
Key words and phrases. Homotopy limits, weighted limits, simplicial model cat-

egories.

1



2 NICOLA GAMBINO

adjunctions. Indeed, it can be seen as an instance of the general formula
for the derived adjunction associated to a Quillen pair [18, § 1.3.2]. This is
because the projective model structure on [I, SSet] is such that the functor
sending a diagram to its colimit is a left Quillen functor. The Bousfield-
Kan formula, instead, does not seem to fit in the existing theory of Quillen
adjunctions.

Our aim here is to extend the theory of Quillen adjunctions so as to be
able to fit both the Quillen formula and the Bousfield-Kan formula within it.
We do so by working with simplicial model categories, that is to say SSet-
enriched categories equipped with a model structure that is suitably com-
patible with the model structure on SSet. Indeed, there are general forms
of both the Quillen and the Bousfield-Kan formula for simplicial model cat-
egories [17, Chapter 18], which we want to include within our development.
The key idea that allows us to achieve our goal is to consider not only the
limit notions that are familiar from ordinary category theory, but also the
more general limit notions known as weighted limits [22, Chapter 3]. Our
main results state that there are two ways of making the weighted colimit
functor into a left Quillen functor in two variables. These results allow us
to explain the presence of the two formulas discussed above. Indeed, the
existence of two ways of regarding the weighted colimit functor as a left
Quillen functor implies that there are two ways of computing its total left
derived functor. One leads to the Quillen formula, and the other to the
Bousfield-Kan formula.

Our approach differs fundamentally from that of [17, Chapter 18]. In [17,
Chapter 18], a general version of the Bousfield-Kan formula is assumed to
be the homotopy colimit of a diagram by definition [17, Definition 18.1.2].
Here, instead, we derive a general version of the Quillen and Bousfield-
Kan formula by combining our results with the general theory of derived
adjunctions in the enriched setting [13]. Furthermore, while weighted lim-
its are used only implicitly in [17, Chapter 18], they are treated here as
a fundamental concept. Our approach differs also from the one taken in
the literature on weighted limits in homotopy theory [3, 15], which does
not consider model structures. Here, as in [12], the combination of ideas
of enriched category theory and of homotopical algebra plays instead an
essential role. This is in a spirit similar to that of [28], which relates the
formulas for homotopy limits involving the bar construction [25] with the
abstract approach of homotopical categories [7].

Let us conclude these introductory remarks by recalling the central role
that simplicial categories play in modern homotopy theory. Dwyer and
Kan developed the theory simplicial localizations of model categories [9, 8,
10], which has been studied also in [24]. Toën and Vezzosi use simplicial
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categories for their development of homotopical algebraic geometry [30, 31].
Simplicial categories play an important role also in higher category theory.
Bergner established a model structure on the category SCat of simplicial
categories and simplicial functors [1]. By the results in [2, 21], this model
structure is Quillen equivalent to Joyal’s model structure on SSet, for which
quasi-categories are the fibrant objects [19, 23].

The standard reference for enriched category theory is Kelly’s book [22].
For the convenience of the reader, we will review the notion of a weighted
limit in the special case of simplicial categories. For the theory of model
categories, we refer to Hovey’s book [18]. For further information concerning
homotopy limits, the reader is invited to refer also to [4, 11, 14, 16, 32].
General approaches to homotopy limits are developed in [5] and [6, 27].

2. Simplicial model categories

We write SSet for the category of simplicial sets. The category SSet will
always be considered here as equipped with Quillen’s model structure [26],
which can be established not only using the geometric realization func-
tor [18, Chapter 3], but also in a purely combinatorial way [20]. Finite
products determine a monoidal structure on SSet that satisfies the axioms
for a monoidal model category [18, Proposition 4.28]. The internal function
space makes SSet into a monoidal closed category. For X, Y ∈ SSet, we
write SSet(X,Y ) for their internal function space.

