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ABSTRACT. Motivated by the modelling of structured parasite populations
in aquaculture we consider a class of physiologically structured population
models, where individuals may be recruited into the population at different
sizes in general. That is, we consider a size-structured population model with
distributed states-at-birth. The mathematical model which describes the evo-
lution of such a population is a first order nonlinear partial integro-differential
equation of hyperbolic type. First, we use positive perturbation arguments
and utilise results from the spectral theory of semigroups to establish condi-
tions for the existence of a positive equilibrium solution of our model. Then we
formulate conditions that guarantee that the linearised system is governed by
a positive quasicontraction semigroup on the biologically relevant state space.
We also show that the governing linear semigroup is eventually compact, hence
growth properties of the semigroup are determined by the spectrum of its gen-
erator. In case of a separable fertility function we deduce a characteristic
equation and investigate the stability of equilibrium solutions in the general
case using positive perturbation arguments.

1. Introduction
In this paper we study the following partial integro-differential equation

9 p(s, o (35, PE))p(s, 1)
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7(0, P(t))p(0,t) =0, (1.2)
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Here the function p = p(s,t) denotes the density of individuals of size (or other
developmental stage) s at time ¢, thus, P(t) is the total population at time ¢.
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p > 0 and v > 0 denote the mortality and growth rates of individuals, respec-
tively, and both of these vital rates depend on both size s and on the total
population size P(t). It is assumed that individuals may have different sizes at
birth and therefore 3(s,y, - ) denotes the rate at which individuals of size y “pro-
duce” individuals of size s. That is the non-local integral term in (1.1) represents
the recruitment of individuals into the population. We make the following general
assumptions on the model ingredients

p € CH[0,m] x [0,00)), B €CH[0,m] x [0,m] x [0,00))
B, >0, v€C*[0,m] x[0,00)), ~>0. (1.4)

Our motivation to investigate model (1.1)-(1.3) is the modelling of structured
populations in aquaculture. In particular we are interested in farmed and wild
salmonid fish that have particular relevance both industrially and commercially
to the UK. These species are subject to parasitism from a number of copepod
parasites of the family Caligidae. These organisms are well studied with a large
literature: below we draw attention to some of the key review papers. Sea lice
cause reduced growth and appetite, wounding, and susceptibility to secondary
infections [5], resulting in significant damage to crops and therefore they are
economically important. For salmon, louse burden in excess of 0.1 lice per gram of
fish can be considered pathogenic [5]. The best studied species is Lepeophtheirus
salmonis, principally a parasite of salmonids and frequent parasite on British
Atlantic salmon (Salmo salar) farms [22]. It also infectins sea trout (Salmo
trutta) and rainbow trout (Oncorhynchus mykiss). The life history of the parasite
is direct, with no requirement for intermediate hosts. It involves a succession
of 10 distinct developmental stages, separated by moults, from egg to adult.
Initial naupliar and copepodid stages are free living and planktonic. Following
attachment of the infective copepodid to a host, the parasite passes through four
chalimus stages that are firmly attached to the host, before entering sexually
dimorphic pre-adult and adult stages where the parasite can once again move
over the host surface and transfer to new hosts.

The state of the art for population-level modelling of L. salmonis is represented
by Revie et al. [20]. These authors presented a series of delay differential equations
to model different life history stages and parameterised the model using data
collected around Scottish salmon farms. A similar compartmental model was
proposed by Tucker et al. [21]. The emphasis of these papers was not however,
in analytical study, but on numerical simulation and parameterisation using field
[20] and lab [21] data. An earlier model by Heuch & Mo [13] investigated the
infectivity, in term of L. salmonis egg production, posed by the Norwegian salmon
industry, using a simple deterministic model. Other authors have considered the
potential for long-distance dispersal of mobile parasite stages through sea currents
[18], looking at Loch Shieldaig in NW Scotland, a long-term study site for sea
lice research.
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In this paper we focus on the dynamics of inviduals at the chalimus stage.
At this stage individuals are not yet sexually differentiated. Individuals entering
the chalimus stage from the non-feeding planktonic stage are distributed over
different sizes, hence we have the zero influx boundary condition (1.2) and the
recruitment term in (1.1). Of course, modelling the whole see lice population will
involve a rather complex model and system (1.1)-(1.3) would just describe the
dynamics at the chalimus stage. In that setting the vital rates will be more spe-
cific and for example the fertility 8 would refer to the fertility of gravid females
in the population. In fact, our aim here is to present a preliminary step towards
the analysis of this rather complex model by giving a mathematical treatment of
a quite general scramble competition model with distributed states-at-birth. We
use the words scramble competition to describe the scenario when individuals in
the population have the same chance when competing for resources such as food
(see e.g. [6]). Therefore in our present model all the vital rates, i.e. growth, fertil-
ity and mortality depend on the total population size. In other populations, such
as a tree population or a cannibalistic population, there is a natural hierarchy
among individuals of different sizes, which results in mathematical models incor-
porating infinite dimensional nonlinearities, see e.g. [10, 11]. We also note that
the analysis presented in this paper could be extended to these type of models
and also to other models, for example to ones which involve a different type of
recruitment term.

