NORM CONVOLUTION INEQUALITIES IN LEBESGUE
SPACES

E. NURSULTANOV, S. TIKHONOV, AND N. TLEUKHANOVA

ABSTRACT. We obtain upper and lower estimates of the (p, ¢) norm of the con-
volution operator. The upper estimate sharpens the Young-type inequalities
due to O’Neil and Stepanov.

1. INTRODUCTION

Let 1 <p < oo, L, = L,(R) and let the convolution operator be given by

(1) (AN)(@) = (K« f)(a) = [ K= 9) 1wy
R
The Young convolution inequality
1 1 1
[All,~, < K,  14+-=-+-  1<p<g<oo,
g p T

plays a very important role both in Harmonic Analysis and PDE theory. We note
however that this estimate does not allow us to deal with power kernels such as
K(z)=|z|™, v>0.

Young’s estimates were generalized by O’Neil [ON] who showed that for
l<p<g<ocandl/r=1-1/p+1/q

(12) Al -1, < C 1K, = Csup 87K (1),

where K*(t) =inf {o: pu{z € Q:|f(z)] > o} <t} Iis the decreasing rearrange-

ment of K. In particular, this gives the Hardy-Littlewood fractional integration

theorem, which corresponds to the model case of convolution by K (x) = ||~/
Another extension of Young’s inequality was proved by Stepanov [Stp] using

the Wiener amalgam space W (L;o0[0,1], l;,5(Z)) (see e.g. [Fe]): for 1 < p <

qg<+4ooand 1/r=1-1/p+1/q one has

(1.3) 1A, ~, < CIElW (Lo, 2))
2000 Mathematics Subject Classification. Primary 46E30; Secondary 44A35, 47G10.

Key words and phrases. Convolution, Young-O’Neil inequality, Lorentz spaces.
1



2 E. NURSULTANOV, S. TIKHONOV, AND N. TLEUKHANOVA

where

||K||W(Lr,oo[07l]7lr,oo(Z)) = H ||K||Lr,oo[071} Hl’,»oo(Z) := sup nl/T’ ( sup tl/T’K* (t, )) ,

’ neN 0<t<1 n
and K(z,m) := K(m+x), m € Z, x € [0,1]. In [Stp] it was also shown that
inequalities (1.2) and (1.3) are not comparable.

The aim of the present paper is to give upper and lower estimates of ||A| 1, -z,
so that the upper estimate improves both (1.2) and (1.3). To formulate our main
results, we will need the following definitions.

Let I be an interval with |I| = d. Then T7 = {I + kd},, is a partition of R,
ie., R =Jyez(I + kd). We define two collections of sets £(1) C U(I):

(1.4) Q(I):{e D e = 6([a,b]+kd), [a,b] C I, meN}

k=1
and
il([)—{e : e:ka, mEN},
k=1
where {wy }1* is any collection of compact sets of equal measure |wg| < d and such

that each wy belongs to a different elements of T7.

Theorem. Let 1 <p < q < oo and K € Lj,.. Then for Af = K % f we have

/e K (x)da

(1.5) Cy sup sup
I eeg(I)

< [|Allz,-r,

1
|e|1/P—1/q

< Cy inf sup
I eeu(r)

)

/e K (x)dz

For the certain regular kernels K, for instance, monotone or quasi-monotone,
the upper and lower bounds in (1.5) coincide, that is, we get the equivalent
relation for || Al|z,—r,. More precisely, we call a locally integrable function K (z)
weakly monotone if there exists a constant C' > 0 such that for any z € R\ {0}

1 X

1 / K(t)dt‘.

T Jo

Corollary. Let 1 < p < g < 00 and K € Lj,. be a weakly monotone function.

Then a necessary and sufficient condition for Af = K % f to be bounded from
L,(R) to Ly(R) is

le[1/p—1/

where the constants Cy and Cs depend only on p and q.

[K(x)] < C

sup
|z|>0

/Ox K(y)dy‘ < 0.

1
‘x’l/pfl/q
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/;K(y)dy‘ :

By C, C;, ¢ we will denote positive constants that may be different on different
occasions. We write F' = G if ' < C1G and G < C5F for some positive constants
(7 and (5 independent of essential quantities involved in the expressions F' and G.

