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TAME GEOMETRY

ARIS DANIILIDIS AND C. H. JEFFREY PANG

ABSTRACT. Continuity of set-valued maps is hereby revisited: afésatling some
basic concepts of variational analysis and a short degmmipf the State-of-the-Art,
we obtain as by-product two Sard type results concerningl lodnima of scalar
and vector valued functions. Our main result though, isribsd in the frame-
work of tame geometry, stating that a closed-valued semlalic set-valued map
is almost everywhere continuous (in both topological anésnes-theoretic sense).
The result —depending on stratification techniques— haigs in a more general
setting of o-minimal (or tame) set-valued maps. Some aaiidins are briefly
discussed at the end.
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1. INTRODUCTION

We say thatSis a set-valued magwe also use the terrmultivalued functioror
simply multifunction) from X to Y, denoted bys: X =2 Y, if for everyx € X, S(x) is
a subset off. All single-valued maps in classical analysis can be seesesgalued
maps, while many problems in applied mathematics are deégan nature. For in-
stance, problems of stability (parametric optimizationyl aontrollability are often
best treated with set-valued maps, while gradients ofdfitiable) functions, tan-
gents and normals of sets (with a structure of differenéiabhnifold) have natural
set-valued generalizations in the nonsmooth case, by n&averiational analysis
techniques. The inclusiope S(x) is the heart of modern variational analysis. We
refer the reader to [1, 22] for more details.

Continuity properties of set-valued maps are crucial in yregpplications. A typi-
cal set-valued map arising from some construction or vanat problem will not be
continuous. Nonetheless, one often expects a kind of sernmeoty (inner or outer)
to hold. (We refer to Section 2 for relevant definitions.)

A standard application of a Baire argument entails thatedeslued set-valued
maps are generically continuous, provided they are eitivegri or outer semicontin-
uous. Recalling briefly these results, as well as other qusagf continuity for set-
valued maps, we illustrate their sharpness by means of ppate examples. We also
mention an interesting consequence of these results byliskiag a Sard-type result
for the image of local minima.

Moving forward, we limit ourselves to semialgebraic mapsg§Bor more gener-
ally, to maps whose graph is a definable set in some o-mininadtare [11, 9]. This
setting aims at eliminating most pathologies that pervadgyais which, aside from
their indisputable theoretical interest, do not appear osinpractical applications.
The definition of a definable set might appear reluctant afiteesight (in particu-
lar for researchers in applied mathematics), but it deteesha large class of objects
(sets, functions, maps) encompassing for instance thekmweWn class of semialge-
braic sets [3, 8], that is, the class of Boolean combinatmfrsubsets ofR" defined
by finite polynomials and inequalities. All these classeg®gan important stability
property —in the case of semialgebraic sets this is expddsgéhe Tarski-Seidenberg
(or quantifier elimination) principle— and share the impottproperty of stratifica-
tion: every definable set (so in particular, every semialgielset) can be written as
a disjoint union of smooth manifolds which fit each other ireguiar way (see The-
orem 21 for a precise statement). This tame behaviour has dlesady exploited
in various ways in variational analysis, see for instangdd@nvergence of proximal
algorithm), [4] (Lojasiewicz gradient inequality), [5]dsismoothness), [14] (Sard-
Smale type result for critical values) or [15] for a recentvey of what is nowadays
calledtame optimization.

The main result of this work is to establish that every segailataic (more generally,
definable) closed-valued set-valued map is genericallyimoous. Let us point out
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that in this semialgebraic context, genericity impliest thassible failures can only
arise in a set of lower dimension, and thus is equivalent ¢onieasure-theoretical
notion of almost-everywherésee Proposition 23 for a precise statement). The proof
uses properties of stratification, some technical lemmagoétional analysis and a
recent result of loffe [14].

The paper is organized as follows. In Section 2 we recalldastions of variational
analysis and revisit results on the continuity of set-vdlo@ps. As by-product of our
development we obtain, in Section 3 two Sard-type resuitsfitst one concerns min-
imum values of (scalar) functions, while the second one eor Pareto minimum
values of set-valued maps. We also grind our tools by adg e Mordukhovich cri-
terion to set-valued maps with domain a smooth submanifvlof R". In Section 4
we move into the semialgebraic case. Adapting a recenttr@dolffe [14, Theorem 7]
to our needs, we prove an intermediate result concerningrgestrict continuity of
set-valued maps with a closed semialgebraic graph. Thiatingthe failure of conti-
nuity of the mapping with the failure of its trace on a stratirits graph, and using two
technical lemmas we establish our main result. Section fagmsome applications
of the main result.

Notation. DenoteB" (x, d) to be the closed ball of centgrand radiug in R", and
S"=1(x,r) to be the sphere of centeand radiug in R". When there is no confusion
of the dimensions oB" (x,r) andS"~1(x,r), we omit the superscript. The unit ball
B(0,1) is denoted byB. We denote by, the neutral element dk". As before, if
there is no confusion on the dimension we shall omit the syliisciven a subseh
of R" we denote by dlA), int(A) anddA respectively, its topological closure, interior
and boundary. FolA;, A> € R" andr € R we set

AL +rAy ={ag+raz:a; € Ag,ap € Ap}.
We recall that the Hausdorff distanég A1, Az) between two bounded subséts A,
of R" is defined as the infimum of afl > 0 such that both inclusion; C A, + 0B
andA, C A1+ 0B hold (see [22, Section 9C] for example). Finally, we dengte b
Graph(S) = {(x,y) e XxY :y€ S(x)},
the graph of the set-valued m& X = Y.

2. BASIC NOTIONS IN SEFVALUED ANALYSIS

In this section we recall the definitions of continuity (autener, strict) for set-
valued maps, and other related notions from variationalyaiza We refer to [1, 22]
for more detalils.

2.1. Continuity concepts for set-valued maps.We start this section by recalling the
definitions of continuity for set-valued maps.

(Kuratowski limits of sequences)We first recall basic notions about (Kuratowski)
limits of sets. Given a sequené€, }, . of subsets oR" we define:
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e the outer limit limsup,_,Cy, as the set of all accumulation points of
sequencesxy }yeny C R™ with x, € Cy, for all v € N. In other wordsx €
limsup,_,.Cy if and only if for everye > 0 andN > 1 there existy > N with
CyNB(x,€) #0;

e theinner limitliminf,_.., Cy, as the set of all limits of sequencps, }yen C R"
with x, € C, for all v € N. In other wordsx € liminf,_.. C, if and only if for
everye > 0 there exist® € N such that for al > N we haveC, NB(x, &) # 0.

Furthermore, we say that thienit of the sequenc¢C, }, . exists if the outer and
inner limit sets are equal. In this case we write:
lim C, :=limsupC, = I|m|nfCV
V—eo V—o00
(Outer/inner continuity of a set-valued map) Given a set-valued mas:
R" = R™M, we define the outer (respectively, inner) limit®atx € R" as the union of
all upper limits limsup_, S(xy,) (respectively, intersection of all lower limits
liminf,_. S(xy)) over all sequence§ },, .y converging tax. In other words:

limsupS(x) := | J limsupS(x,)  and liminfS(x = liminf S(x,).

X=X Xy—X VT Xy—X

We are now ready to recall the following definition.