In the present work we are particularly interested in the asymptotic behaviour
of solutions of model (1.1)-(1.3). Our analysis will be based on linearisation
around equilibrium solutions (see e.g. [10, 19]) and we will utilise well-known
results from linear operator theory which can be found for example in the ex-
cellent monographs [1, 4, 9]. We will also utilise some novel ideas on positive
perturbations of linear operators. For basic concepts and results from the theory
of structured population dnamics we refer the interested reader to [6, 14, 17, 23].

Traditionally, structured population models have been formulated as partial
differential equations for population densities. However, the recent unified ap-
proach of Diekmann et al., making use of the rich theory of delay and integral
equations, has been resulted in significant results. In fact, the Principle of Lin-
earized Stability has been proven in [7, 8] for a wide class of physiologically
structured population models formulated as delay equations (or abstract integral
equations). We shall also note that it is not clear yet whether the models for-
mulated in [7, 8] as delay equations are equivalent to those formulated as partial
differential equations.

In the remarkable paper [3], Calsina and Saldafia studied well-posedness of a
very general size-structured model with distributed states-at-birth. They estab-
lished global existence and uniqueness of solutions utilising results from the theory
of nonlinear evolution equations. Model (1.1)-(1.3) is a special case of the general
model treated in [3], however, in [3] qualitative questions were not addressed. In
contrast to [3], our paper focuses on the existence and local asymptotic stability
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of equilibrium solutions of system (1.1)-(1.3) with particular regards to the effects
of the distributed states-at-birth compared to more simple models we addressed
previously e.g. in [10]. First, we will establish conditions in theorem 2.6 that
guarantee the existence of equilibrium solutions, in general. Then we show in
Theorem 3.2 that a positive quasicontraction semigroup describes the evolution
of solutions of the system linearized at an equilibrium solution. Then we establish
a further regularity property in Theorem 3.6 of the governing linear semigroup
that allows in principle to address stability questions of positive equilibrium so-
lutions of (1.1)-(1.3). We use rank one perturbations of the general recruitment
term to arrive at stability /instability conditions for equilibria. Finally we briefly
discuss some issues regarding positivity of the governing linear semigroup.

2. Existence of equilibrium solutions

Model (1.1)-(1.3) admits the trivial solution. If we look for positive time-
independent solutions of (1.1)-(1.3) we arrive at the following integro-differential
equation

(s, PYPL(s) + (155 P) + (s, P))p.(s) = / U Popy)dy  (21)

(0, P)p«(0) =0, P, = /Omp*(s) ds. (2.2)

2.1 Separable fertility function
In the special case of

B(s,y, P) = pi(s,P)Ba(y), s,y €[0,m], P e(0,00), (2.3)
equation (2.1) reduces to
’7(37 P*)pik(s) + (78(57 P*) + ,u(s, P*))p*(s) = ﬁl(sa P*)F*a (24)

where .
P~ [ ) d
0
The solution of (2.4) satisfying the initial condition in (2.2) is readily obtained as

— s ﬁl(ya P*)
p*(s) = P*F<S’ P*)/O F(y, P*)’Y(yv P*) 4

F(s.P.) exp{_/os %(y,lfy*()yjrpib)(y,a) dy}.

Multiplying equation (2.5) by 32 and integrating from 0 to m yields the following
necessary condition for the existence of a positive equilibrium solution

- /Dm@(s)p(s,a)/os F(j}%j;), s (2.6)

(2.5)

where
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Therefore we define a net reproduction function R as follows

P):/Om/(j%exp{—/j 52;? dz} dyds. (2.7

On the other hand it is straightforward to show that for every positive value
P, for which R(P,) = 1 holds formula (2.5) yields a unique positive stationary
solution p,, where P, may be determined from equation (2.5) as

— P,

P

- m S 1 P*
Iy F(s,Py) [ /i“gp dyds
Then it is straightforward to establish the following result.
Proposition 2.1. Assume that the fertility function [ satisfies (2.3) and that
the following conditions hold true:

/Om exp {_/ uly, 0; dy} ds<m—1, and B(s,y,0) > u(s,0)  (2.8)

7y
for s,y € [0,m], P € (0,00); and
)

/ﬁlsP ds =0 as P—oo, and 0<~v"<~(s,P), (2.9)

for s € [0,m], P € (0,00). Then model (1.1)-(1.3) admits at least one positive

equilibrium solution.
Proof. Condition (2.8) implies

o " 52 ﬁl y7 Y H’(Z>O)
o = [Tes{ - [ EeG o [RUCE o { [ HE G avas

" y,0) Y u(z,0) })/
X d X d dyd
3 ep{ /ov<y,o> y}/ (p{/ 10 f) P
> 1. (2.10)