The paper is organized as follows. In section 2 we obtain a required version
of the Riesz Lemma for rearrangements (see, e.g., [St]). Section 3 and 4 are
devoted to the estimates of ||A||z,—z, from above and below, correspondingly.
We conclude with Section 5, where we show that the right-hand side estimate in
(1.5) implies both (1.2) and (1.3) but the reverse does not hold in general.

Moreover,

ANz, —z, = AP

2. REARRANGEMENT INEQUALITIES

First, we denote the decreasing rearrangement of f on Z"™ by f*. We also

denote f**(n) :== =37 | f*(k).
Lemma 2.1. Let functions f, g, and K are defined on Z"; then

(2.1) D gk)(E x| 227“9 (r) K™ (r).
keZ
Proof. From f**(n) = sup el LS £(s)| (see [BS, Ch. 2, §3]) and the Hardy-

see
eCZ

Littlewood inequality [BS, p.44], we write

D gR)E = f)(k) <Y g7 (r) (K * f)™(r)

keZ r=1

N

N
2 102 18
Q*
<
=
S
NE
* &:
B
>
|+
N
=
VA
—
B

=1 s€e
. - 11
<Q_g(sup > f7(m) | sup i DY IK(s—1)
r=1 :CET 1 wcim t€w s€e

<D g" (1) > fe(m) | sup sup €|| |ZZIKS—t

r=1 m=1 LC‘Z J:JC‘Z tew se€e
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We consider
O(r,m) = supsup’ IE |ZZ]Ks—t
eCZ wCZ tew see

If r < m, then

O(r,m) \supz sup > 7 Hw\Z’K £)] = K*(m)

M
e

and if m < r, then

O(r,m) < sup D 701 HW‘ ZsupZN( s—t)| = K" (r).

IW\ \ [=r
cz S€e

Hence, we get
O(r,m) < K™ (max{r,m}).

Therefore,

keZ r=1 m=1

The proof is complete. O
The continuous analogue of the previous lemma is the following result.

Lemma 2.2. Let f and g be measurable functions on [0,d] and K be measurable
n [—d,d]. Then

d d
/g /f y—x)dxdy
0 0

d
<2/tg**(t)f** sup el /|K )| dz | dt.
0

|e\ t
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Proof. Similarly to the proof of Lemma 2.1, we have

d
g* /f* sup sup //|K x)| dxdy
eC[Od wC|[0,d] 6|| |
0

=s |w|=t

/ 9(y) (K * 1) (y)dy

d
0/
d
/g*(S)/f (t)®(s,t)dtds.
0 0

Further, for s < t, we get

O(s,t) < sup sup /]K — z)|dxdy < sup /\K )| dz,
eCOd) ’ | e wC[0,d] |W| wC[ d,d] |w|

|wl=t

and for s > t,

d(s,t) < sup /|K )| dy.
eC[ d,d] 6‘
lel=

Finally, as in the proof of Lemma 2.1, we have

d d
/g (K *f 2/tg** sup /|K )| dx. O
eC[ d,d] €|
0 0

le]=t

3. PROOF OF UPPER BOUND FOR | 4||1,-1,

Let d > 0, I = [0,d), and T} = {(md, (m + 1)d|},,., be the corresponding
partition of R. For a locally integrable function K (x) we put K(z) = Ki(x,d) +
Ky(z,d), where

K(x), if ze€(@2md,(2m+1)d], meZ
Kl(.ilf,d) = .
0, if xe((2m—1)d,2md], meZ
and
(2.d) = 0, if xe€(@2md,2m+1)d, meZ
YT K@), if ze (@m—1)d,2md], mez.

Then we write the convolution operator Af = f*x K as A = A; + Ay, where
Aif = f*xK;, i=1,2, we have

(3.1) 1Al

—>Lq

< Zmax || Aiflp, .,
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Let d > 0 for k € Z and = € [0,d], we denote
Fla k) i= f(w + k),
9(z, k) := g(x + kd),
Ki(z, k) :== K;(z + kd).

