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Abstract. As a Corollary to the main result of the paper we give a new proof
of the inequality

‖T f‖L2(w) . ‖w‖A2
‖f‖L2(w) ,

where T is either the Hilbert transform [12], a Riesz transform [13], or the
Beurling operator [14]. The weight w is non-negative, and the linear growth
in the A2 characteristic on the right is sharp. Prior proofs relied strongly
on Haar shift operators [11] and Bellman function techniques. The new proof
uses Haar shifts, and then uses an elegant ‘two weight T 1 theorem’ of Nazarov-
Treil-Volberg [10] to immediately identify relevant Carleson measure estimates,
which are in turn verified using an appropriate corona decomposition of the
weight w.

1. Introduction

We are interested in weighted estimates for singular integral operators, and
cognate operators, with a focus on sharp estimates in terms of the Ap character-
istic of the weight. In particular we give a new proof of the estimate of Petermichl
[12]

‖H f‖L2(w) . ‖w‖A2
‖f‖L2(w) ,

where H f(x) = p.v.
∫

f(x−y) dy/y is the Hilbert transform. Petermichl’s proof,
as well as corresponding inequalities for the Beurling operator [14] and the Riesz
transforms [13] have relied upon a Bellman function approach to the estimate for
the corresponding Haar shift. We also analyze the Haar shifts, but instead use
a deep two-weight inequality of Nazarov-Treil-Volberg [10] as a way to quickly
reduce the question to certain Carleson measure estimates. The latter estimates
are proved by using the usual Haar functions together with appropriate corona
decomposition. The linear growth in terms of the A2 characteristic is neatly
explained by this decomposition.

Let us precede to the definitions.
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1.1. Definition. For w a positive function (a weight) on Rd we define the Ap

characteristic of w to be

‖w‖Ap := sup
Q
|Q|−1

∫
Q

w dx ·
[
|Q|−1

∫
Q

w−1/(p−1) dx
]p−1

, 1 < p < ∞ ,

where the supremum is over all cubes in Rd.

The relevant conjecture concerning the behavior of singular integral operators
on the spaces Lp(w) is

1.2. Conjecture. For a smooth singular integral operator T which is bounded on
L2(dx) we have the estimate

(1.3) ‖T f‖Lp(w) . ‖w‖α(p)
Ap

‖f‖Lp(w) , α(p) = max{1, 1/(p − 1)} .

An extrapolation estimate [6, 14] shows that it suffices to prove this estimate
for p = 2, which is the case we consider in the remainder of this paper. Cur-
rently this estimate is known for the Hilbert transform, Riesz transforms and the
Beurling operator, with the proof using in an essential way the so-called Haar
shift operators. This proof will do so as well, but handle all Haar shifts at the
same time.

1.4. Definition. By a Haar function hQ on cube Q ⊂ Rd, we mean any function
which satisfies

(1) hQ is a function supported on Q, and is constant on each dyadic subcubes
of Q. (That is, hQ is in the linear span of the indicators of the ‘children’
of Q.)

(2) ‖hQ‖∞ ≤ |Q|−1/2. (So ‖hQ‖2 ≤ 1.)
(3)

∫
Q

hQ(x) dx = 0.

1.5. Definition. We say that T is a Haar shift operator of index τ iff

T f =
∑
Q∈Q

∑
Q ′,Q ′′⊂Q

2−τd|Q|≤|Q ′|,|Q ′′|

aQ ′,Q ′〈f, hQ ′〉hQ ′′ ,

|aQ ′,Q ′′| ≤

[
|Q ′|
|Q|

· |Q
′′|

|Q|

]1/2

.

The point of the conditions in the definition is that T be not only an L2(dx)
bounded operator, but that it also be a Calderón-Zygmund operator. In particu-
lar, it should admit a weak-L1(dx) bound that depends only on the index τ. See
Proposition 3.11.

1.6. Theorem. Let T be a Haar shift operator of index τ, and let w be an A2

weight. We have the inequality

(1.7) ‖T‖L2(ω) . ‖w‖A2

The implied constant depends only dimension d and the index τ of the operator.
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We have this Corollary:

1.8. Corollary. The inequalities (1.3) holds for the Hilbert transform, the Riesz
transforms in any dimension d, and the Beurling operator on the plane.