Definition 1. [22, Definition 5.4] A set-valued map: R" = R™M is calledouter semi-
continuousat X if
limsupS(x) C S(x) ,
X—X
or equivalently, limsup .+ S(x) = S(x), andinner semicontinuouat X if

Ii&nigf S(x) D S(x),

or equivalently whersis closed-valued, liminf.xS(x) = S(X). Itis calledcontinuous
atxif both conditions hold, i.e., i§(x) — S(x) asx — x.

If these terms are invoked relative Xg a subset oR" containingx, then the prop-
erties hold in restriction to convergence- x with x € X (in which case the sequences
Xy — X in the limit formulations are required to lie X).

Notice that every outer semicontinuous set-valued maplbasd values. In partic-
ular, it is well known that
e Sis outer semicontinuous if and only$has a closed graph.

WhenSis a single-valued function, both outer and inner semiciitly reduce to
the standard notion of continuity. The standard example®htapping

0 if xisrational
(2.1) S(x) := e
1 if xisirrational
shows that it is possible for a set-valued map to be nowheter and nowhere inner
semicontinuous. Nonetheless, the following genericiguteholds. (We recall that a
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set isnowhere denst its closure has empty interior, amdeagerif it is the union of
countably many sets that are nowhere deng€)The following result appears in [22,
Theorem 5.55] and [1, Theorem 1.4.13] and is attributed 7o 71 24]. The domain
of Sbelow can be taken to be a complete metric space, while tlgerean be taken
to be a complete separable metric space, but we shall ortiytharesult in the finite
dimensional case.

Theorem 2. Let XC R"and S R" = R™ be a closed-valued set-valued map. Assume
S is either outer semicontinuous or inner semicontinuolagive to X. Then the set of
points xe X where S fails to be continuous relative to X is meager in X.

The following example shows the sharpness of the resulteifm@ve to incomplete
spaces.

Example 3. Let coo(N) denote the vector space of all real sequences{xn}ncn

with finite support supfx) := {i € N : x; # 0}. Then the operato®; (X) = supfx)

is everywhere inner semicontinuous and nowhere outer senncious, while the
operatorS(x) = Z \ Si(x) is everywhere outer semicontinuous and nowhere inner
semicontinuous. O

(Strict continuity of set-valued maps) A stronger concept of continuity for set-
valued maps is that ddtrict continuity[22, Definition 9.28], which is equivalent to
Lipschitz continuity when the map is single-valued. Forssdtied map$: R" = R™
with bounded values, strict continuity is quantified by treuddorff distance. Namely,
a set-valued magis strictly continuous ax (relative toX) if the quantity

. . @ X , X/
lipyS(X) := limsup %
X,X/—>)?
X # X

is bounded. In the general case (that is, wBenmaps to unbounded sets), we say that
Sis strictly continuous, whenever the truncated rfapR" = R™ defined by

S (X):=S(x)NrB,
is Lipschitz continuous for eveny> 0.
2.2. Normal cones, coderivatives and the Aubin property.Before we consider other
concepts of continuity of set-valued maps we need to reoatkesbasic concepts from

variational analysis. We first recall the definition of theddenard and limiting normal
cones.

Definition 4. (Normal cones) [22, Definition 6.3] For a closed Bet R" and a point
z e D, we recall that thedadamard normal condlp (z) and thelimiting normal cone
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Np (2) are defined by
Np (Z) :={v| (v,z—2) <o(|z—Z) forze D},
Np (2) := {v| 3{z,vi}, C GraphNp), v; — vandz — z}
= limsupNp (2)..

z—2,zeD

WhenD is a smooth manifold, both notions of normal cone coincide define the
same subspace &". A dual concept to the normal cone is ttaagent cone g (2).
While tangent cones can be defined for nonsmooth sets, olneuseshall be restricted
only to tangent cones of manifolds, that is, tangent spacése sense of differential

geometry, in which cas® (Z) = (Np (2))*.

As is well-known, the generalization of the adjoint of a Bmeperator for set-valued
maps is derived from the normal cones of its graph.

Definition 5. (Coderivatives) [22, Definition 8.33] FdF: R" = R™ and (x,y) €
Graph(F), thelimiting coderivative DF (>?| _) : RM= R"is defined by
X\Y) {X ‘ 6NGrap}‘(F XV)}

It is clear from the definitions that the coderivative is aipesly homogeneous map,
which can be measured with the outer norm below.

Definition 6. [22, Section 9D] Theuter norm|-|* of a positively homogeneous map
H: R"= RMis defined by

H|":= sup sup|Z= sup{H | (W,2) € Graph(H)}.
WeBN(0,1) zeH (w) wi

(Aubin property and Mordukhovich criterion) We now recall the Aubin Property
and the graphical modulus, which are important to studyllbgaschitz continuity
properties of a set-valued map.

Definition 7. (Aubin property and graphical modulus) [22, Definition 9.26map
S: R" = R™ has theAubin property relative to X ax for u, wherex € X ¢ R" and
ue S(x), if Graph(S) is locally closed atx, u) and there are neighborhoddf x and
W of u, and a constark € R, such that

S(X) NW C S(x +K]x’ x]IB%foraIIxx’eXﬂV

This condition withV in place ofX NV is simply theAubin property atx for u. The
graphical modulus of S relative to X atfor uis then

lipy S(x| u) :=inf{k | 3 neighborhood¥ of xandW of us.t.
S(X)NW C S(x) + K |X —x| B for all x,X € XNV }.

In the case wher® = R", the subscripX is omitted.
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The following result (known as Mordukhovich criterion [ZBheorem 9.40]) char-
acterizes the Aubin property by means of the correspondidgrivative. (For a primal
characterization using the graphical derivative see [h2ofem 1.2].)

Proposition 8 (Mordukhovich criterion) Let S: R" = R™ be a set-valued map whose
graphGraph(S) is locally closed atx,u) € Graph(S). Then S has the Aubin property
at x with respect tou if and only if D'S(x | u)(0) = {0} or equivalently
ID*S(x| U)|* < oo. In this caselip S(X| u) = |D*S(x| u)| ™.

Using the above criterion we show that an everywhere coatiastrictly increasing
single-valued map from the reals to the reals could be nasvhi@schitz continuous.

Example 9. Let A C R be a measurable set with the property that for eeebyc R,

a < b, the Lebesgue measure Af (a,b) satisfies 0< m(An[a,b]) < |b—al. Con-
sider the functionf: [0,1] — R defined byf (x) = m(AN(0,x)). Note that the de-
rivative ' (x) exists almost everywhere and is equakix), the characteristic func-
tion of A (equal to 1 ifx € A and 0 if not). This means that every poit [0, 1]

is arbitrarily close to a poink where f’ (x) is well-defined and equals zero. Thus
(0,1) € Ngrapi(1) (%, f(X)). The functionf is strictly increasing and continuous, so it
has a continuous invergg [0, f (1)] — [0,1]. Applying the Mordukhovich criterion
(Proposition 8) we obtain thatdoes not have the Aubin property &tx). It follows
thatg is not strictly continuous at (x) and in fact neither is so at aiye [0, f (1)]. O

3. PRELIMINARY RESULTS IN VARIATIONAL ANALYSIS

In this section we establish a Sard type result for the imdgleeoset of local min-
ima (respectively, local Pareto minima) in case of singédu®d scalar (respectively,
vector—valued) functions. We also obtain several auxilrasults that will be used in
Section 4.