We are going to estimate the following quantity

/ /f y—a)dedy, 1=1,2,

Let us write it as follows

11_§:/n y+hi§:/‘f +md) K (( )(k—mm)@m/

keZ
(3.2) & f —z,k —m) dudy.

To estimate this functional, we first use Lemma 2.2:

QZZ/ O, m)ge (L, k) sup /Ki(m,k—m)dm dt

A eC[—d,d] €| e

€Z meZ le|=t
d

= /t Z **)1tk:Zf(** t,m) sup Ki(z, k — m‘d dt,
0 keZ meEZ |e\ t

where

- 1 [t .
f(**)l(t,m) = Z/ f(t,m)dt, m € Z,
0

1 t
—/ Gt k)dt, ke,
t 0

and f*l(t, m),g* (t,k) are decreasing rearrangements of f(x,m), §(x, k) with
respect to  and with fixed m and k, correspondingly.
Applying now Lemma 2.1, we get

d o0
J; < 4/ tZsf**(t, $)g™*(t, s) sup
0 s=1

d too

;4/0 £ s 9T (1 5) Falt, s Ko db

s=1

GO (8, k) =

(x,m) d:c dt

|Z sup
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where
S o

Frts) =230 (7).
=1

~ k% 1 ~(%x)1 *2
g <t73) = gz (g( ) <t7')>l :
=1

Then writing
(t5)g™ (¢, ) (t, 5) Fult, 5: )

< ()72 (1,)) (37 (0.9)) (s (1) Falt, 50 Ko)

and using Holder’s inequality with parameters ¢ and ¢’ and the fact that L,, —
L, for ¢ < q1, we get

d ©°
/ D tsf(t8)g " (t s) Fult, s; Ki)dt
0 s=1

1/q
<4 sup (ts)' G Fy(t, 5 K) (Z/ (7(t,5)) dt>

0<t<d SN
1/p
(Z / ts dt) .

seEN
seN

Then by Hardy’s inequality,

(11
— m)dzdy’ C sup (ts)' (5 q)Fd(t, s; K) |11, ||9||Lq, .

o<t<d
seN
Thus,
_(1_1 .
(3.3) 1Al ., < Coilggd(ts)l GOFt, s k), i=1,2.
SEN\

Note that by definition, K7 and K, satisfy
supp K1 (x, s) C [—d, 0] x Z, supp Ks(x, s) C [0,d] x Z.
Therefore,

sup /]Kl.ickr\daz: sup / de, keZ
ec[ dd] ’ ‘ eC[ d,0] ‘6’

and

sup /|K2xk|dx—sup / dr, k€Z.
eC[—d,d] 6| eCOd]l |

le|=t le|=t
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Then
1 N
sup (ts)l—(%_%)Fd(t, s; Ky) = sup sup —— E sup / Kl(x,m)’dx.
0<t<d 0<t<d |w|=s (ts)E_E c le|=t e
sEN sEN MEW ¢c[—d,0]

For any m € Z and t € (0, d] we find e,,; C [—d, 0] such that |e,,¢| =t and

sup/ Kl(:v,m))dx<2/
le|=t Je em,t

:2/ |K1(x—i—md)|dm:2/ K (2)] da.
em,t em,t+md

The set 7, = €y, +md of measure ¢ for different m belongs to different elements
of Ty = {nd, (n+ 1)d} So, for 0 < t < d and r € N we have

Kl(x,m)‘ dx

nez’

=P
sup ——— sup
lw|=s (tS)%_é mz el=tJe

€w|

- 1
Kl(:l:,m)’ de <2 sup —— /|K )| dz.
e€s([0,d]) |e’p q

Therefore, we obtain
sup (ts)lf(%fé)Fd(t, s; K1) <2 sup /|K )| dz
0<t<d eesl([0,d]) |e \p a
seN

and, similarly,

1 1 1
sup (1) G DE( s k) <2 swp [ |i)