By a simplicial category we mean a category enriched in SSet. If A and B
are objects of a simplicial category C, we write C(A, B) for the simplicial set
of maps from A to B. As a special case of the general concepts of enriched
category theory [22, §1.2], we obtain the notions of a simplicial functor and
of a simplicial natural transformations. These notions give rise to the 2-
category SCat of simplicial categories, simplicial functors, and simplicial
natural transformations. As a special case of [22, §1.3], each simplicial
category C has an associated underlying category, with the same objects
as C and with maps f : A → B given by the 0-simplices of C(A, B). The
function assigning to a simplicial category its underlying category extends to
a 2-functor SCat→ Cat, where Cat is the 2-category of small categories,
functors, and natural transformations. The category SSet can be regarded
as a simplicial category, with enrichment given by its internal function space.

We recall in Definition 2.1 below the notion of a simplicial model category.
For this, we need to introduce some notation. For a simplicial category C,
a pair of maps f : A → B and g : C → D in C determines the following



4 NICOLA GAMBINO

commutative diagram in SSet

C(B, C)
C(B,g) //

C(f,C)

��

C(B, D)

C(f,D)

��
C(A, C)

C(A,g)
// C(A, D) .

We write C(f, g) : C(B, C)→ C(A, D) for the common value of the compos-
ites of the diagram above. Since SSet has pullbacks, we obtain a canonical
map

[f, g] : C(B, C)→ C(A, C)×C(A,D) C(B, D) .

This map is used in the next definition.

Definition 2.1. A simplicial model structure on a simplicial category C
consists of a model structure on the underlying category of C such that
condition (∗) holds.

(∗) If f : A→ B is a cofibration and g : C → D is a fibration in C, then
the map [f, g] is a fibration in SSet which is also a weak equivalence
whenever either f or g is so.

A simplicial model category is a simplicial category that is equipped with a
simplicial model structure.

Definition 2.2 below exploits the fact that a simplicial adjunction be-
tween simplicial categories is mapped by the 2-functor SCat → Cat into
an adjunction of ordinary categories.

Definition 2.2. A simplicial Quillen adjunction between simplicial model
categories consists of a simplicial adjunction whose underlying adjunction
is a Quillen adjunction.

We will need also a counterpart of the notion of Quillen adjunction in two
variables [18, Definition 4.2.1] in the simplicially-enriched setting. For this,
recall from [22, § 1.4] that the 2-category SCat inherits a cartesian structure
from the category SSet. A simplicial functor of the form Φ : C×D→ E will
be referred to as a simplicial functor in two variables. Given a simplicial
functor Φ : C × D → E, for f : A → B in C and g : C → D in D we write
Φ(f, g) : Φ(A, C)→ Φ(B, D) for the common value of the composites in the
commutative diagram

Φ(A, C)
Φ(f,C) //

Φ(A,g)

��

Φ(B, C)

Φ(B,g)

��
Φ(A, D)

Φ(f,D)
// Φ(B, D) .
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When E has pushouts, the commutativity of the diagram determines a
canonical map

〈f, g〉 : Φ(A, D) tΦ(A,C) Φ(B, C)→ Φ(B, D) .

We use this map in the next definition.

Definition 2.3. Let C, D, E be simplicial categories whose underlying cat-
egories are equipped with model structures. A simplicial functor in two
variables Φ : C×D→ E is said to be a left Quillen functor in two variables
if the following conditions hold.

(i) Φ is cocontinuous in each variable.
(ii) If f : A → B is a cofibration in C and g : C → D is a cofibration

in D, then 〈f, g〉 is a cofibration in E, which is also a weak equivalence
whenever either f or g is so.

We say that a simplicial functor Φ : C × D → E is a right Quillen functor
in two variables if its dual Φop : Cop × Dop → Eop is a left Quillen functor
in two variables.