3.1. Sard result for local (Pareto) minima. In this subsection we use simple proper-
ties on the continuity of set-valued maps to obtain a Sard tggult for local minima
for both scalar and vector-valued functions. Let us reball & (single-valued) function
f: X — R is calledlower semicontinuous atif

liminf f(x) > ().

The functionf is calledlower semicontinuoysf it is lower semicontinuous at every
x € X. It is well-known that a functionf is lower semicontinuous if and only if its
sublevel sets

[f <r]l:={xeX:f(x)<r}
are closed for ali € R.

Proposition 10(Sublevel map)Let D be a closed subset of a complete metric space
X and f: D — R be a lower semicontinuous function. Then the (sublevelaeted
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map
Li:R=D
Lt (r)=[f <rJuodD
is outer semicontinuous. Moreovey, Is continuous at € f (D) if and only if there is
no x€ int(D) such that f(x) =r and x is a local minimizer of f.

Proof. The mapL; : R = D defined byL; (r) = f~1((—e,r]) is outer semicontinuous
sincef is lower semicontinuous (see [22, Example 5.5] for examgie). s is easily
seen to be outer semicontinuous.

We now prove thak ¢ is inner semicontinuous atunder the additional conditions
mentioned in the statement. For any— r, we want to show that ik € L¢ (r), then
there existx; — x such thatg € Lt (ri). We can assume thdt(x) = r andr; < r for
all i, otherwise we can take = x for i large enough. Sinceis not a local minimum,
for any € > 0, there exist® > 0 such that iffr —r;| < J, there exists ai; such that
f(x)<rjand|x —X] < €.

For the converse, assume now thatis inner semicontinuous at Then taking
ri /' 1 we obtain that for everyx € int(D) N f~1(r), there existsq € f~1(rj) with
Xi — X. Sincef (x;) =rj <r = f (x), xcannot be a local minimum. O

According to the above result, ffhas no local minima, then the set-valued nap
is continuous everywhere. The above result has the follgwiteresting consequence.

Corollary 11 (Local minimum values)Let M; denote the set of local minima of a
lower semicontinuous function: D — R (where D is a closed subset of a complete
space X). Then the setNls Nint(D)) is meager inR.

Proof. Since the set-valued méayp (defined in Proposition 10) is outer semicontinuous
(with closed-values), it is generically continuous by Tieso 2. The second part of
Proposition 10 yields the result dn O

It is interesting to compare the above result with the ctadssard theorem. We
recall that the Sard theorem asserts that the image ofarjpigints (derivative not
surjective) of &CX function f : R" — R™ is of measure zero providéd> n—m. (See
[23]; the casen= 1 is known as the Sard-Brown theorem [6].) Corollary 11 dsser
the topological sparsity of the (smaller) set of minimumuea for scalar functions
(m= 1), without assuming anything but lower semicontinuitydammpleteness of
the domain).

We shall now extend Corollary 11 in the vectorial case. Waliébat a seK ¢ R™
isacone if AK C K for all A > 0. A coneK is calledpointedif KN (—K) = {Omn}
(or equivalently, ifK contains no full lines). It is well-known that there is a diseene
correspondence between pointed convex conés'odind partial orderings ifR™. In
particular, given such a coeof R™we sety; <k Y2 ifand only ify, —y; € K (see for
example, [22, Section 3E]). Further, given a set-valued 81dR" = R™ we say that
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e xis a(local) Pareto minimunof Swith (local) Pareto minimum valugif there
is a neighborhood) of x such that ifx € U andy € S(x), theny £k v, i.e.,
SU)N(y—K)=y.
ForS: R" = R™, define the mays : R" = R™ by S (x) = S(x) + K. The graph
of & is also known as thepigraph [13, 16] of S. One easily checks thgte S¢ (x)
impliesy+K C S (x). Here is our result on local Pareto minimum values.

Proposition 12 (Pareto minimum values) et S: R" = R™ be an outer semicontinu-
ous map such thaty S(x) implies y+ K C S(x) (thatis, S= S). Then the set of local
Pareto minimum values is meager.

Proof. SinceSis outer semicontinuous, thedT? is outer semicontinuous as well by
[22, Theorem 5.7(a)], s& 1 is generically continuous by Theorem 2. Supposeyhat —
is a local Pareto minimum of a local Pareto minimizer

By the definition of local Pareto minimum, there is a neigltomdU of x such
that if y <x y andy #y, thenS™1(y)nU = 0. (We can assume thgtis arbitrarily
close toy sinceS™t(y) c S t(Ay+(1—-A)y) for all 0 < A < 1.) Thereforex¢
liminfy_yS 1(y). In other words S~ is not continuous ay. Therefore, the set of
local Pareto minimum values is meager. O

We show how the above result compares to critical point tesukt us recall from
[14] the definition of critical points of a set-valued map. véh a metric spacX
(equipped with a distance) we denote byB,(x,A) the set of allX € X such that
p(xX) <A.

Definition 13. Let (X, p1) and(Y, p2) be metric spaces, and I8t X =Y. For(x,y) €
Graph(S), we set

SurS(x | y) (A) =sup{r > 0| Bp,(y,r) C S(Bp,(x,A)}
and then for(x,y) € Graph(S) define therate of surjectiorof Sat (x,y) by

_ 1
surS(x|y)=  liminf  —SurS(x A).
()= liminf >SurS(x|y)(A)
We say thaSis critical at (x,y) € Graph(S) if surS(x|y) = 0, and regular otherwise.
Also, y is a(proper) critical valueof Sif there existsx such thaty € S(x) andSis
critical at(x,y).

This definition of critical values characterizes the valaewhich metric regularity
is absent. In the particular case wh&eR" — R™ is a %! function, critical points
correspond exactly to where the Jacobian has rank lesstthakle refer to [14] for
more details.

One easily sees that yfis a Pareto minimum value @, then there existg € X
such that(x,y) € Graph(S), and SuiS(x | y) (A) = 0 for all smallA > 0. This readily
implies thaty is a critical value.
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3.2. Extending the Mordukhovich criterion and a critical value r esult. The two
results of this subsection are important ingredients offéméhcoming proof of our
main theorem. The first result we need is an adaptation of thkelivkhovich criterion
(Proposition 8) to the case where the domain of a set-valuedibnSis (included

in) a smooth submanifol®™ of R". (Note that this new statement recovers the Mor-
dukhovich criterion if2" = R".)

Proposition 14. (Extended Mordukhovich criterion) Le?” ¢ R" be a%* smooth
submanifold of dimension d and &~ = R™ be a set-valued map whose graph is
locally closed atx,y) € Graph(S). Consider the mapping

{ H: RM=R"
H(y") =D*S(x|y) (y) N Ta (X).