On the other hand, condition (2.9) and the growth behaviour of the functions
involved in (2.7) imply that

lim R(P) =0,

P—+o0
hence the claim holds true on the grounds of the Intermediate Value Theorem. [

2.2 The general case
For a fixed P € (0,00) we define the operator Bp by
0

Bpu_—g((P) u+/ B(,y, Pu(y) dy,

Dom (Bp) = {u € W"'(0,m) |u(0) =0} . (2.11)
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Our goal is to show, that there exists a P, such that the operator Bp, has eigen-
value 0 with a corresponding unique positive eigenvector. To this end, first we
establish that Bp is the generator of a positive semigroup. Then we determine
conditions that guarantee that it generates an irreducible semigroup. We also
establish that the governing linear semigroup is eventually compact, which im-
plies that the Spectral Mapping Theorem holds true for the semigroup and its
generator, and the spectrum of the generator may contain only isolated eigenval-
ues of finite algebraic multiplicity. It then follows that the spectral bound is a
dominant (real) eigenvalue Ap of geometric mulitplicity one with a corresponding
positive eigenvector [4, Chapter 9]. Finally we need to establish conditions which
imply that there exist a P™ € (0,00) such that the spectral bound s(Bp+) is
negative and therefore the dominant eigenvalue Ap+ = s(Bp+) is also negative;
and a P~ € (0,00) such that this dominant eigenvalue Ap- = s(Bp-) is positive.
Then it follows from standard perturbation results on eigenvalues (see e.g. [15])
that there exists a zero eigenvalue. A similar strategy was employed in [2] to es-
tablish existence and uniqueness of an equilibrium solution of a cyclin structured
cell population model.

Lemma 2.2. For every P € (0,00) the semigroup 7T (t) generated by the operator
Bp is positive.
Proof. We rewrite (2.11) as, Bp = Ap + Cp, where

Apu == (5 Phu) — (- PJu

Dom (Ap) {UEWU(Om |u(0) =0},
CPU_/ ﬁ 3/» )dy7
Dom (Cp) = L'(0,m). (2.12)

For 0 < f € L*(0,m) the solution of the resolvent equation

(AT — Ap)u = f,

This shows that the resolvent operator R(\, Ap) is a positive bounded operator,
hence Ap generates a positive semigroup. Since Cp is a positive and bounded
operator, the statement follows. O

Lemma 2.3. The linear semigroup T (t) generated by the operator Bp is eventu-
ally compact.
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Proof. We note that Ap generates a nilpotent semigroup, while it is easily shown
that Cp is a compact operator if conditions (1.4) hold true. (For more details see
also Theorem 3.6.) O

Lemma 2.4. Assume that for every P € (0,00) there exists an g9 > 0 such that
for all 0 < e < g

/ B(s,y, P)dyds > 0. (2.13)
0 m—e
Then the linear semigroup T (t) generated by the operator Bp is irreducible.

Proof. We only need to show that under condition (2.13) for every py € L% (0,m)
there exists a ty such that

supp T (to)po = [0, m],
for all t > ty. Since v > 0, there exist t, such that

supp T (t)po N supp B(s, =) # 0

for every t. < t and every s € (0,g]. By assumption (2.13), 7 (t)po(s) > 0 for
t. < tand s € (0,e]. After this, eventually the support of the solution 7 (to)po
will cover the entire size space [0, m]. O

Lemma 2.5. Assume that there ezists a 3~ (s,y,P) = 0y (s,P)p5 (y) and a
P~ € (0,00) such that

Br (s, P7)By (y) < Bls,y, P7), s,y €[0,m], (2.14)
and
"By, PTGy () {_ *ys(z, P7) + plz, P7) }

/0 /0 Wy Po) T /y (2, P7) Aoy duds= (12 5

and a 37 (s,y, P) = B (s, P)35 (y) and a P+ € (0,00) such that ‘
Bs,y, PT) < B{ (s, P7)B5 (y), (2.16)

By (y, P*)By (s) (2 P) + p(z, PT)

/ / 1 ( = P+2 exp {—/y (o P dz} dyds < (1 |
2.17

Then the operator Bp- has a dominant real eigenvalue A\p- > 0 and the oper-
ator Bp+ has a dominant real eigenvalue \p+ < 0, with corresponding positive
etgenvectors.