Our study of homotopy limits in simplicial model categories involves
examples of the general situation isolated in Definition 2.4 below. Recall
that a simplicial adjunction in two variables consists of simplicial functors

Φ : C× D→ E , Θ : Dop × E→ C , Ψ : Cop × E→ D ,

and simplicial natural isomorphisms, for C ∈ C, D ∈ D, and E ∈ E

C
(
C, Θ(D,E)

) ∼= E
(
Φ(C, D), E

) ∼= D
(
D, Ψ(C, E)

)
.

In these circumstances, Φ is a left adjoint in two variables, Ψ and Θ are right
adjoints in two variables. Enriched adjunctions in two variables have been
studied in connection to homotopy limits in [15]. The following definition is
the simplicially-enriched counterpart of the notion of a Quillen adjunction
in two variables [18, Definition 4.2.1].

Definition 2.4. A simplicial Quillen adjunction in two variables is a simpli-
cial adjunction in two variables (Φ, Θ, Ψ) such that the following equivalent
conditions hold:

(i) Φ : C× D→ E is left Quillen functor in two variables,
(ii) Θ : Dop × E→ C is right Quillen functor in two variables,

(iii) Ψ : Cop × E→ C is right Quillen functor in two variables.

We conclude this section by providing an example of Quillen adjunction
in two variables which is going to be useful in Section 3. The example
involves the notions of tensor and cotensor, which we recall from [22, §3.7].
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Let C be a simplicial category. Existence of tensors in C can be expressed
as the existence, for every A ∈ C, of a simplicial adjunction of the form

C
C(A,−)

⊥ // SSet .

(−)⊗Aoo

Here, the left adjoint maps X ∈ SSet into X⊗A, the X-tensor of A, which
is characterized by the existence of a simplicial natural isomorphism with
components

(3) C
(
X ⊗A, B

) ∼= SSet
(
X, C(A, B)

)
.

Cotensors are defined dually: to say that C has cotensors is to say that for
every B ∈ C there exists a simplicial adjunction of the form

Cop

C(−,B)

⊥ // SSet .

[− ,B]oo

The left adjoint maps X ∈ SSet into [X,B] ∈ C, X-cotensor of B, which
is characterized by the existence of a simplicial natural isomorphism with
components

(4) C
(
A, [X, B]

) ∼= SSet
(
X, C(A, B)

)
.

When C has both tensors and cotensors, we have a simplicial adjunction in
two variables involving the functors

Φ : SSet× C→ C , Φ(X, A) =def X ⊗A ,

Θ : Cop × C→ SSet , Θ(A, B) =def C(A, B) ,

Ψ : SSetop × C→ C , Ψ(X,B) =def [X, B] .

The following lemma is exploited repeatedly in Section 3.

Lemma 2.5. Let C be a simplicial category, and assume that its underlying
category is equipped with a model structure. If C is tensored and cotensored,
the following conditions are equivalent:

(i) the functor (−)⊗ (−) : SSet×C→ C is a left Quillen functor in two
variables,

(ii) the functor C(−,−) : Cop × C → SSet is a right Quillen functor in
two variables,

(iii) the functor [− ,−] : SSetop ×C→ C is a right Quillen functor in two
variables.

These conditions hold when C is a simplicial model category.
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Proof. The equivalence of the conditions is an instance of the equivalence
between the conditions in Definition 2.4. The very definition of a simplicial
model category, given in Definition 2.1, implies that condition (ii) holds. �

When regarded as a simplicial category, SSet admits both tensors and
cotensors, which are given by the cartesian product and the internal function
spaces, respectively. Again, this is a special case of a general fact in enriched
category theory [22, §3.7].

3. Homotopy limits

Let C be a simplicial category. For a small simplicial category I, we
write [I, C] for the simplicial category whose underlying category has sim-
plicial functors from I to C as objects and simplicial natural transformations
as maps. We often refer to functors A : I→ C as diagrams. If C is equipped
with a simplicial model structure, there are two possible simplicial model
structures on [I, C], which are generally referred to as the projective and
injective model structure. To define them, we need to introduce some ter-
minology. A simplicial natural transformation f : A → B is said to be
a pointwise weak equivalence if each of its components fi : Ai → Bi, for
i ∈ I, is a weak equivalence. The notions of a pointwise fibration and of
a pointwise cofibration are defined analogously. The lifting properties in
Definition 3.1 below always refer to commutative diagrams and fillers in the
underlying category of [I, C].