If H (Om) = {On}, or equivalently

Naraprs) (X,¥) N (T2 (X) X {Om}) = {Onym},
then S has the Aubin propertyxafory relative to.2". Furthermore,

: _ u _

ip - S(%17) = IHI" = sup{ 12 (1) € Nerprs (X571 (T (R xR }.
Proof. Fix (x,y) € Graph(S) and denote by (x) the normal space o™ atx (seing
as subspace ®&", that is, Ty (X) © Nz (X) = R"). Given a closed neighborhottof
(x,¥), we define the function

S:R"= RM
{ Graph(S) = (Graph(S) NU) + (N~ (X) x {Om}).

Shrinking the neighborhootl around (x,y) if necessary, we may assume that
every(x,y) € U can be represented uniquely as a sum of elemernt&ink R™)n U
andNgy (X) x {Om}. Since GrapliS) is locally closed, we can chookesmall enough
so that GrapkS) NU is closed. Further, since Gra(é) is homeomorphic to

(Graph(S)nU) x R"9, itis also closed.

Step 1: (RelatingSto H) By applying a result on the normal cones under set ad-
dition [22, Exercise 6.44], we ha‘mt;rapr(é) (XY) C Naraprg) (%) N (T2 (X) x R™).

To prove the reverse inclusion, note that for every) € Graph(é) near(x,y) with
(X,¥) = (X1,Y) + (X2,0m), where(xs,y) € Graph(S) andx, € N4 (X), one easily sees
thatNGrapr(é) (%.Y) D Naraprs) (X1,Y) N (T2 (X) x R™). The extension of this inclusion
to limiting normal cones is immediate. Therefore we obtain

NGrapr(é) (xy) = NGrapr(S) (X,Y) N (Ta (X) x Rm) )
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~

and saD*S(x | y) equals the set-valued mépdescribed in the statement. Thus

D'S(R|9)(On) = {X'| (<',0n) € Norapeg) (<5}
= {X* | (X*,Om) € NGrapr(S) (Zyj N (T% (i) X Rm)}
— {On} )

and by the Mordukhovich criterion, the m&has the Aubin property atfor y.

Taking neighborhood¥ of X andW of y so thatS(x) "W = S(x) "W for all x €
VN .2, we deduce thab has the Aubin property atfor y relative to.2™ as asserted.

Step 2: (ip ,-S(X| y) = |H|") The Mordukhovich criterion o yields

HI" =lipS(x|y) > lip - S(X| Y) -

Our task is thus to prove that the above inequality is acgtuafl equality. Since
lipS(x|y) = [H|*, for anyk < |H|" and neighborhood¥ of X andW of y, there
existxy,xo € V such that

S(x2) "W ¢ S(xq) + K |x1 — X2| B.

Note thatS(x;) = S(P (1)), S(x2) = S(P(x2)) and|P (x1) — P (x2)| < |X1 — X2|, where
P stands for the projection dk" onto x+ T4 (X). We may choos& to be a ball
containingx, and define the projection parametrization (x+ Ty (X)) NV — 2~ of
the manifold2™ by the relatiorx — L (X) € N4 (x). ShrinkingV if needed, the map
becomes single-valued and smooth (in fact, it is a localtabfafz”™ at x provided we
identify x+ T4 (X) with RY). Furthermorel has Lipschitz constant 1 at Therefore,
for any € > 0, we can reduc¥ as needed so that is Lipschitz continuous in its
domain with Lipschitz constant at mogt + €) using standard arguments.g. [22,
Thms 9.7, 9.2]). This means that

S(L (%)) MW = S(x2) "W ¢ S(x1) + K [x1 —X2| B = S(L (X1)) + K |X1 — X2| B.

By the Lipschitz continuity oL, we have|L (x1) —L (x2)| < (1+ €) [x1 — X2|, which

gives

S(L(x2)) "W Z S(L (x2)) +

K
<1—|—8) |L(X1)_L(X2>|B7

yielding

K . —
— < .
L <lipS(X9)
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Sincek ande are arbitrary, we conclude thid | = lip ,-S(X | y) as asserted.
The proof is complete. O

The second result is an adaptation of part of [14, TheoremR&call that for a
smooth functionf: R" — R™, x € R" is a critical point if the derivativef (X) is
not surjective, whiley € R™ is acritical value if there is a critical poini for which
f (X) =y. (Note thisis a particular case of the general definitioegiv Definition 13.)

Lemma 15. Let 2" be a#* smooth manifold ifR" of dimension d, and# be a%*
manifold inR™™M such that#Z c 2" x R™, with k> dim.# —dim.2". Then the set
of points xe 2" such that there exists some y satisfyirngy) € .# and N, (x,y) N
(T2 (X) X {Om}) 2 {On+m} is of Lebesgue measure zerodh.

Proof. Let Proj, denote the restriction to the manifoldZ of the projection of
2 xRMonto 2. As k> dim.Z —dim.2", the set of critical values of Prgj is
a set of measure zero by the classical Sard theorem [23]xl@te .# and assume
(X*,0m) € Nz (X,¥) N (T (X) x {Om}) with xX* # On. This gives

Tu (%Y) = (Ng(xy)" C{x}" xR™,
where{x*}*= = {x¥ e R"| (x*,x) = 0}. SinceT 4 (x,y) C T2 (X) x R™we obtain

T (xy) € ({XH 0T () xR™

Let Z stand for the subspace on the right hand side. Then the porjexf Z onto
T4 (X) is a proper subspace dfy (x). All the more, this applies td_, (x,y). By [14,
Corollary 3], this implies thatx, y) is a singular point of Prgj,, sox s a critical value
of Proj ,. The conclusion of the lemma follows. 0

3.3. Linking sets. We introduce the notion dinking that is commonly used in critical
point theory. Let us fix some terminology: B C R" is homeomorphic to a subset of
RY with nonempty interior, we say that the 8 is therelative boundanof B if it is

a homeomorphic image of the boundary of the sé{n

Definition 16. [25, Section 11.8] LetA be a subset dR™™ and letB be a submanifold
of R™ ™M with relative boundaryB. Then we say thah andl" = 9B link if

(i) ANT =0

(i) for any continuous magh € ¢°(R™™ R™™M) such thath |r= id we have
h(B)NA# 0.

In particular, the following result holds. This result whié used in Section 4.

Theorem 17(Linking sets) Let_#; and_#5 be linear subspaces such th#g & 75 =
R™M and take any € .#7\ {0}. Then for0 <r < R, the sets

A:=S(0,r)nun and [:=(B(O,RNA)U(S(O,R) N(A2+Ry{v}))
link.
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Proof. Use methods in [25, Section 11.8], or infer from Example 3réhe O

We finish this section with two useful results. The first onevedl-known (with
elementary proof) and is mentioned for completeness.

Proposition 18. If .#; and ./, are subspaces &"™, then.#7;- N7 = {0} if and
only if £ + ot = R,

The following lemma will be needed in the proof of forthcomihemma 26
(Section 4).

Lemma 19. If the setsB (0,1) and D are homeomorphic, then any homeomorphism
f betweerS(0,1) and dD can be extended to a homeomorphismB{0,1) — D so
that F |S(O71): f.

Proof. LetH: B(0,1) — D be a homeomorphism betwe&r0,1) andD and denote
h: §(0,1) — dD byh=H |5 1). We define the (continuous) functiéin B(0,1) — D
by

H (X h=1(f (x/|x])) ifx#£0

F g { P XN/ ) ifx
H (0) if x=0.