As is well-known, these singular integral operators are obtained by appropriate
averaging of the Haar shifts, an argument invented in [11]. We also derive, as a
corollary, the sharp A2 bound for Haar square functions. We leave the details of
this to the reader.

The starting point of our proof is a beautiful ‘two weight T1 Theorem for Haar
shifts’ due to Nazarov-Treil-Volberg [10]. We recall a version of this Theorem in
§ 2. This Theorem supplies necessary and sufficient conditions for an individual
Haar shift to satisfy a two-weight L2 inequality, with the conditions being ex-
pressed in language of the T 1 Theorem. In particular, it neatly identifies three
estimates that need to be proved, with two related to paraproduct estimates. In
fact, this step is well-known, and is taken up immediately in e. g. [12]. We then
check the paraproduct bounds for A2 weights in § 3 and § 4, which is the main
new step in this paper.

The question of bounds for singular integral operators on Lp(w) that are sharp
with respect to the Ap characteristic was identified in an influential paper of
Buckley, [3]. It took many years to find the first proofs of such estimates. We
refer the reader to cite [12] for some of this history, and point to the central role of
the work of Nazarov-Treil-Volberg [9] in shaping much of the work cited here. The
prior proofs of Corollary 1.8 have all relied upon Bellman function techniques.
And indeed, this technique will supply a proof of the results in this paper. The
Beurling operator is the most easily available, since this operator can be seen as
the average of the simplest of Haar shifts, namely martingale transforms, see [7].
The A2 bound was derived for Martingale transforms by J. Wittwer [16]. The
paraproduct structure is much more central to the problem if one works with
Haar shifts that pair a ‘parent’ Haar with a ‘child’ Haar. If one considers Square
Functions, sharp results were obtained in L2 by Wittwer [17], and Hukovic-Treil-
Volberg [8]. Recently, Beznosova [2], has proved the linear bound for discrete
paraproduct operators, again using the Bellman function method. It would be of
interest to prove her Theorem with techniques closer to those of this paper.

Acknowledgment. The authors are participants in a research program at the Cen-
tre de Recerca Matemática, at the Universitat Autònoma Barcelona, Spain. We
thank the Centre for their hospitality, and very supportive environment. Xavier
Tolsa pointed out some relevant references to us.

2. The Characterization of Nazarov-Treil-Volberg

The success of this approach is based upon a beautiful characterization of two
weight inequalities. Indeed, this characterization is true for individual two-weight
inequalities. This Theorem can be thought of as a ‘Two Weight T1 Theorem.’
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We are stating only a sub-case of their Theorem, which does not assume that the
operators satisfy an L2(dx) bound.

2.1. Theorem. [Nazarov-Treil-Volberg [10]] Let T be a Haar shift operator of
index τ, as in Definition 1.5, and σ, µ two positive measures. The L2 inequality

‖T(σf)‖L2(µ) . ‖f‖L2(σ)

holds iff the following three conditions hold. For all cubes Q,Q ′ with Q ⊂ (Q ′)(τ)

or Q ′ ⊂ Q(τ),∣∣∣∫
Q ′

T(σ1Q) µ(dx)
∣∣∣ ≤ CWB

√
σ(Q)µ(Q ′) (Weak Bnded)(2.2)

‖T(σ1Q)‖L2(Q,µ) ≤ CT1

√
σ(Q) (T1 ∈ BMO)(2.3)

‖T∗(µ1Q)‖L2(Q,σ) ≤ CT∗1

√
µ(Q) (T ∗1 ∈ BMO)

Moreover, we have the inequality

(2.4) ‖T(σ·)‖L2(σ)→L2(µ) . CWB + CT1 + CT∗1 .