Definition 3.1. Let f : A→ B be a simplicial natural transformation.
(i) We say that f is a projective cofibration if it has the left lifting prop-

erty with respect to the simplicial natural transformations which are
pointwise acyclic fibrations.

(ii) We say that f is a injective fibration if it has the right lifting prop-
erty with respect to the simplicial natural transformations which are
pointwise acyclic cofibrations.

The projective model structure is defined as follows:

[I, C]Proj

 weak equivalences = pointwise weak equivalences,
fibrations = pointwise fibrations,
cofibrations = projective cofibrations.

The cofibrant objects of the projective model structure will be referred to
as the projectively cofibrant diagrams. We do not need to introduce special
terminology for the fibrant objects, since a diagram is fibrant in the pro-
jective model structure if and only if it is pointwise fibrant. The fibrant
and cofibrant replacement of a diagram A with respect to the projective
model structure will be denoted RProj(A) and QProj(A), respectively. Note
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that RProj(A) can be defined with the fibrant replacement of C. The injec-
tive model structure is defined dually, as follows:

[I, C]Inj

 weak equivalences = pointwise weak equivalences,
fibrations = injective fibrations,
cofibrations = pointwise cofibrations.

There is an evident notion of injectively fibrant diagram. The cofibrant
objects in the injective model structure are instead the pointwise cofibrant
diagrams. The fibrant and cofibrant replacements of a diagram A with
respect to the injective model structure are denoted RInj(A) and QInj(A),
respectively.

If C is SSet, the projective model structure was established by Quillen[26]
and the injective model by Heller [16]. A general statement on the existence
of projective and injective model structures on simplicial categories has been
proved by Lurie [23, Proposition A.3.3.3]. When they exist, the projec-
tive and the injective model category are Quillen equivalent [23, Propo-
sition A.3.3.8] and satisfy the axioms for a simplicial model category, as
a simple calculation shows. From now on, when we refer to these model
structures, we implicitly assume their existence. Indeed, our focus is not
on the conditions that ensure the existence of these model structures, but
rather on how their existence allows us to study the homotopical behaviour
of limit functors. Similarly, when we refer to limits and colimits, we tacitly
assume their existence.

Since simplicial categories are enriched categories, they admit not only
standard limit notions, but also notions of weighted limit, which we recall
briefly from [22, Chapter 3]. Since limits and colimits are dual notions, it
suffices to study one of them. We study colimits. When treating weighted
colimits, a weight is a functor X : Iop → SSet. Existence of weighted
colimits in a simplicial category C can be expressed as the existence, for
every diagram A, of a simplicial adjunction of the form

C
C(A(−),−)

// [Iop, SSet] .
(−)⊗IA

⊥
oo

The left adjoint sends a weight X to X ⊗I A, the X-weighted colimit of A,
which is characterized by the existence of a simplicial natural isomorphism
with components

(5) C(X ⊗I A, B) ∼= [Iop, SSet]
(
X(−), C(A(−), B)

)
.
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We think of X ⊗I A as an I-indexed tensor, with the isomorphism in (3)
being analogous to that in (5). Indeed, when I is the terminal simplicial cat-
egory 1, weighted colimits reduce to tensors. This point of view is supported
by the following formula [22, §3.10], which expresses weighted colimits in
terms of tensors and coends:

(6) X ⊗I A ∼=
∫ i∈I

Xi ⊗Ai .