Itis straightforward to check thét 5o )= f. Let us show thaF is injective: indeed,
if F(x1) =F (x2), then|xy|h~2(f (x1/|x1])) = [x2| " 1(f (x2/|x2|)). If both sides are
zero, thernx; = xo = 0. Otherwisexz| = |xo| andxy /|X1| = X2/|%2|, which implies that
X1 = Xo.
To see thaF is a bijection, fix anyy € D, and letX' € B (0,1) be such thay = H (X).
If X =0, theny = F (0). Otherwise,

y=H (M (\)x(_l)) —H(X| h Yo f (floh(%)) —F (M floh(%)).

This shows thaf is also surjective, thus a continuous bijection. Sifig®,1) is
compact, it follows thaF is a homeomorphism. O

4. GENERIC CONTINUITY OF TAME SEFVALUED MAPS

From now on we limit our attention to the class of semialgeh@ more generally,
o-minimal) set-valued maps. In this setting our main resdintually asserts that every
such set-valued map is generically strictly continuous Gection 4.3). To prove this,
we shall need several technical lemmas, given in Sectionld.3ection 4.1 we give
preliminary definitions and results of our setting.

4.1. Semialgebraic and definable mappingsin this section we recall basic notions
from semialgebraic and o-minimal geometry. Let us defin@e@ry the notion of a
semialgebraic set ([3], [8]). (We denote Bxs,...,xy] the ring of real polynomials
of nvariables.)
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Definition 20 (Semialgebraic set)A subsetA of R" is calledsemialgebraidf it has

the form
K

A= U{XE R": pi<X) = 07Qi1(x) > 07'~'7qi€(x) > 0}7
i=1
wherep;, ¢j € R[xq,...,%o] foralli € {1,...,k} andj € {1,...,¢}.

In other words, a set is semialgebraic if it is a finite uniosets that are defined by
means of a finite number of polynomial equalities and indtjaal A set-valued map
S: R" = R™Mis calledsemialgebraicif its graph GraphiS) is a semialgebraic subset
of R"x R™M,

An important property of semialgebraic sets is that of Wytstratification ([11,
84.2], [8, Theorem 6.6]).

Theorem 21. (¢ stratification) For any ke N and any semialgebraic subsets
X1,...,% of R", we can writeR" as a disjoint union of finitely many semialgebraic
%% manifolds{.# }; (thatis,R" = Ul_,.#) so that each Xis a finite union of some of
the.#;’s. Moreover, the induced stratificatio[n//ij}i of Xj has the Whitney property,
that is, for any sequencgy, }y C //[ij converging to x ///,é we have

”Tj’:ij/fij (xy) C N//if)(x">'
In particular, every semi-algebraic set can be written asitefdisjoint union of mani-
folds (“strata”) that fit together in a regular way (“Whitnestratification”).
(The Whitney property is also calletbrmal regularityof the stratification, see [14,
Definition 5].) Thedimensiordim (X) of a semialgebraic st can thus be defined as
the dimension of the manifold of highest dimension of itefication. This dimen-
sion is well defined and independent of the stratificatioX ¢8, Section 3.3].

As a matter of the fact, semialgebraic sets constitute-emnimal structureLet us
recall the definitions of the latter (see for instance [91,]]1

Definition 22 (o-minimal structure) An o-minimal structure ofiR, +,.) is a sequence
of Boolean algebrag = {©,}, where each algebwa, consists of subsets &", called
definablgin ), and such that for every dimensiog N the following properties hold.

(i) For any setA belonging tod,,, bothA x R andR x A belong tod, 1.
(i) If M: R™1 — R" denotes the canonical projection, then for anyfsbelong-
ing to Oy11, the sef1(A) belongs ta/,.
(i) &, contains every set of the forgx € R": p(x) = 0}, for polynomialsp:
R" — R.

(iv) The elements o¥; are exactly the finite unions of intervals and points.
When &' is a given o-minimal structure, a functiadn R" — R™ (or a set-valued
mappingF : R" = R™) is calleddefinable(in ©) if its graph is definable as a subset of

R" x RM,
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It is obvious by definition that semialgebraic sets are stalider Boolean opera-
tions. As a consequence of the Tarski-Seidenberg prindipdy are also stable under
projections, thus they satisfy the above properties. Nuwiless, broader o-minimal
structures also exist. In particular, the Gabrielov theomaplies that “globally sub-
analytic” sets are o-minimal. These two structures in palér provide rich practical
tools, because checking semi-algebraicity or subanélytt sets in concrete prob-
lems of variational analysis is often easy. We refer to [8], &nd [15] for details. Let
us mention that Theorem 21 still holds in an arbitrary o-mmiali structure (it is suffi-
cient to replace the word “semialgebraic” by “definable’he statement). As a matter
of the fact, the statement of Theorem 21 can be reinforceddbnable sets (namely,
the stratification can be taken analytic), but this is noeissary for our purposes.

Remark. Besides formulating our results and main theorem for seyamhic sets
(the reason being their simple definition), the validity loé$e results is not confined
to this class. In fact, all forthcoming statements will Istibld for “definable” sets
(replace “semialgebraic” by “definable in an o-minimal staue”) with an identical
proof. Moreover, since our key arguments are essentiallylotal nature, one can go
even further and formulate the results for the so-cal&desets (e.g. [5], [15]), that
is, sets whose intersection with every ball is definable me®-minimal structure.
(In the latter case though, slight technical details shbelthken into consideration.)

We close this section by mentioning an important propertgavhialgebraic (more
generally, o-minimal) sets. Let us recall that (topolofigenericity and full measure
(i. e.,almost everywhere) are different ways to affirm that a givespprty holds in a
large set. However, these notions are often complemeriteparticular, it is possible
for a (topologically) generic subset &" to be of null measure, or for a full measure
set to be meager (see [20] for example). Nonetheless, thistisin disappears in our
setting.

Proposition 23(Genericity in a semialgebraic setting)et U,V be semialgebraic sub-
sets ofR", and assume \& U. Then the following properties are equivalent:

() V isdenseinU;

(i) V is (topologically) generic in U;

(iii) U \V is of null (Lebesgue) measure;

(iv) the dimension of Y V is strictly smaller than that of U.

4.2. Some technical results.In the sequel we shall always consider a set-valued map
S: 27 = R™ where2 C R", and we shall assume tha@ts semialgebraic.

Theorem 24.Assume that S.2° = R™Mis outer semicontinuous, and the sétsc R"
and Graph(S) are semi-algebraic. Then S is strictly continuous with expgo 2
everywhere except on a set of dimension at rfdist 2" — 1).

Proof. Using Theorem 21 we stratif2” into a disjoint union of manifolds (strata)
{27} and study hovBbehaves on the strat#j of full dimension (that is, dinf.27) =
dim(Z") = d <n). For each such stratun®j, if Sis not strictly continuous at
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x € Zj relative to 2], then by [22, Theorem 9.38], there is sogne §x) such that
lip 5. S(X|y) = . SinceSis outer semicontinuous, we deduce from Proposition 14

that there is a nonzero vectorE Neyaprs) (X,Y) N (Tgth (X) % {om}) .