This Theorem is contained in [10, Theorem 1.4], aside from the claim (2.4). But
this inequality can be seen from the proof in their paper. Indeed, their proof is
in close analogy to the T1 Theorem. Briefly, the proof is as follows. The operator
T(σ·) is expanded in ‘Haar basis’, but as had been done prior papers, such as
[7, 12, 16], the Haar bases are adapted to the two measures σ and µ. Expressing
the bilinear form

∫
T(σf) · g µ as a matrix in these two bases, the matrix is split

into three parts. Those terms ‘close to the diagonal’ are controlled by the ‘weak
boundedness’ condition (2.2). Those terms below and above the diagonal are
recognized as paraproducts. One of these is of the form

(2.5) P(f) :=
∑
Q

σ(Q)−1

∫
Q

fσ dy · ∆w
Q(T(σ1))

Here the first term is an average of f with respect to the measure σ, and the second
is a martingale difference of T(σ1) with respect to the measure w. In particular,
∆w

Q(T(σ1)) are w-orthogonal functions in Q. Thus, one has the equality

‖P(f)‖2
L2(w) =

∑
Q

∣∣σ(Q)−1

∫
Q

fσ dy
∣∣2 · ‖∆w

Q(T(σ1))‖2
L2(w) .

The inequality ‖P(f)‖L2(w) . ‖f‖L2(σ) is a weighted Carleson embedding inequal-
ity that is implied by the ‘T 1 ∈ BMO’ condition (2.3). The other paraproduct
is dual the one in (2.5).
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3. Initial Considerations

We collect together a potpourri of facts that will be useful to us, and are of
somewhat general nature. We begin with a somewhat complicated definition that
we will use in order to organize the proof of our main estimate.

3.1. Definition. Let Q ′ ⊂ Q be any collection of dyadic cubes. Call (L : Q ′(L))
a corona decomposition of Q ′ relative to measure w if these conditions are met.
For all L ( L ′ ∈ L and L ⊂ Q ⊂ L ′ for Q ∈ Q ′ we have

w(L)

|L|
> 4

w(L ′)

|L ′|
,(3.2)

4
w(L ′)

|L ′|
≥ w(Q)

|Q|
.

Define λ : Q ′ → L by requiring that λ(Q) be the minimal element of L that
contains Q. Then we set Q ′(L) := {Q ∈ Q ′ : λ(Q) = L}. The collections Q ′(L)
partition Q ′.

Decompositions of this type appear in a variety of questions. We are using ter-
minology which goes back to (at least) David and Semmes [4,5]. A subtle corona
decomposition is central to [15], and the paper [1] includes several examples in
the context of dyadic analysis.

A basic fact is this. ∣∣∣ ⋃
L ′∈L
L ′(L

L ′
∣∣∣ ≤ 1

4
|L| , L ∈ L .

This follows from (3.2), which says that the intervals L ′ ⊂ L have much more
than their fair share of the mass of w, hence the L ′ have to be smaller intervals.
And this easily implies

(3.3)
∥∥∥∑

L ′∈L
L ′⊂L

1L ′

∥∥∥
2

. |L|1/2 .

We have the following (known) Lemma, but we detail it as it is one way that
the A2 condition enters in the proof.

3.4. Lemma. Let L be a ssociated with corona decomposition for a weight w. For
any cube Q we have

(3.5)
∑
L∈L
L⊂Q

w(L) ≤ 16
9
‖w‖A2

w(Q) .

Proof. It suffices to show this: For L ∈ L

(3.6) w
(⋃

{L ′ ∈ L : L ′ ( L}
)
≤ (1 − c‖w‖−1

A2
)w(L) , c = 9

16
.
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We begin with a calculation related to A∞. Let E be a measurable subset of
Q. Then,

|E|
|Q|

= |Q|−1

∫
E

w1/2 ·w−1/2 dx

≤

[
w(E)

|Q|
· w−1(Q)

|Q|

]1/2

≤

[
‖w‖A2

w(E)

w(Q)

]1/2

.(3.7)

Apply this with L − E =
⋃

{L ′ ∈ L : L ′ ( L}. Then, by (3.3), |L − E| < 1
4
|L|,

so that |E| ≥ 3
4
|L|. It follows that we then have

9

16‖w‖A2

·w(L) ≤ w(E) .

Whence, we see that (3.6) holds. Our proof is complete. �

Concerning the Haar shift operators T, we make the following definition.