0<t<d
SEN ec([0,d]) |e‘p q

Combining this with (3.1) and (3.3), we get

JAll, ., <C sup / K ()] da
ec([0,d]) | ‘P q

and using an arbitrary choice of d > 0,

1
1A, < Csup sup —— / K (x)] da
d>0 ec4([0,d]) ]e\p 7 Je

with a constant C' depending on p and ¢. Since the norms of operators Af = Kx f
and A;f = Ky * f, where K;(z) = K(x +1t), t > 0 coincide, the last estimate
implies
|All;, ., < Csup sup /|K )| dz.
P I ecsi(I) ‘e p q
To finish this proof, it is sufficient to show the following

Lemma 3.1. Let 0 < v < 1 and K be locally integrable. Then for any e € (1)
there exists € € (1) such that
/ K(x)dx

1
/|K )dx <
Je[" e
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Proof. Since e € U(I) we have e = | J;, wg, where |wg| = w < d,k =1, m and
wi, belong to different elements of T; = {I + kd},¢z.
For any wy, let us define

w,ﬁ::{xewk:K(x)EO} and wiz{xewk:K($)<0}.

Then
/ K (:v)d:n‘
Wi

/|K(x)|d:v — /K(g;)da;—/K(x)dx < 2max ‘/K($)d$,

We can assume that
‘/K(a:)da:‘ > ’/K(:c)dx‘
wy wj

Let us consider two cases: |wy| > % and |w;| < %. In the first case, there exists
@, C wy, such that || = ¥ and

2‘/1{(3;)613;‘ > ‘/K(x)dx‘.

In the second case, |wj| < % and there exist 1, and 73 such that |, (77| = 0,

nUn? = w?, and |ni| = o ’“l . Since K (x) keeps its sign on w?, we have

(/K )dal ‘/K dx—‘/K dx)+‘/K Jda

> 2min (‘/K(w)d:c), /K(:c)d:c‘) :2‘/K(x)da:’.

Here 1 are sets where the infimum is attained. Then we consider 1, C 7;° such
that || = % — [}
Let now @y, = 1, Uw;, then |0y] = 5 and

‘/K(m)dw‘: /K d:c+/K d:c
/K dx ‘/K dx
/K d:n ’/K dx/QuK dm

WV

V
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Therefore, in both cases, we have

/|K(x)|dx <] /K(x)dx( < 4\/1{(9;)613; |

Suppose
I = {k: / K@)de > 0%, J = {k / K(z)ds < 0
L:Jk (:Jk
then
Qmax{‘/ x)dx|, ‘}
UkeJ W Ukes_ @k

> g‘;‘/w K(x)ds| > i/@\[((ajﬂdas.

Taking as ¢’ the set [y, @k or Uype; @k, where the maximum is attained, we

get
1 , 1 o 1
— [ |K(z)|de <2°— | | K(z)dz| <277 K(x)dx|.
|€|Fy e |€|7 e’ |€/|’y e’
By construction, @y C wi and |0x| = %, and therefore ¢’ € U(I). O

4. PROOF OF LOWER BOUND FOR ||A||L, -1,

Let 1 <p<q<oo,%:1— (%—%), and Af = K * f is bounded from L,(RR)
in L,(R). We are going to prove that for any number d and an interval I, |I| = d,
(4.1) sup

there holds
/ K(x)dx
ec (1) e

where the collection £(1) is given by (1.4). We define £'(I) C £(I) as follows

1

W < cp, DAL, ~L,»

2’(1):{62 LmJ([a,b]—l-kd):meN la,b] C I,b—a < d/Z}

k=0

Note that for any locally summable function K (x) we have

/K )dx /K

Sup sSup
ce(I Wr < ces(I) \6]1/7“
< 2Y" sup —/ /K(x)dx :
ec /(1) |€| " e
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Indeed, the left-hand side inequality is clear since £'(I) C £(I). To prove the right-
hand side, we consider e € £(I), that is, e = |JI"([a, b] +id) = U}~ ([a, 2] +id)
uUi~ 0([““’ b] +zd) = e1 Uey. Clearly, ‘61’ = le|/2, e; € £(I), i = 1,2. Therefore,

/K(m)dm < /K
=2 Y max ———

i=1,2 |e |1/T

e |1/r )

|e|1/r’

/K

<2V sup ——— /K(m)dx
sup

ee /(1) \€|1/T,
/ K(x
ec (I

Let us first assume that K is bounded, that is, |[K(z)| < D, z € R. For s > 0

we define
/ K(x)dx|.