Proof. First assume, that there exists a 5~ (s,y, P) = f; (s, P)f35 (y) and a P~
such that condition (2.14) and (2.15) hold true. Let B,_ denote the operator
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that corresponds to the fertility 6~ and the constant P~. The solution of the
eigenvalue problem

Bo_u = Au, u(0) =0 (2.18)

" (S Vuls) ds Sﬁf(?/,P_)eX [P A+ PT) + oz PT) ;
_/0 Pz (s)uls)d /0 v(y, P~) p{ /y (2, P7) d(}dy)'
2.19

We multiply equation (2.19) by 3, and integrate from 0 to m to arrive at the
characteristic equation

) :/ ﬁ;(s)/ By, P7) exp{_/ At %5z P7) + plz, PT) dz} dy ds.
0 0 fy(y,P ) Y 7(27P )

(2.20)
It is clear that equation (2.20) admits a unique dominant real solution A,_ > 0 if
condition (2.15) holds true. Since B,_ is a generator of a positive semigroup and
(Bp- — B,_) is a positive (and bounded) operator by condition (2.14), it follows
that Bp- has a dominant real eigenvalue Ap- > A\,_ >0, see e.g. [9, Corollary
VI.1.11].

In a similar way, let us assume that there exists a 37 (s, y, P) = 35 (s, P) 35 (v)
and a Pt such that condition (2.16) and (2.17) hold true. Let B}, denote the
operator which corresponds to the fertility 4 and the constant P*. The solution
of the eigenvalue problem

Bhiu = \u, u(0) =0 (2.21)

is now
=[ B5(s) / exp —/ dz » dy.
/0 do)e 0 P+ ) Az, PY) ’
(2.22)

We multiply equation (2.22) by 5 and integrate from 0 to m to arrive at the
characteristic equation

61 yap+ S>‘+78(27P+)+M<Z>P+)
[ [ e [P
2.23

It is clear that equation (2.23) admits a unique dominant real solution A}, <0
if condition (2.17) holds true. Since Bp+ is a generator of a positive semigroup
and (B5, — Bp+) is a positive operator by condition (2.16), it follows that Bp+
has a dominant real eigenvalue Ap+ < A} pr <0.

In both cases, the positivity of the corresponding eigenvector follows from the
irreducibility of the semigroup 7 (t), see [4, Theorem 9.11]. O

Theorem 2.6. Assume that conditions (2.13), (2.14)-(2.17) are satisfied. Then
system (1.1)-(1.3) admits at least one positive equilibrium solution.
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Proof. Let P* > 0 be such that s(B}) = 0. Then, since the spectrum consists
only of isolated eigenvalues we have Ap« = s(Bp~) = 0 and there exists a corre-
sponding positive eigenvector p,. Then ﬁp* is the desired equilibrium solution

with total population size P*. 0

3. The linearised semigroup and its regularity

First we note that when we say linearised semigroup, we mean the linear semi-
group governing the linearised system. However, since it was proved in [3] that
model (1.1)-(1.3) is well-posed, there exists a semigroup of nonlinear operators
{3(t)},~, defined via X(t)p(s,0) = p(s,t). We also note that it was proven
in [8] that if the nonlinearities are smooth enough (namely, the vital rates are
differentiable) then this nonlinear semigroup ¥(¢) is Frechét differentiable and
the Frechét derivative around an equilibrium solution p, defines a semigroup of
bounded linear operators. In this section we will establish the existence of this
semigroup and at the same time arrive at a condition which guarantees that it is
positive, as well.

Given a positive stationary solution p, of system (1.1)-(1.3), we introduce the
perturbation u = u(s, t) of p by making the ansatz p = u+p.. Then we are using
Taylor series expansions of the vital rates to arrive at the linearised problem
(see e.g. [10])

ue(s, t) = —=y(s, P) us(s, 1) — (ys(s, Po) + p(s, P.)) u(s,t)
— (Vsp (8, Pu) pu(s) + pp(s, ) p«(s) + vp(s, P) pi/(s) U(2)
-+Amu@¢)Qxa%fm4iém@4&4fgm@yu)d%(33
(0, P)u(0,8) = 0 (3.2)
where we have set
U@%:Amuﬁjﬁh. (3.3)
Eqs. (3.1)~(3.2) are accompanied by the initial condition
u(s, 0) = ug(s). (3.4)

Our first objective is to establish conditions which guarantee that the linearised
system is governed by a positive semigroup. To this end, we cast the linearised
system (3.1)-(3.4) in the form of an abstract Cauchy problem on the state space
X = L'(0,m) as follows

%u:LA+B+C+DNM u(0) =0, (3.5)
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where

Au = —7(-, P.) us with domain Dom (A) = {u € W"'(0,m)|u(0) = 0},

Bu = — (78('7P*> +M('7P*)) u on X,

Cu=— (P e P pect 2 P ) [ (o) ds
= —p*(_)/om u(s)ds on X, (3-8)
Du = /Om u(y) ( / Bp (., 2z, P)p«(z )dz) dy on X, (3.9)

where p, is defined via equation (3.8). Our aim is to establish that the linear
operator A + B 4+ C + D is a generator of a quasicontraction semigroup. To this
end first we recall (see e.g. [1, 4, 9]) some basic concepts from the theory of linear
operators acting on Banach spaces. Let O be a linear operator defined on the
real Banach space ) with norm ||.||. O is called dissipative if for every A > 0 and
x € Dom (O),

(Z = AO)z[| = [[z].