3.8. Definition. We say that T is a simple Haar shift operator of index τ iff

T f =
∑
Q∈Q

〈f, gQ〉γQ ,

gQ, γQ ∈ span(hQ ′ : Q ′ ⊂ Q , 2−τd|Q| ≤ |Q ′|) ,(3.9)

‖gQ‖∞ , ‖γQ‖∞ ≤ |Q|−1/2 .(3.10)

Below, we will only consider simple Haar shift operators. The important prop-
erty they satisfy is

3.11. Proposition. A simple Haar shift operator T with index τ maps L2(dx)
into itself with norm at most . τ. It maps L1(dx) into L1,∞(dx) with norm
. 2τd.

The point is that these bounds only depend upon the index τ.

Proof. The proof is well-known, but we present it as some similar difficulties
appear later in the proof; see the discussion following (5.3). Set

Ts f :=
∑
Q∈Q

|Q|=2sd

〈f, gQ〉γQ ,

which is the operator at scale 2s. The ‘size condition’ (3.10) implies that ‖Ts‖L2(dx)

≤ 1. The ‘cancellation condition’ (3.9) then implies that
Ts T∗

s ′ = T∗
s Ts ′ = 0 , |s − s ′| > τ .

So we see that ‖T‖L2(dx) ≤ τ + 1.
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Concerning the weak L1(dx) inequality, we use the usual proof. Fix f ∈ L1(dx).
Apply the dyadic Calderón-Zygmund Decomposition to f at height λ. Thus,
f = g + b where ‖g‖2 .

√
λ‖f‖1/2

L1(dx)
, and b is supported on a union of disjoint

dyadic cubes Q ∈ B with ∫
Q

b dx = 0 , Q ∈ B ,(3.12) ∑
Q∈B

|Q| . λ−1‖f‖1 .(3.13)

For the ‘good’ function g, using the L2(dx) estimate we have

|{T g > τλ}| ≤ (τλ)−2‖T g‖2
L2(dx)

. λ−2‖g‖2
2 . τ2λ−1‖f‖L1(dx) .

For the ‘bad’ function, we modify the usual argument. For a dyadic cube Q,
and integer t, let Q(t) denote it’s t-fold parent. Thus, Q(1) is the minimal dyadic
cube that strictly contains Q, and inductively, Q(t+1) = (Q(t))(1). Observe that
(3.13) implies ∣∣⋃{Q(τ) : Q ∈ B}

∣∣ . 2τdλ−1‖f‖1 .

And, the ’cancellation condition’ (3.9), with (3.12), imply that for Q ∈ B, and
x 6∈ Q(τ), we have

T(1Qb)(x) =
∑

Q ′ : Q(τ)(Q ′

〈1Qb, gQ ′〉γQ ′(x) = 0

since gQ ′ will be constant on the cube Q.
Hence, we have

|{T(b) > λ}| ≤
∣∣⋃{Q(τ) : Q ∈ B}

∣∣ . 2τdλ−1‖f‖1 .

This completes the proof. �

We need a version of the John-Nirenberg inequality, which says that a ‘uniform
L0 condition implies exponential integrability.’

3.14. Lemma. This holds for all integers τ. Let {φQ : Q ∈ Q} be functions so
that for all dyadic cubes Q we have

(1) φQ is supported on Q and is constant on each sub-cube Q ′ ⊂ Q with
|Q ′| = 2−τd|Q|;

(2) ‖φQ‖∞ ≤ 1;
(3) for all dyadic cubes Q, we have∣∣∣∣∣

{∣∣∣ ∑
Q ′ : Q ′⊂Q

φQ

∣∣∣ > 1

}∣∣∣∣∣ ≤ 2−τd−1|Q| .
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It then follows that we have the estimate∣∣∣∣∣
{∣∣∣ ∑

Q ′ : Q ′⊂Q

φQ

∣∣∣ > 2τt

}∣∣∣∣∣ ≤ τ2−t+1|Q| , t > 1 .