When C is cotensored, the existence of X-weighed colimits is equivalent
to the existence of a simplicial adjunction of the form

C
[X(−),∆(−)]

// [I, C] .
X⊗I(−)

⊥
oo

Here, the right adjoint, which maps A ∈ C into the constant diagram send-
ing an object i ∈ I into the cotensor [Xi, A] ∈ C, should be understood as
a weighted analogue of the diagonal functor that participates in the famil-
iar adjunction that expresses existence of colimits in an ordinary category.
Let us also recall that, as a a special case of a general fact concerning
enriched categories [22, Theorem 3.73], a simplicial category has weighted
colimits if and only if it has tensors and its underlying category has colim-
its. Conversely, as shown in [22, §3.9], the colimit of a simplicial functor
A : I→ SSet can be expressed as a weighted colimit by the isomorphism

(7) lim
→

A ∼= 1⊗I A ,

where 1 : Iop → SSet denotes the weight with constant value the terminal
object of SSet.

If C admits cotensors and weighted colimits, the weighted colimit functor

(−)⊗I (−) : [Iop, SSet]× [I, C]→ C
is part of the simplicial adjunction in two variables which involves the fol-
lowing simplicial functors

Φ : [Iop, SSet]× [I, C]→ C , Φ(X, A) =def X ⊗I A ,(8)

Θ : [I, C]op × C→ [Iop, SSet] , Θ(A, B) =def C(A(−), B) ,(9)

Ψ : [Iop, SSet]op × C→ [I, C] , Ψ(X, B) =def [X(−), B] .(10)

Our main results, Theorem 3.2 and Theorem 3.3 below, show that there
are two choices of model structures that allow us to regard this simplicial
adjunction in two variables as a Quillen adjunction. In particular, there
will be two ways of regarding the weighted colimit functor as a left Quillen
functor in two variables. The proofs of Theorem 3.2 and Theorem 3.3 refer
to the functors Φ, Θ, Ψ defined in (8), (9), (10), respectively.
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Theorem 3.2. Let C be a simplicial model category. If we consider the
category of weights [Iop, SSet] as equipped with the injective model structure
and the category of diagrams [I, C] as equipped with the projective model
structure, then the weighted colimit functor is a left Quillen functor in two
variables.

Proof. We need to show that

Φ : [Iop, SSet]Inj × [I, C]Proj → C

is a left Quillen functor in two variables. Observe that the following equiv-
alent conditions hold:

(i) Φ : [Iop, SSet]Inj × [I, C]Proj → C is a left Quillen functor,
(ii) Θ : [I, C]op

Proj × C→ [Iop, SSet]Inj is a right Quillen functor,
(iii) Ψ : [Iop, SSet]op

Inj × C→ [I, C]Proj is a right Quillen functor.
The assumption that C is a simplicial model category and Lemma 2.5 imply
that the cotensor functor [−,−] : SSetop×C→ C is a right Quillen functor
in two variables. This implies that (iii) holds. �

There is a second choice of Quillen model structures that allows us to
make the weighted colimit functor into a left Quillen functor in two variables.

Theorem 3.3. Let C be a simplicial model category. If we consider the
category of weights [Iop, SSet] as equipped with the projective model struc-
ture and the category of diagrams [I, C] as equipped with the injective model
structure, then the weighted colimit functor is a left Quillen functor in two
variables.

Proof. We need to show that

Φ : [Iop, SSet]Proj × [I, C]Inj → C

is a left Quillen functor in two variables. The following conditions are
equivalent:

(i) Φ : [Iop, SSet]Proj × [I, C]Inj → C is a left Quillen functor,
(ii) Θ : [I, C]op

Inj × C→ [Iop, SSet]Proj is a right Quillen functor,
(iii) Ψ : [Iop, SSet]op

Proj × C→ [I, C]Inj is a right Quillen functor.

The claim in (ii) can be proved using that C(−,−) : Cop × C → SSet is a
right Quillen functor in two variables, analogously to the way Theorem 3.2
was proved. �

There are analogous results for weighted limits. These assert that there
are two ways of making the weighted limit functor into a right Quillen
functor in two variables. A first possibility is to consider both the category
of diagrams and the cateogory of weights as equipped with the injective
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model structure; a second possibility is to consider both the category of
diagrams and the category of weights as equipped with the projective model
structure.