Furthermore, a function f : ) — R is called sublinear if

fle+y) < fl@)+fly), zyed
fQAz) =Af(z), A>0, xze€).
If also f(x) 4+ f(—x) > 0 holds true for x # 0 then f is called a half-norm on ).
The linear operator O is called f-dissipative if
flz) < f(x —AOx), A>0, z€Dom (O).

An operator O which is p-dissipative with respect to the half norm

p(x) =|l="|

is called dispersive, where 27 = 2V 0 (and = = (—2)"). Finally a Cj semigroup
{7 (t)},5 1s called quasicontractive if

17O < e, t20,
for some w € R, and it is called contractive if w < 0. We recall the following
characterization theorem from [4].
Theorem 3.1. Let Y be a Banach lattice and let O: Dom (O) — Y be a linear
operator. Then, the following statements are equivalent.

(i) O is the generator of a positive contraction semigroup.
(ii) O is densely defined, Rg (\Z — Q) =Y for some A > 0, and O is disper-

sive.
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We also recall that O is dispersive if for every z € Dom (QO) there exists ¢ € V*
with 0 < ¢, ||¢|| < 1 and (z,¢) = ||x]|| such that (Ox, ¢) < 0, where (.,.) is the
natural pairing between elements of ) and its dual V*.

Theorem 3.2. The operator A+B+C+D generates a positive strongly continuous
(Cy for short) quasicontraction semigroup {7 (t)}i>o of bounded linear operators
on X if the following condition holds true

pu(s) < Bls,y, P.) + / Bp(s,y, PIpa(y)dy, s,y € 0m),  (3.10)

where p, is defined via equation (3.8).

Proof. Our aim is to apply the previous characterization theorem for the per-
turbed operator A+ B+ C + D — wZ, for some w € R. To this end, for every
u € Dom (A+ B+ C + D — wZ) we define ¢, € X* by

_ u'(s)

P = Tao
if u(s) = 0 then let ¢,(s) = 0. Then

[|¢ulloo <1,

se[0,m], wu(s)#O0, (3.11)

and clearly
(06 = [ ul)ouls) ds = [
0
Making use of condition (3.10) we obtain the following estimate.

(A+B+C+D—-wl)u,d,)

m m m

:—/0 L+ (s) ((s, P*)u(s))sds—/o 1o+ (8) p(s, Pou(s) ds_/o Lo+ (s) wu(s)ds
+ /Om Lo+ (s) /Omu(?/) <5(8,y,P*) + /Om Bp(s, 2z, P)p.(z) dz — p*(5)> dy ds

<= [ 1) (s Pul), ds = ol — int s P2 [
0 s€[0,m

Tt || sup (ms,y,aw / 5p<s,z,p*>p*<z>dz_p*<s>>

y€[0,m]

< —w||ut [l = (y(m, Poju(m)) Ly (m)

Tt || sup (ms,y,aw / 5P<s,z,p*>p*<z>dz_p*<s>>

y€[0,m]

<0, (3.12)
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for some w € R large enough, hence the operator A+ B + C + D — wZ is disper-
sive. The operator A+ B+ C + D — wZ is clearly densely defined. We observe
that the equation

M —-A)u=nh (3.13)
for h € X and A > 0 sufficiently large has a unique solution u € Dom (A), given
by

) TR h(y)
u(s) = exp —/ —dy}/exp{/ dz}—dy. 3.14
) { o Y, P) 0 o Yz P) )y P (314
The fact that u € Dom (A) is well defined by (3.14) follows from

/ h(s) A " Y A z ()
e B R s Sy
)
< V(S,P*> +MA7

for A large enough for some M), < oo, that is u€ W1(0,m). Since B+ C + D—wI
is bounded, the range condition is satisfied. Theorem 3.1 gives that A+ B+ C+ D
— w7 is a generator of a positive contraction semigroup. Since the operator wZ
is positive (clearly if the dispersivity estimate holds true with an w < 0 than it
holds true with any other w* > w) a well-known perturbation result (see e.g. [9])
yields that A + B 4 C + D is a generator of a positive quasicontraction semigroup
T which obeys
1T @) <et, t>0. O

Remark 3.3 The proof of Theorem 3.1 shows that if

inf , P >
sé[ro‘,m]’“‘(s )

sup (ﬁ(s,y,P*) + /Omﬁp(s,z,P*)p*(Z) dz —p*(8)>

y€[0,m]

o

holds, then the growth bound wy of the semigroup is negative, hence the
semigroup {7 (t) }+>o is uniformly exponentially stable (see e.g. [9]), i.e. the equi-
librium p, is locally asymptotically stable.