4. The Main Argument

We begin the main line of argument to prove (1.7). We no longer try to keep
track of the dependence on τ in our estimates. (It is, in any case, exponential in
τ.) Accordingly, we assume that we work with a subset Qτ of dyadic cubes with
‘scales separated by τ.’ That is, we assume that for Q ′ ( Q and Q ′,Q ∈ Q we
have |Q ′| ≤ 2−dτ|Q|, where d is dimension.

It is well-known that (1.7) is equivalent to showing that

‖T(fw)‖L2(w−1) . ‖w‖A2
‖f‖L2(w) .

Here we are using the dual-measure formulation, so that the measure w appears
on both sides of the inequality, as in Theorem 2.1.

By Theorem 2.1, and the symmetry of the A2 condition, it is sufficient to check
that the two inequalities below hold for all simple Haar shift operators T of index
τ:

|〈T(w1Q), w−11R〉| . ‖w‖A2

√
w(Q)w−1(R) ,(4.1) ∫

Q

|T(w1Q)|2 w−1dx . ‖w‖2
A2

w(Q) .(4.2)

These should hold for all dyadic cubes Q, and in (4.1), we have 2−τd|Q| ≤ |R| ≤
2τd|R|.

In the present circumstance, the ‘weak boundedness’ inequality (4.1) can be
derived from the ‘T1’ inequality (4.2). We can assume that |Q| ≤ |R| by passing
to the dual operator and replacing w by w−1. If |Q| = |R|, the inner product is
zero unless Q = R. But then we just appeal to (4.2).

|〈T(w1Q), w−11Q〉| ≤
√

w−1(Q) · ‖1Q T(w1Q)‖L2(w−1)

. ‖w‖A2

√
w(Q) ·w−1(Q) .

If |Q| < |R|, we can assume that Q ⊂ R, and write

|〈T(w1Q), w−11R〉| ≤ |〈T(w1Q), w−11Q〉|+ |〈T(w1Q), w−11R−Q〉| .
The first term on the right is handled just as in the previous case. In the second
case, we use the fact that 2−τd|R| ≤ |Q| < |R|, so that there is a difference in
scales between the two rectangles of only at most τ scales. That, with the size
conditions on T lead to

|〈T(w1Q), w−11R−Q〉| .
w(Q)w−1(R)

|R|
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. ‖w‖A2

√
w(Q) ·w−1(R) .

The last inequality follows since√
w(Q)w−1(R)

|R|2
≤

√
w(R)w−1(R)

|R|2
≤
√
‖w‖A2

≤ ‖w‖A2
.

Indeed, we always have 1 ≤ ‖w‖A2
.

To verify (4.2), we first treat the ‘large scales’.∥∥∥1Q0

∑
Q : Q)Q0

〈w1Q0
, gQ〉γQ

∥∥∥
L2(w−1)

.
w(Q0)w

−1(Q0)
1/2

|Q0|

.
√

w(Q0) · ‖w‖A2

Therefore, it suffices to prove

(4.3)
∥∥∥ ∑

Q : Q⊂Q0

〈w,gQ〉γQ

∥∥∥
L2(w−1)

. ‖w‖A2

√
w(Q0) .

Let us define for dyadic cubes Q0 and collections of dyadic cubes Q ′,

H(Q0,Q
′) :=

∑
Q⊂Q0
Q∈Q ′

〈w,gQ〉γQ ,

H(Q ′) := sup
Q0

‖H(Q0,Q
′)‖L2(w−1)√

w(Q)
.(4.4)

It is a useful remark that in estimating H(Q ′) we can restrict the supremum to
cubes Q0 ∈ Q ′. Of course, we are seeking to prove H(Q) . ‖w‖A2

.

The first important definition here is

(4.5) Qn :=

{
Q ∈ Q : 2n−1 <

w(Q)

|Q|
· w−1(Q)

|Q|
≤ 2n

}
.

We show that

(4.6) H(Qn) . 2n/2‖w‖1/2
A2

.

Since 2n ≤ ‖w‖A2
, this estimate is summable in n to prove (4.3).