We now stratify the semialgebraic set Gr&ghn (3{, X Rm) into a finite union
of disjoint manifolds{.#}«. Sincev € Ngaprs) (X,¥) \ {On+m}, it can be written as a
limit of Hadamard normal vectors € NGrapk(S) (%, ¥i) with (x;,yi) — (X,y). Passing to
a subsequence if necessary, we may assume that the seq@enge}; belongs to the
same stratum, say? andy; € Nﬁk* (X, Vi) (note that#y- C Graph(S)). Since.#y-
is a smooth manifold, we ha\.f&///k* (%, ¥i) = N . (%,¥i) = [Tz (%, ¥i)]*. Using
the Whitney property (normal regularity) of the stratifioat, we deduce that must
lie in someN_, (x,y) N (ngj (X) x {Om}> , Where.Z is the stratum that contairns, y).

Lemma 15 then tells us that the set of all possiie of lower dimension than that of
Zj (or Z7). Since there are finitely many stratj, the result follows. O

Remark. Note that the domain @

dom(S) ;= {xe 2" : §x) # 0},
being the projection t&" of the semialgebraic set Graff), is always semialgebraic.
Thus, if Shas nonempty values, the above assumpti@n Semialgebraic” becomes

superfluous. In any case, one can eliminate this assumptam the statement and
replace2” by 2" := dom(S) the domain ofS.

The next lemma will be crucial in the sequel. We shall firsttheeme notation. In
the sequel we denote by

(4.1) # = {0} xRM

as a subspace &" x R™ and we denote b$: R" = R™ the set-valued map whose
graph is the closure of the graph&fthat is,

Graph(S) = cl (Graph(9)).
Lemma 25. Let S R" = R™ be a closed-valued semialgebraic set-valued map. For
any k> 0, there is a¢ stratification {.#;}; of Graph(S) such that if $X) # S(X)
for somex € R", then there exist € R™, a stratum.#; of the stratification oGraph(S)
and a neighborhood U df,y) such that(x,y) € cl (.#;) and

(xy)+-Z)n.#nU =0.

Proof. By Theorem 21 we stratify Gragl®) into a disjoint union of finitely many
manifolds, that is Grap{s) = Uj.#. Consider the set-valued map: R" = R™
whose graph consists of the manifaldi. _Let furtherS: R" = R™ be the map
such thatS (x) = cl(S(x)) for all x, andS: R" = R™ be the map whose graph

is cl (Graph(S)), also equal to diGraph(S)). Both S and S are semialgebraic
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(for example, [8]), and there exists a stratification qf&taph(S)) such that the graphs
of §, § andS can be represented as a finite union of strata of that stedidit, by
Theorem 21 again.

We now prove that i5(x) 7é8_(>?), then there is somiesuch that§ is not outer semi-
continuous atx.  Indeed, in this case there exists such that (x,y) €
cl(Graph(S)) \Graph(S). Note that c[Graph(S)) = UiGraph(S). This means that

(X,y) must lie in Grapi{S) \Graph(S) for somei, which means tha§ is not outer
semicontinuous at as claimed.

Obviously(x,y) € cl (). Suppose that(x,y) +.-Z)N.#; NU # 0 for all neighbor-
hoodsU containing(x,y). Then there is a sequengge— y such that(x,y;) € .
Since§ is closed-valued, this would yield; y) € Graph(S ), which contradictgx, y) ¢

Graph(S) earlier. O

Keeping now the notation of the proof of the previous lemraayk setz:= (X,y).
Let further.#;, .#' be the strata of ¢iGraph(S)) such thaz € .#’ C cl(.#;). In the
next lemma we are working with normals on manifolds, so itdoet matter which
kind of normal in Definition 4 we consider.

Lemma 26. Suppose there is a neighborhood Uzaduch thaz € .#', .#" C cl(.#))
and(z+.Z)N.#,nNU =0, where.Z is defined ir(4.1). Then N, (2)N.Z+ 2 {Onym}-

Proof. We prove the result by contradiction. Suppose tigt (z) N2+ = {Onim}.
ThenT , (2) + £ = R™™ by Proposition 18. We may assume, by taking a sub-
manifold of .#' if necessary, that dim#’ = n so that dim#’ +dim.£ =n+mand
T (2 L =R™M Owing to the so-called wink lemma (see [10, Propositio®p.1
e.g) we may assume that di#; = n+ 1.

(Casem = 1) We first consider the case whare= 1. In this case, the subspa&é
is a line whose spanning vectoe= (0,1) is notinT 4 (z). There is a neighborhodd!
of zsuch that)’ c U, .#'nU’ equalsf—1(0) for some smooth functio: U’ — R
(local equation of#’), and.# NU’ = f~1((0,»)). The gradient]f (Z) is nonzero
and is not orthogonal te sinceT , (2) is the set of vectors orthogonal fof (z) and
T (2 ©Z =R There are points ifiz4.#) NU’ such thatf is positive, which
means thatz+ %) N.#; NU’ £ 0, contradicting the stipulated conditions. Therefore,
we assume thah > 1 for the rest of the proof.

(Casem> 1) As in the previous case, we shall eventually prove that.¥) N.#; N
U’ # 0 reaching to a contradiction. To this end, let us denothgtie (semialgebraic)
homeomorphism oR™™M to R™™ which, for some neighborhood c U of zZ, maps
homeomorphicallyw N (4 U.#") to R" x (Ry x {Om_1}) C R™M andV N.#’ to
R" x {Om} (see [8, Theorem 3.12.9).

Claim. We first show that there exists a closed neighborhald V of z such that
WnN.#" anddW N.#; are both homeomorphic &' andWn.#z’ =B"™(z Ry) N.#'
for someR; > 0.
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Since.#' is a smooth manifold, there exis®g > 0 such thaB"™™(z R;) N.Z" is
homeomorphic (in fact, diffeomorphic) (@ ,/(z) + 2) NB"™(z,Ry), which in turn is
homeomorphic t@", as is shown by the homeomorphism:

. |z—7] B _
2 <|P<z>—z7(P(z> 5)“’

whereP denotes the projection onto the tangent spaed - (z). Consider the image
of B"M(z,Ry) N.#" under the magg. This image lies in the s&" x {Oy}. There-
fore, forry >0 sufficiently small, the s&W = hy* (ho (B™™(z, Ry) N7’) + [—11,11]™)
satisfies the required properties, concluding the prootiofctaim.

Let us further fixv € £\ {0} and consider the set

M= (B™™(ZR)N(Z+T 0 (2))U (S ZRIN(Z+ T 0 (D +Ry {V}) -

J/ N

T r'z
Setting
A:=S""1(Zr)n.¥, where 0<r <R,
we immediately get that the sedsand[™’ link (c. f. Theorem 17). Based on this, our
objective is to prove that the sedsandl” also link, wherd™ is defined by
r=Wn.zu(Wn(#4u.4")),

-~

M M2
providedr > 0 is chosen appropriately. Once we succeed in doing so, we Bpfini-
tion 16 (forh =id) to deduce thatz+ .¥) N.#; NU # 0, which contradicts our initial
assumptions.
Figure 4.1 illustrates the sets I andl"’ for n=1 andm= 2.

> r

FIGURE 4.1. Linking setgA,T"’) and(A,T).