This is well-defined since for any e € £(I) and |e] < s we get

/e K(2)dx

Then we consider ey € £'(1), |eg| < s such that

! / 0 K(z)dx

1/r!
Since the convolution is translation invariant, then we assume that eq is of form

Hence, it is sufficient to Verify

C”AHLp*Lq‘

) lelt /’”

1
Qg = Sup 7
ee!(I) ’ |1/T

le|<s

< D|6|1—1/r’ < DSl_l/T’.

|e‘1/7"

a
>

|eo

eo = | ([0.0] +id),
i=0
where b < d/2, m € NU{0}.
Let us take 0 < § < % to be specified later. We define the following sets e;s

and es:

[(1+8)m]

€145 = U ([07 (1 + 5)b] + Zd) ’
i=0
[6m]

es = | J ([0,80] +id).

=0



12 E. NURSULTANOV, S. TIKHONOV, AND N. TLEUKHANOVA

Since ey € £'(I), we have e;;; € £(I). Then taking fo = Xxe,,;, boundedness of
the operator A implies

[ K * fOHLq < ||AHLp—>Lq ||f0||Lp

(4.2) = | Ally, ., levss” < 201Nl p, (148 [eo] .
On the other hand,

. q 1/q
I+ ol = ( [ @)
q /g

1+5 (146)
- }j/ / K((i— j)d + (x — y))dz| dy

K(x —y)dx

€1+

JEZ
[5m] 5y |[(LH0)m(146) q 1/q
S [ K- - g dy
j=0 0 i=0 “0
[om] 5y |(1+)m—5  .(145) q 1/q
= / / K(id + x)dx| dy
j=0 "0 i—j J-v
6m] (148)b
> / [ /szerda:— Z/ K(id + z)dz
i=—j
(A+ml=7 . (146)b-y m 0
Iy / K(id + o)dz| - Z/ K(id + 2)dz
i=m+1 i i=0 Y

m (146)b—y
Z / K(id + z)dx
b

q 1/q
)
=: (/eal/eoK(x)dx— xrdy>l/q,

where e; € £'(I) such that |e;| < 20 |eol, 1 =1,2,3,4.
We put § = (2(167"/))_1 < 3. Then |e;| < |eg| < s and

o) 1
K(x)dx' > 2> — / K(x)dx
/eo 27 20e " 1ye

1

|€0|1/T’
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/K Ydx| .

and therefore
2 |ez 1/7’
o

AN
‘ €l

Taking into account |e;| < 20 |eg|, we get

e, (| o] (235 () )] ')

> Jes] / K(z)dx (1-8(25)1/7"’)

/80 K(x)dx

C,
K(z)dx| > 2% su
\/60 ( ) ' 9 eE’(I)| |1/r

le|<s

= %5% ‘60\1/[1

Using (4.2), we have

1
HAylLP—»Lq 2 Cp,q ]./T"
€0l

/K )dx

Thus, for the bounded K and for any s > 0 we obtain

/ K(x)dx
where C' depends on p and gq.
To prove this in a general case of locally integrable K not necessary bounded,
we consider

(4.3) sup
ec(I)

< ClAllL,—z,

1
’e‘l/r/

Knl(z) = N, K(x) > N, NeN
MEZ K(2), K@) <N
and
Ky(z) K(z)>-M,
K = N, M .
N () { M K(z) < —M , ) eN
As we have proved before,
1
Sup 1/r /KN,M(x)dx <C ||AN,M||LpﬂLq> Avmf =Ky * f,
ces(n) €] e

where a constant C' does not depend on N and M.
Noting that Banach-Steinhaus’ theorem implies ||An ||z, -z, < D(D > 0) for
some D > 0 and using the monotonicity properties of Ky 5, namely,

Kyi(z) 2 Kno 2 ...2 Knu > ...

and
K1($)<K2<JZ><KN<,
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/GK(x)dx

Finally, repeating the proof of (4.3), we arrive at required inequality (4.1). O

We would like to mention that attempts have already been made at proving
the lower estimate for the convolution operator in [NS], although they require
stronger hypotheses than those used here.