Now fix a Q0inQn for which we are to test the supremum in (4.4). Let P =
{Q ∈ Qn : Q ⊂ Q0}. Let (L : P(L)) be a corona decomposition of P relative
to measure w. (The reader is advised to recall the definition Definition 3.1.) Let
P(L) = {Q ∈ P : λ(Q) = L}. (So L is the minimal element of L that contains
each element of P.)

The essence of the matter is contained in the following Lemma.
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4.7. Lemma. We have these distributional estimates, uniform over L ∈ L:∣∣{x ∈ L : |H(L,P(L))(x)| > Kt
w(L)
|L|

}∣∣ . e−t|L| ,(4.8)

w−1
({

x ∈ L : |H(L,P(L))(x)| > Kt
w(L)
|L|

})
. e−t w−1(L) .(4.9)

Let us complete the proof of our Theorem based upon this Lemma. Let us
estimate

‖H(Q0,Qn)‖2
L2(w−1) ≤

∥∥∥∑
L∈L

|H(L,P(L))|
∥∥∥2

L2(w−1)

= A + B = A +
∑
L∈L

B(L) ,(4.10)

A :=
∑
L∈L

‖H(L,P(L))‖2
L2(w−1)

B(L) :=
∑
L ′∈L
L ′(L

∫
|H(L,Qn) ·H(L ′,Qn)| w−1 .(4.11)

Note that these estimates show that all cancellation necessary for the truth of
theorem is already captured in the corona decomposition.

The estimate of A is straight forward. By (4.9), we see that the A2 estimate
reveals itself.

‖H(L,P(L))‖2
L2(w−1) .

[w(L)

|L|

]2
w−1(L)

. w(L)
w(L)

|L|
· w−1(L)

|L|
. 2nw(L) .

Therefore, by (3.5)

A . 2n
∑
L∈L

w(L) . 2n‖w‖A2
w(Q0) .(4.12)

In the expression (4.11), the integral is not as complicated as it immediately
appears. We have assumed that ’scales are separated by τ’ at the beginning of
this section, so that as L ′ is strictly contained in L, H(L,Qn) takes a single value
on all of L ′, which we denote by H(L,Qn)(L ′). This observation simplifies our
task of estimating the integral.

For L ′ ( L we use (4.9) and (4.5) to see that∫
|H(L,Qn) ·H(L ′,Qn)| w−1 . |H(L,Qn)(L ′)|w(L ′)

|L ′|
·w−1(L ′)

. 2n|H(L,Qn)(L ′)| · |L ′| .
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Note that the A2 characteristic has entered in. And the presence of |L ′| indicates
that there is an integral against Lebesgue measure here.

Employ this observation with Cauchy-Schwartz, both distributional estimates
(4.8) and (4.9) and (3.3) to estimate

B(L) :=
∑
L ′∈L
L ′(L

∫
|H(L,Qn) ·H(L ′,Qn)| w−1

. 2n|H(L,Qn)(L ′)|
∑
L ′∈L
L ′(L

|L ′| (by (4.9))

= 2n

∫
|H(L,Qn)(L ′)| ·

∑
L ′∈L
L ′⊂L

1L ′ dx (by defn.)

≤ 2n‖H(L,Qn)‖L2(dx)

∥∥∥∑
L ′∈L
L ′⊂L

1L ′

∥∥∥
L2(dx)

(Cauchy-Schwartz)

. 2nw(L) . (by (4.8) and (3.3))

Therefore, by (3.5) again,

B . 2n
∑
L∈L

w(L) . 2n‖w‖A2
w(Q0) .

Combining this estimate with (4.10) and (4.12) completes the proof of (4.6), and
so our Theorem, assuming Lemma 4.7.

5. The essence of the matter.

We prove Lemma 4.7. In this situation, both a cube Q0 and cube L ∈ L are
given. It is an important point that all the relevant cubes that we sum over are
in the collection Qn, as defined in (4.6).

One more class of dyadic cubes are needed. For integers α ≥ 0 define Pα(L)
to be those Q ∈ P(L) such that

(5.1) 2−α−1 w(L)

|L|
≤ w(Q)

|Q|
< 2−α w(L)

|L|
.