Remark 3.4 We note that the operator A + B + C + D is in general a generator
of a Cy quasicontraction (but not positive) semigroup. The proof of this would
utilise the Lumer-Phillips Theorem (see e.g. [1, 4, 9]) and goes along similar lines,
obtaining a dissipativity estimate in terms of u rather than u™, see e.g. [11]. This
implies that the linearized problem (3.1)-(3.2) is well-posed.

Remark 3.5 Note that if 8 = §(s,y), p = u(s), v = v(s), i.e. model (1.1)-(1.3)
is a linear one, then the biologically relevant conditions p, 6 > 0 and v > 0 imply
that it is governed by a positive quasicontraction semigroup.
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Theorem 3.6. The semigroup {7 (t)}+>0 generated by the operator A+B+C+D
1s eventually compact.

Proof. C is a rank one operator hence it is compact on X = L'(0,m). D is linear
and bounded. Hence in view of the Fréchet-Kolmogorov compactness criterion
in LP (see e.g. [24]) we need to show that

m

lim |Du(t + s) — Du(s)| ds =0, uniformly in w,

t—0 0

for v € B, where B is the unit sphere of L'(0,m). But this follows from the
regularity assumptions we made on ( based on the following estimate

[Du(s1) = Dulsa)| < [lullh

Hmsl, wr+ " Bp(s1. 2, PYpa(=) dz—B(sa,y, P.) + / Bp(sa 2, P)pu(2) dz

Therefore, it suffices to investigate the operator A+ B. To this end, we note that
the abstract differential equation

o0

d
corresponds to the partial differential equation
Ut(S, t) + 7(87 P*) US(Sa t) + (/73(3, P*) + M(S7 P*)) U(Sﬂf) = Oa (316)

subject to the boundary condition (3.2). We solve easily equation (3.16) for
example using the method of characteristics. For ¢t > I'(m) we arrive at

u(s, 1) = u(0,t — T(s)) exp {— /0 it i *(pri‘sy’ b) dy} —0, (3.17)

where

s 1
)= | NN

This means that the semigroup {7 (¢)},, generated by A + B is nilpotent. In
particular it is compact for t > I'(m) and the claim follows. 4

Remark 3.7 Theorem 3.6 implies that the Spectral Mapping Theorem holds
true for the semigroup {7 (t)},., with generator A+ B+ C + D and that the
spectrum o (A + B +C + D) contains only isolated eigenvalues of finite multi-
plicity (see e.g. [9]).

4. (In) Stability
Our aim in this section is to study the stability of positive equilibrium solutions

by studying the point spectrum of the linearised operator A+ B+ C + D. The
main difficulty is, that the eigenvalue equation

(A+B+C+D-I)A=0,
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cannot be solved explicitly, since the operator D has infinite rank, in general. We
encountered this problem previously in case of hierarchical size-structured popu-
lation models, see e.g. [11, 12]. In [11] and [12] we used the dissipativity approach,
presented in the previous section, to establish conditions which guarantee that
the spectral bound of the linearized semigroup is negative. However, as we can
see from remark 3.3 this approach gives a rather restrictive stability condition.
Therefore, here we devise a different approach, which uses positive perturbation
arguments.

Theorem 4.1. Assume that there exists an € > 0 such that

B(s,9, P.) — puls) — e + / Bp(s,y, PIp(y) dy > 0, sy € 0m],  (4.1)

T o

Then the stationary solution p.(s) of model (1.1)-(1.3) is linearly unstable.
Proof. Let € > 0, and define the operator F. on X as

m
Feu = 5/ u(s)ds = eu.
0
We first find the solution of the eigenvalue equation

(A+B+ F)u=Au

u(s) =e uexp {— /Os At 78(?(]2);:)”(07 i) da}

Next we integrate the solution (4.3) over [0, m] to obtain

e [ o (- [ AEBEL) 40 ) do}

e[ ) ] o

We note that, if @ = 0 then equation (4.3) shows that u(s) = 0, hence we
have a non-trivial eigenvector if and only if u # 0 and A satisfies the following
characteristic equation

1=K\ o 5/0m [exp{_/os >\+%(<77;£»12)P4;>M(a, P,) da}

x /0 exp{/oy AJF%(UV’&)P;“(“’ i) da} dy} ds. (4.5)

as
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It is easily shown that

therefore it follows from condition (4.2), on the grounds of the Intermediate Value
Theorem, that equation (4.5) has a positive (real) solution. Hence we have

0<s(A+B+F.),

where s(A + B + F.) stands for the spectral bound of the operator A + B + F..
Next, for a fixed 0 < f € X, we obtain the solution of the resolvent equation

AN — (A+B+F)u=,

u(s) = exp {— /Os AT 75(:(]2);:)“(0’ B da}

></Osexp{/oy)\+%(Uf;<]2)Pt)M(U’P*) da} (ci+ fy)dy.  (4.6)