4. Derived functors

Theorem 3.2 and Theorem 3.3 allow us to apply the theory of derived
functors in the enriched setting [13] and deduce the existence of the total
derived functor of the weighted colimit functor, and to provide explicit
expressions for it. Of course, there is also an analogous development for
homotopy limits, which we do not spell out for brevity.

We write Ho(SSet) for the homotopy category of SSet, and Ho(C) for the
homotopy category of a simplicial model category C, which is a Ho(SSet)-
enriched category by the results in [13, 18, 29]. Let us consider the total
left derived functor of the weighted limit functor

(−)⊗L
I (−) : Ho[Iop, SSet]×Ho[I, C]→ Ho(C) .

The existence of two ways of making the weighted colimit functor into a
left Quillen functor in two variables means that there are two different,
but equivalent, formulas to compute its total left derived functor. The first
formula arises by considering the choice of model structures in Theorem 3.2.
This gives the following expression for the left derived functor

(11) X ⊗L
I A = X ⊗I QProj(A) .

This formula is the result of a simplification from QInj(X) ⊗I QProj(A),
which would be the general formula for the derived functor. This simplifi-
cation is possible because to be cofibrant in the injective model structure
on [Iop, SSet] means to be pointwise cofibrant, which is satisfied by any
weight since every object is cofibrant in SSet [18, Proposition 3.2.2]. By
the formula in (7), the homotopy colimit functor

holim
−→

: Ho[I, C]→ Ho(C)

can be defined as mapping a diagram A into 1⊗L
I A, where 1 : Iop → SSet

denotes the weight with constant value the terminal object of SSet. By (7)
and (11), we obtain the following formula for homotopy colimits

holim
−→

(A) ∼= lim
→

QProj(A) .

This is a generalized version of the Quillen formula in (1). Indeed, it arises
also by considering the projective model structure on the category [I, C],
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so that the colimit functor becomes a left Quillen functor in the familiar
adjunction

C
∆

// [I, C] .

lim
→

⊥
oo

The second formula arises by considering the choice of model structures
given in Theorem 3.3. This gives the following expression for homotopy
colimits

(12) X ⊗L
I A = QProj(X)⊗I QInj(A) .

If X is the constant weight 1 : Iop → SSet, we have

(13) holim
−→

(A) = QProj(1)⊗I QInj(A) .

This is a generalized version of the Bousfield-Kan formula in (2). We ex-
pand the formula (13) in two steps. First, we express the weighted colimit
in (13) as a coend using the formula in (6). Secondly, we exploit [17, Propo-
sition 14.8.8] and consider the functor N(− ↓ I)op : Iop → SSet, defined in
Section 1, as the projective cofibrant replacement for the constant weight
1 : Iop → SSet. We obtain

(14) holim
−→

(A) ∼=
∫ i∈I

N(i ↓ I)op ⊗
(
QInj(A)

)
i
.

When A is pointwise cofibrant, it is cofibrant in the injective model struc-
ture, and therefore we have

(15) holim
−→

(A) ∼=
∫ i∈I

N(i ↓ I)op ⊗Ai .

The formula in (15) coincides with the definition of the homotopy colimit
given in [17, Definition 18.1.2] and [17, Example 18.3.6]. In [17, Defini-
tion 18.1.2], however, the formula in (15) is assumed to be the definition of
the homotopy colimit also when the diagram A does not satisfy the hypoth-
esis of being pointwise cofibrant. To obtain the formula in (2), it suffices
to consider (14) in the special case of C = SSet. In this situation, the re-
quirement that A is pointwise cofibrant is always satisfied [18, Proposition
3.2.2], so that we reduce to (15). Finally, since C = SSet, the tensor in (15)
becomes the cartesian product, so that (2) is indeed a special case of (13).
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[30] B. Toën and G. Vezzosi. Homotopical algebraic geometry I: topos theory. Advances
in Mathematics, 193 (2005), 257–372.
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