Recall that the condition in (4.6) is also in force.
The essential observation is this: By Proposition 3.11, T maps L1(dx) into

weak-L1(dx), with norm depending only on the index τ of the operator. Hence,∥∥∥ ∑
Q⊂Q1

Q∈Pα(L)

〈w,gQ〉γQ

∥∥∥
L1,∞(dx)

. w(Q1) .
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This is a uniform statement in Q1. If in addition Q1 ∈ Pα(L), we have∥∥∥ ∑
Q∈Q1

Q∈Pα(L)

〈w,gQ〉γQ

∥∥∥
L1,∞(dx)

. 2−α w(L)

|L|
· |Q1| .

Due to the functions gQ and γQ are supported on Q, we see that this estimate
also holds uniformly in Q1.

Note that we have by the definition of Haar functions Definition 1.4, and a
simple Haar shift, Definition 3.8,

|〈w,gQ〉γQ(x)| ≤ w(Q)

|Q|
. 2−α w(L)

|L|
.

Hence, Lemma 3.14 applies. Let us fix a maximal Q∗ ∈ Pα(L), and define

(5.2) Eα(t,Q∗) :=

{ ∑
Q∈Q∗

Q∈Pα

〈w,gQ〉γQ > Kt2−α w(L)

|L|

}
, t ≥ 1 .

Here, K is the constant from Lemma 3.14. We have the exponential inequality

|Eα(t,Q∗)| . e−t|Q∗| .

This is one of our two claims, the distributional estimate in Lebesgue measure
(4.8), for the collection Pα(L), not the collection P(L). But with the term 2−α

appearing in (5.2), it is easy to supply (4.8) as written.

We want the corresponding inequality in w−1-measure. But note that Eα(t,Q∗)
is a union of disjoint dyadic cubes in a collection Eα(t,Q∗), where for each Q ∈
Eα(t,Q∗), we can choose dyadic φ(Q) ∈ Pα with Q ⊂ φ(Q) ⊂ Q∗, and |Q| ≥
2−τd|φ(Q)|. This follows from the definition of a simple Haar shift. It follows
that we have

(5.3)
∣∣⋃{φ(Q) : Q ∈ Eα(t,Q∗)}

∣∣ . e−t|Q∗| .

(Recall that there is a similar difficulty in Proposition 3.11.) The point of these
considerations is this: For each Q ∈ Pα, we have both the equivalences (4.5) and
(5.1). Hence, w−1(Q) ' ρ|Q| where ρ is a fixed quantity (which we can compute,
but is irrelevant to our conclusion). Thus, we can conclude from (5.3) the same
inequality in w−1-measure:

w−1(Eα(t,Q∗)) ≤ w−1
(⋃

{φ(Q) : Q ∈ Eα(t,Q∗)}
)

. e−t w−1(Q∗) .

Sum this last estimate over maximal Q∗ ∈ Pα to conclude that

w−1

( ∑
Q∈P(L)

〈w,gQ〉γQ > Kt2−α w(L)

|L|

)
. e−t w−1(L) ,
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since all relevant cubes are contained in cube L. This supplies (4.9), and so the
proof is complete.

6. Sufficient Conditions for a Two Weight Inequality

There are a great many sufficient conditions for a two-weight inequality. To
these results, let us add this one, for it’s elegance.

6.1. Theorem. Let α, β be positive functions on Rd. For the inequality below to
hold for all Haar shift operators T

‖T(fα)‖L2(β) . ‖f‖L2(α)

It is sufficient that α, β ∈ A∞ and the following ‘two-weight A2’ hold:

sup
Q

α(Q)

|Q|
· β(Q)

|Q|
< ∞ .

Of course these conditions are not necessary, for example one can take α =
β = 1E, for any measurable subset E of Rd. By α ∈ A∞ we mean the measures
α and β satisfy a variant of the estimate in (3.7).

6.2. Definition. We say that measure α ∈ A∞ if this condition holds. For all
0 < ε < 1 there is a 0 < η < 1 so that for all cubes Q and sets E ⊂ Q with
|E| < ε|Q|, then α(E) < βα(Q).

The proof of theorem is a modification of what we have already presented, so
we do not give the details.
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