we apply Levi’s theorem:

sup <cD < 0.

ecL(I)

‘€|1/r’

5. COMPARISON WITH O’NEIL AND STEPANOV’S INEQUALITIES
Let us first show that the right-hand side estimate in (1.5) implies both (1.2)
and (1.3). Indeed, it is known that ([BS, Ch. 2, §3])

1
(5.1) suptY/"K*(t) ~ supt/"K**(t) ~ sup W/N((m)]dx,

t>0 t>0 0<|el<oo |€
sup

/ K(x)dx
eesl(I) e

Let 1/r =1—(1/p—1/q) < 1,7 =r/(r — 1), and let I be an interval with
|I| = 1. Assume that e € (I), that is, e = |J."; w, such that wy € I + i, |ws| =
lw;j| =g < 1,45 # i;. Then

/eK(x)dx

and therefore

< C suptVTK*(t).

t>0

1
le|1/

m

1
- '—(mg)l/"' Z K(z)dx

s=1 Y Ws

mo el
Z/ K(x 4 is)Xuw, (T + 15)dx
s=170

1

WZ LA RERNIE

1/T /K*tz

1 g
<— sup tY7K* (¢, i, / =Yt
(mg)/ Zo<t];<)1 (t,%) 0

|€‘1/T/

~ (mg)"’

N

~

< () sup s'/" (sup tTE(t, )) :

neN 0<t<1

Thus, (1.5) is stronger than either (1.2) or (1.3). We now give an example cap-
turing the difference between these estimates.
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Example. Let 1 < p < qg<ooand 0 < 1/r =1—(1/p—1/q). Define the
function K(z) on R as follows:

2kT - for v € [k, —k+27%], keN;
K(x)=1<1, forz e[k, kE+1/k), keN;

0, otherwise.
This function satisfies
(5.2) sup / /K Jdz| < oo,
ces(o.1]) |e[t"
but
(5.3) K|z, 0 =00
and
(5.4) | KW (Lr.ce [0,1], 100 ()) = SUP nt/r (Sup T K(t, )) = 00.
neN 0<t<1 "

Indeed, let us show (5.2). Let K (2)=K(2)X[0,00)(®), K_(2) =K ()X (~00,0)(T),
then K, (z) + K_(z) = K(x) and therefore,

/ K (x)da

<

sup
e M([0,1])

1
e[/

sup —
eeM([0,1]) |€|l/r

[ Ktayia| + [ @is).

Let e € 14([0,1]). Then e = Uge,wy, where |wy| =w < 1 and v C Z, |u| =
We have

1 11
W/eK+($)d95: le—/z

keu

1 1 &
= K d
ml/r/ wl/,r. ;/0' +($+n) X

eeM [0 1)) €|1/T

K, (x)dx

Wi

1/w
1
:W /K+:U+ndx+2/ Ki(x+n)d

n=1/w
1/w n
1 1
=l | 20T 2
n=1 n=1/w

N\

W(l + In(mw)) < 2r'.
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Further,

1 11
W/ef((@dx: le—/z

keu

/w K ()

1 1 w
= K_ d
(mw) V" wir Z/O (z +n)dz

new

new
[n|<loggy 5

1 w
S —y K_(z —|n|)d
e | 2 ) Ko e

3 /OW K_(z—|n|)dz

new

In|>logy L
1
- - Inl/r =|nl/r’
(wm)l/T/ neuz: 2 b + nEuz: 2
In|<logg & In|>logy L

<ot (wl/r' + wl/T'> <4

~X (wm)l/r/ ~ .

Combining these estimates, we get
1
sup T /K(:C)d:c <4+ 2.
cesi((0,1]) € e

To show (5.3), we note that K7 (t) = 1. Hence,

sup Y7 K*(t) = sup " K* (1) = oc.
>0 >0

To show (5.4), we note

I W (L oo 0,1, oo ) = I [[W (Lo [0,1], 100 (2))

= supn!/” ( sup tl/’"(KNJQ)*(t, n))

neN 0<t<1

:supnl/r< sup tl/TZ"/’">
neN 0<t<2—"

= supn'/" = 0.
neN
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