For the sequel, we introduce the notatio”*” in f: D; — D, to mean thatf
is a homeomorphism between the sBtsandD,. In Step 1 and Step 2, we define
a continuous functioid : (B"*(0,1) x {0}) U(S"(0,1) x [0,2]) — B™™M(ZR) that
will be used in Step 3.
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Step 1: DetermineH on (B"(0,1) x {0}) U(S"(0,1) x [0, 2]).
In Steps 14) to 1 (c), we define a continuous functi¢honS" (0,1) x [0,2] so that
H |sn(0,1)x[0,2 IS @ homotopy betweehn and I’. More precisely, denoting by

ST (0,1) 1= S"(0,1) N (R" x [0,)),
S" (0,1) :=8"(0,1) N (R" x (~,0]),
we want to definéd in such a way that its restrictions
H(-,0) lsn0,1): ST (0,1) = F1 CR™™M,
H(-,0) |sn 01 S (0,1) = M2 C R™™,
H(-2) lsn0): ST(0,1) = CR™M,
H(-,2) |sn01): S? (0,1) =5 C R™™,
are homeomorphisms between the respective spaces. NotbatheS" (0,1) and
S" (0,1) are homeomorphic t&"(0,1). For notational convenience, we denote by
SM (0,1) the se8"(0,1) N (R" x {0}) = S"1(0,1) x {0}.
Step 1 (a) DetermineH on S(0,1) x [0,1].
SincedW Ncl.#; is a closed set that does not contaithere is som& > 0 such that

(OWN.)NB™™M(z R) = 0 andB™™(z,R) C U. We proceed to create the homotopy
H so that

H(1) lsnoy: ST (0,1) = f CR™M,
H ('7 1) |Srl(0,1) sl (07 1) o r/2/ - Rn+m7
where
r{=B""(ZR)N.#
and 'y c S™™1(ZR) is homeomorphic t@».
The first homotopy betweeln; andl™] can be chosen such tht(s,t) € .2’ for all
se ST (0,1) andt € [0,1]. We also require that (z,H (s,t)) > Rfor all se S (0,1)

andt € [0, 1], which does not present any difficulties.
For the second homotopy betwe€n and '}, we first extendH (-,1) so that

H(-,1) [sno): S"(0,1) = '} uTYis a homeomorphism between the corresponding
spaces. ThIS is achieved by showing that there is a homedmsami (-, 1) |sn (o 1)
betweenS" (0,1) and . Let hy: B"(0,1) — S" (0,1) be a homeomorphism be-
tweenB" (0,1) andS" (0,1). ThenH (-,1) |sn (01) oh2 |sn-1(0.1): S*(0,1) = ar5.
By Lemma 19 this can be extended to a homeomorpl@sri" (0,1) — 's. Define
H(-1) sn 01y S" (0,1) = T4 by H (-,1) [gn 01)=Gohy'
It remains to resolvél onS" (0,1) x (0,1). Note that the sets
H(S2(0,1)x[0,1]), H(S"(0,1)x{0}) =2 and H(S"(0,1)x {1}) =TI}
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are all of dimension at most so the radial projection of these sets offto™*(z, R)

is of dimension at most. SinceS™™1(zR) is of dimension at least+ 1, we can
find some poinp € S™™1(Z R) not lying in the radial projections of these sets. The
set

D:=R"™M((Ry{p-2}) +{z}) UB"™(ZR))

is homeomorphic t®R™™™, so by the Tietze extension theorem (see for example [19]),
we can extendH continuously t&S" (0,1) x [0,1] so thatH (S" (0,1) x [0,1]) C D.

Step 1 (b) DetermineH on S (0,1) x [1,2].
We next defind |sn 0.1« 1,2, the homotopy betweel andl"}. Since.#" is a mani-
fold, for anyd > 0, we can findR small enough such that for amy B"™™ (z R)N.#",
the distance fromzto z+ T,/ (2) is at mostOR. The valueR can be reduced if neces-
sary so that the mappirfgy which projects a pointg € B"™(z,R)N.#" to the closest
pointinz+T 4, (Z), is a homeomorphism &" ™ (z,R) N.#' to its image.

Define the map;: (B™™(zR)N.#Z") x [1,2] — B™™(Z R) by

H1<Z7t) = (‘(Z—t)Z—F‘(Zt_—Z;_)P(Z) _ﬂ ((2—t)Z—|— (t_l)P(Z) _5) +Z_

This is a homotopy fronfr; to I'y. For any homeomorphisin : B™*™(zR)N.#" =
Si (0, 1), we defineH ‘81(071)><[071] viaH (S,t) =H; (hl_l (S) ,t).

Step 1 (c) DetermineH onS" (0,1) x [1,2].

We now defineH [gn g1)x[12, the homotopy betweeh; and T, that respects the
boundary conditions stipulated ¥ |sn (g,1)x (1,2 We extendH (-, 1) [gn(o,1) SO that it
is @ homeomorphism betwe&f (0,1) andl} U, by using methods similar to that
used in Step H).

We now use the Tietze extension theorem to establish a cantgextension dfl to
S"(0,1) x [1,2]. We are left only to resolvél onS" (0,1) x (1,2). Much of this is
now similar to the end of stepd) The dimension a§"™™1(z R) isn+m— 1, while
the dimensions of 5, ', andH (S2. (0,1) x [1,2]) are all at mosh. Therefore, there
is one point iS™™-1(z R) outside these three sets, saySinceS™™1(zZ R)\ {p}
is homeomorphic t®R™ ™1 the Tietze extension theorem again implies that we can
extendH continuously inS"(0,1) x [1,2].

Step 1(d) DetermineH onB"1(0,1) x {0}.
We use Lemma 19 to extend the domain of the function

H(-,0): S"(0,1) = (.’ NW) U (.2 NIW)
to B"1(0,1) so that
H(-,0): B™(0,1) = (&' U.ti) "W

is a homeomorphism.
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Step 2: Choice ofRandr.
We now chooseR and r so thatH (S"(0,1) x [0,2]) does not intersecA =
SYM=1(zr)N(z+.%). To this end, consider the minimization problem

min {dist(z, T 4 (2) +2) : ze S"™ Xz 1) N (z+ 2)}.

SinceS™™-1(z r)N(z+ ) is compact, the above minimum is attained at some point
z and its value is not zero (otherwige- zwould be a nonzero elementTh, (z2) N.Z,
contradictingT 4 (z) N.Z = {0}). Therefore, for some constant (0, 1] independent
of r, it holds dist(z,T 4 (z2) +2) = €r.

Given d > 0, we can shrinkR if necessary to get@, T 4/ (z) +2) < dR for all
ze H(S1(0,1) x[0,1]). If & < &, we can find some satisfyingdR < er <r <R.
SincedR< 1, H (S7. (0,1) x [1,2]) does not interse@™ ™1 (zr) N (z+.Z). From
r <R, itis clear thatH (S (0,1) x [0,2]), being a subset of ¢(R*™™B" M (ZR)),
does notinterse@™ ™1 (Zr) N (z+.%). Elements irH (S (0,1) x [0,1]) are either
in B""M(zZ,R)N.#" or outsideB™™M(z R), soH (S"(0,1) x [0, 2]) does not intersed
as needed.