We integrate equation (4.6) from 0 to m to obtain

fom eXp {_ OS )\+’75(0'7P*)+M(0—7P*) da-} fos eXp { Oy A+’75(0-7P*)+H‘(0—7P*) do-} f(y) dy

as

7= (o, Px) (o, Px)
1 f(]m exp {_ Os Aﬂs(:{;);j(o,g) da} fOS exp { Oy )\+'ys(:,{;i£:¢(a,&) do} dy
(4.7)

It follows from the growth behaviour of the exponential function and from as-
sumptions (1.4), that @ is well-defined and non-negative for any 0 < f € A and
A large enough. Hence the resolvent operator

RONA+B+F)=(0\—(A+B+F)) "

is positive, for A large enough, which implies that A + B + F. generates a positive
semigroup (see e.g. [9]).

Finally, we note that condition (4.1) guarantees that the operator C + D — F.
is positive, hence we have for the spectral bound (see e.g. Corollary VI.1.11 in [9])

0<s(A+B+F.)<s(A+B+F.+C+D~F.)=s(A+B+C+D),

and the result follows. O
Next we show that for a separable fertility function we can indeed explicitly
characterize the point spectrum of the linearised operator.

Theorem 4.2. Assume that 3(s,y, P)=/1(s, P)B2(y) dof g(s,y, P), s,y€ [0,m],

P € (0,00). Then for any X\ € C, we have X\ € o(A+ B+ C+ D) if and only if
A\ satisfies the equation

=0, (4.8)

K;(\) da(”alw az(}) )

az() 1+ ag(N)
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where
a;(\) = —/OmF()\,s,P*) /OS %dyds,
B " ° Bi(y, Pi)
as(N\) = —/0 F()\,S,P*)/O S P)FOwy P dy ds,
az(\) = — /Om Ba(s)F (A, s, Py) /05 % dy ds,
_ [ s 5 ° Bi(y, Py) .
w) == [ s p) [ B cayas (49)
and
Brp(s, P) /0 : Bo(y)ps(y) dy — pi(s)
g(s) = (5. ) , s €l0,m],
F(\s,P,) = exp{_/os A+%(y7’£*)1;:)u(y7 P,) dy}’ s [0,m].

Proof. To characterize the point spectrum of A+ B+ C + D we consider the
eigenvalue problem

(A+B+C+D—-XI)U =0, U(0)=0. (4.10)
The solution of (4.10) is found to be
77 ° g(y) 7 ° ﬁl(y,P*)
U(s) =UF(\, s, P, / —————dy+UF(\,s, Pk / Y,
R A PN R A SETOW ATy

(4.11)

where

U:/OmU(s)ds, ﬁ:/omﬁ2(s)U(s)ds.

We integrate equation (4.11) from zero to m and mulitply equation (4.11) by
B2(s) and then integrate from zero to m to obtain

U1+ a1(N) + Uas(N) =0, (4.12)
Uas(\) + U(1 4 as(\)) = 0. (4.13)

If A € 0(A+ B+ C + D) then the eigenvalue equation (4.10) admits a non-trivial

solution U hence there exists a non-zero vector (U,U) which solves equations

(4.12)-(4.13). On the other hand, if (U,U) is a non-zero solution of equations
(4.12)-(4.13) for some A € C then (4.11) yields a non-trivial solution U. This is
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because the only scenario for U to vanish would yield

UF (), s) /OS %dy = —UF(),s) /08 (y,ﬁ;(ﬁlfpg)?,y) dy, s€[0,m].

This however, together with equations (4.12)-(4.13) would imply U = U = 0, a
contradiction, hence the proof is completed. O

Theorem 4.3. Assume that condition (3.10) holds true for some stationary solu-
tion p.. Moreover, assume that there exists a function ((s,y, P) = (1(s, P)B2(y)

such that ((s,y, P.) < B(s,y, P.) for s,y € [0,m] and the characteristic equa-
tion KBO‘) = 0 does not have a solution with non-negative real part. Then the
equilibrium solution p, is linearly asymptotically stable.

Proof. We need to establish that the spectral bound of the linearised operator
A+ B+ C + D is negative. To this end, we rewrite the operator D as a sum of
two operators, namely D = G + Hg, where

Gu = ﬂ/m Bp(, 2z, P)p«(z)dz, on X,
0

Hau = / w(y)B(~y, P)dy, on X.
0

Condition (3.10) guarantees that A + B + C 4+ G+ Hp is a generator of a positive
semigroup, while the eventual compactness of the linearised semigroup assures
that the spectrum of A+ B+C+ G+ HE contains only eigenvalues and that the
Spectral Mapping Theorem holds true. Since Hz—Hp is a positive and bounded
operator we have

sS(A+B+C+G+MHp) <s(A+B+C+G+Hs+Hz—Hp)
=s(A+B+C+G+H;) <0, (4.14)

and the proof is completed. O

Example 4.4 As we can see from equations (4.8)-(4.9) the characteristic func-
tion K 5()\) is rather complicated, in general. Therefore, here we only present
a special case when it is straightforward to establish that the point spectrum
of the linear operator A+ B+ C + G + Hj; does not contain any element with
non-negative real part. In particular, we make the following specific assumption