Step 3: “Set-up” for linking theorem.

Let

hs: B"1(0,1) = (B"(0,1) x {0}) U(S"(0,1) x [0,2])
be a homeomorphism between the respective spaces. We et ¢élxeé homeomor-
phism
H [sn(0,1)x {2} °3 lsno.1): S"(0,1) = T/
to
he: B"(0,1) = (T 40 (J +Rs {V} +2)NE"™(ZR).
Define the map

0! (T (@ +E {v} +DNB"™(ZR) - B (ZR)

byg=Hohgo h;l. By construction, the mag | is the identity map there. Fur-
thermoreg can be extended continuously to the donf&H™ by the Tietze extension
theorem.

Step 4: Apply linking theorem.

Recall thatA := B™™(zr) N (z+.%) and I’ link by Theorem 17. This means
that there is a nonempty intersectiongff(T , (zZ) + R, {v} +2) NB""™M(Z R)) with
A. Step 2 asserts that the intersection is ndif$" (0, 1) x [0,2]), so the intersection
lies inH (B™(0,1) x {0}). In other wordsA andT link. This means thatV N.
intersect®"™M(z r)N(z+ %), which means thaz+ .#)N.#;NU # 0, contradicting
our assumption. O
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4.3. Main result. In this section we put together all previous results to obtae
following theorem. Recall theBis the set-valued map whose graph is the closure of
the graph ofS(thus,Sis outer semicontinuous by definition).

Theorem 27.1f S: 2" = R™Mis a closed-valued semialgebraic set-valued map, where
2 C R" is semialgebraic, then S ard differ outside a set of dimension at most
(dim2Z —1).

Proof. We first consider the case wherg@ = R" and a %X stratification of
cl(Graph(S)). If S(X) # S(x), then Lemma 25 and Lemma 26 yield that there ex-
ists somey and stratum#’ containingz:= (x,y) such thaN , (Z) N .2+ 2 {Onim}.
Finally, since there are only finitely many strata, Lemmaells us thatS(x) andS(x)
may differ only on a set of dimension at most- 1. This proves the result in this
particular case.

We now consider the case whe# # R". Let 2" = U2 be a stratification of2’,
and letZ be the union of strata of full dimension iA". Each stratum ir%7 is semi-
algebraically homeomorphic &Y, whered := dim.2” and leth; : RY — Zj denote
such a homeomorphism. By considering the set-valued @apgfor all j, we reduce
the problem to the aforementioned case. Since the set ¢& grdortiori the set of
full-dimensional strata) is finite, we deduce tl&ik) # S(x) can only occur in a set
of dimension at mosd — 1. O

The following result is now an easy consequence of the above.

Theorem 28 (Main result) A closed-valued semialgebraic set-valued map S
Z = R™M where 2" C R" is semialgebraic, is strictly continuous outside a set of
dimension at mosdim 2" — 1).

Proof. By Theorem 27 the magdiffers from the outer semicontinuous m§pn a set
of dimension at mostdim 2™ — 1). Apply Theorem 24. O

Remark. Our main result (Theorem 28) as well as all previous prelanjrresults
(Lemmas 25, 26, Theorems 24, 27) can be restated for the deseSis definable in
an o-minimal structure. With slightly more effort we canthar extend these results
in case wheré& is tame, noting that one performs a locally finite stratifmatn the
tame case as opposed to a finite stratification.

5. APPLICATIONS IN TAME VARIATIONAL ANALYSIS

A standard application of Theorem 2 is to take first the clesafrthe graph of5
and then deduce generic continuity for the obtained setedamap. While this opera-
tion is convenient, this new set-valued map no longer refliget same local properties.
For example, for a se€ C R", consider the Hadamard normal cone mapping
Nec: dC = R" and the limiting normal cone mappinbc: dC = R", where
cl(GrapHNc)) = Grapi{Nc). The Hadamard normal comé: (z) for < dC depends
on howC behaves ar, whereas the normal coné: (z) offers instead an aggregate
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information from points around. The following result is comparable with [22,
Proposition 6.49], and is a straightforward applicatiofb&orem 28.

Corollary 29 (Generic regularity) Given closed semi-algebraic sets C and D with
D C C, the set-valued mag:: C = R" is continuous on BD’, where D is semialge-
braic anddim(D’) < dim(D). When D= dC, we deduce thaic (z) = N¢ (2) for all z

in (dC)\C', withdim(C’) < dim(dC).

An analogous statement of the above corollary can be magedosmooth) tangent
coneslc andTc as well.

Remark. From the definition of subdifferential of a lower semiconidus function
[22, Definition 8.3], we can deduce that the regular (Fréckabdifferentials are
continuous outside a set of smaller dimension. This resutbmparable with [22,
Exercise 8.54]. Therefore nonsmoothness in tame functindssets is structured.

Let us finally make another connection to functions whos@lgia a finite union
of polyhedra, hereafter referred to piecewise polyhedral function®kobinson [21]
proved that a piecewise polyhedral function is calm (ouipschitz) everywhere [22,
Example 9.57], and a uniform Lipschitz constant suffices tke whole domain of
the function (although this latter is not explicitly statégerein). A straightforward
application of Theorem 28 yields that piecewise polyhetirattions are set-valued
continuous outside a set of small dimension. We now showahatiform Lipschitz
constant for strict continuity applies.

Proposition 30 (Uniformity of graphical modulus)Let S X = R™ be a piecewise
polyhedral set-valued map, wherecXRR". Then S is strictly continuous outside a set
X', withdim(X’) < dim(X). Moreover, there exists sorre> 0 such that if S is strictly
continuous ak, then the graphical moduldpy S(x | y) is a nonnegative real number
smaller thank.

Proof. The first part of the proposition of strict continuity is aelit consequence of
Theorem 28 sinc& is clearly semialgebraic. We proceed to prove the statement
the graphical modulus. We first consider the case where tqghgofS is a convex
polyhedron. The graph @& can be written as a finitely constrained set Grgh=
{ze R™M™M| Az=Db,Cz< d} for some matrice,C with finitely many rows. The
projection of GrapliS) onto R" is the domain ofS, which we can again write as
dom(S) =X ={xeR"| Ax="0,C'x < d'}. Let.Z be the lineality space of do(8),
which is the set of vectors orthogonal to the rowsfaf We seek to find a constant
k > 0 such that ifx lies in the relative interior (in the sense of convex analysi X
andy € S(x), then lip,S(x | y) < K. By Proposition 14, we have

= sup {1(@D) & Noprs (k)1 (£ X BT .

(xy)er-Int(x) bl

where “r-int” stands for the relative interior. The abovdueis finite because of
two reasons. Firstly, ifa,0) € Ngraprs) (X,Y) N (£ x R™), then by the convexity
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of Graph(S), x lies on the relative boundary of. Secondly, the “sup” in the for-
mula is attained and can be replaced by “max”. This is bectheseormal cones of
Graph(S) atz= (x,y) can be deduced from the rows®fin whichCz < d is actually
an equation, of which there are only finitely many possie#it In the case whei®is

a union of finitely many polyhedra, we consider the set-védonaps denoted by each
of these polyhedra. The maximum of the Lipschitz constamtstirict continuity on
each polyhedral domain gives us the requiked O
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