52(') = [o.
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In this case we can cast the characteristic equation (4.8) in the simple form

e
0 Jo y AR
y (g(y)v(y, P.) + Bi(y, P)Ba
Y(y, Ps)

) dyds = 1. (4.15)
We note that, if

gy, P) + iy, P)B2 >0,  y € [0,m],

which is equivalent to the positivity condition (3.10), then equation (4.15) admits
a dominant unique (real) solution. On the other hand, it is easily shown that
this dominant eigenvalue is negative if

I S e
y <g(y)7(y, P,) + By, P)Be

1y, P.)
It is easy too see, making use of equation (2.7), that (4.16) is satisfied if

/om 7(5,1P*) /0 P {_ /y % dZ} g(y) dyds <0,

holds true. In this case, we obtain for the growth bound of the semigroup wy
wo=s(A+B+C+7G+Hz) <0,

see e.g. Th.1.15 in Chapter VI of [9], which implies that the equilibrium solution
is linearly stable.

) dyds < 1. (4.16)

5. Concluding remarks

In this paper, using linear semigroup methods, we analysed the asymptotic
behaviour of a size-structured scramble competition model. We were motivated
by the modelling of structured macro-parasites in aquaculture, where the pop-
ulation dynamics at the first chalimus stage of certain sea lice species is driven
by a similar set of model equations. First we studied existence of equilibrium
solutions of our model. In the case when the fertility function is separable, we
easily established monotonicity conditions on the vital rates which guarantee the
existence of a steady state (Proposition 2.1). In the general case we used positive
perturbation arguments to establish criteria that guarantee the existence of at
least one positive equilibrium solution. Next, we established conditions for the
existence of a positive quasicontraction semigroup which governs the linearized
problem. Then we established a further regularity property of the governing linear
semigroup which in principle allows to study stability of equilibria via the point
spectrum of its generator. In the special case of separable fertility function we
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explicitly deduced a characteristic function in equation (4.8) whose roots are the
eigenvalues of the linearized operator. Then we formulated stability /instability
results, where we used once more finite rank lower /upper bound estimates of the
very general recruitment term. We note that it would be also straightforward
to formulate conditions which guarantee that the governing linear semigroup ex-
hibits asynchronous exponential growth. However, this is not very interesting
from the application point of view, since the linearised system is not necessarily
a population equation anymore.

It it is interesting to note that characterization of positivity using dispersivity
resulted in much more relaxed conditions than the ones we obtained in [10] for
a more simple size-structured model with 1-state-at-birth by characterizing pos-
itivity via the resolvent of the semigroup generator. This although is probably
due to the different recruitment terms in the two model equations. Positivity
is often crucial for our stability studies, as this was demonstrated in Section 3,
indeed, more relaxed positivity conditions result in the much wider applicability
(i.e. for a larger set of vital rates) of our analytical stability results.

We also note that in spaces where the positive cone has a non-empty interior
there is a much more efficient way of characterizing positivity. Indeed, the positive
minimum principle (see e.g. [1]) would potentially yield more relaxed positivity
conditions than the ones we obtained in here. The difficulty to characterize
positivity lies in the fact that the natural state space L' contains in a certain
sense too many (non-positive) elements. In fact the interior of the positive cone
of L' is empty. There is another result to characterize positivity in spaces where
the positive cone has empty interior, namely the generalized (or abstract) Kato-
inequality (see e.g. [1]). In our setting the abstract Kato-inequality reads

Su(A+B+C+Du < (A+B+C+D)|ul, (5.1)
for u € Dom (A + B+ C + D), where S, is the signum operator, that is

5, =2

Jul

It is straightforward to show that inequality (5.1) requires

Su [ uto) (S0P + [ B2 Pz = )

slﬁwm(mMum+Aﬂmwfmmam—m@)@»eMmL
(5.2)

which holds true for every u € Dom (A + B+ C + D) indeed when condition
(3.10) is satisfied.

As we have seen previously in Section 3, since the linearised system is not
a population model anymore, the governing semigroup is not positive anymore
unless some additional condition is satisfied. However, it was proven in [16]
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that every quasicontraction semigroup on an L! space has a minimal dominating
positive semigroup, called the modulus semigroup, which itself is quasicontrac-
tive. Hence, in principle, one can prove stability results even in the case of a
non-positive governing semigroup, by perturbing the semigroup generator with
a positive operator such that the perturbed generator does indeed generate a
positive semigroup.
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