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Abstract. We characterize two weight inequalities for general positive dyadic
operators. Let τ = {τQ : Q ∈ Q} be non-negative constants associated to
dyadic cubes, and define a linear operators by

Tτ f :=
∑

Q∈Q

τQ · EQf · 1Q .

Let σ, w be non-negative locally finite weights on Rd. We characterize the two
weight inequalities

‖Tτ (fσ)‖Lq(w) . ‖f‖Lp(σ) , 1 < p ≤ q < ∞ ,

in terms of Sawyer-type testing conditions. For specific choices of constants
τQ, this reduces to the two weight fractional integral inequalities of Sawyer
[17]. The case of p = q = 2, in dimension 1, was characterized by Nazarov-
Treil-Volberg [11], which result has found several interesting applications.

1. Introduction

Our interest is in extensions of the Carleson Embedding Theorem, especially
in the discrete setting. We recall this well-known Theorem. Let Q be a choice of
dyadic cubes in Rd. For a cube Q, set

(1.1) EQf := |Q|−1

∫

Q

f dx

Here we are abusing the probabilistic notation for conditional expectation.

1.2. Carleson Embedding Inequality. Let {τQ : Q} be non-negative con-
stants, and let 1 < p < ∞. Define

‖τQ‖Car := sup
Q∈Q

|Q|−1
∑

R∈Q
R⊂Q

τR ,

Cp := sup
‖f‖p=1

[

∑

Q∈Q

τQ|EQf |p
]1/p

.

We have the equivalence Cp ≃ ‖τQ‖
1/p
Car.
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We are interested in weighted inequalities, especially two-weight inequalities,
and in particular we will give discrete extensions of results of Sawyer [17] (also
see [18, 19]) and Nazarov-Treil-Volberg [10]. For the study of such inequalities,
it is imperative to have universal statements, universal in the weight, that can
be applied to particular operators. By a weight we mean a non-negative locally
integrable function w : Rd → [0,∞). While this is somewhat restrictive, by
a limiting procedure, one can pass to more general measures. For such weights,
and ‘nice’ sets like cubes Q we will set

w(Q) :=

∫

Q

w dx .

A first operator that one can construct from a weight is the (dyadic) maximal
function associated to w given by

Mw f(x) := sup
Q∈Q

1Q(x)Ew
Q|f | ,

Ew
Qf := w(Q)−1

∫

Q

f w dx .

Here we are extending the definition in (1.1) to arbitrary weights. It is a basic
fact, proved by exactly the same methods that proves the non-weighted inequality,
that we have

1.3. Theorem. We have the inequalities

(1.4) ‖Mw f‖Lp(w) . ‖f‖Lp(w) , 1 < p < ∞ .

This, by exactly the same proof that proves the Carleson Embedding Theorem,
gives us

1.5. Weighted Carleson Embedding Inequality. Let {τQ : Q} be non-
negative constants, let 1 < p < ∞ and let w be a weight. Define a weighted
version of the Carleson norm by

‖τQ‖Car,w := sup
Q∈Q

w(Q)−1
∑

R∈Q
R⊂Q

τR ,

Cp,w := sup
‖f‖Lp(w)=1

[

∑

Q∈Q

τQ

∣

∣Ew
Qf
∣

∣

p
]1/p

.

We have the equivalence Cp,w ≃ ‖τQ‖
1/p
Car,w.

This is a foundational estimate in the two-weight theory, indeed the only tool
needed for the proof of the two-weight maximal Theorem of Sawyer [15].

We are concerned with the following deep extension, obtained by Nazarov-
Treil-Volberg [10], of the Theorem of Eric Sawyer on two-weight inequalities for
fractional integrals [17].
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1.6. Embedding Inequality of Sawyer and Nazarov-Treil-Volberg. Let
{τQ : Q ∈ Q} be non-negative constants. Let w, σ be weights. Define

C2
1 := sup

R
σ(R)−1

∫

[

∑

Q⊂R

τQ1QEQσ
]2

w ,

C2
2 := sup

R
w(R)−1

∫

[

∑

Q⊂R

τQ1QEQw
]2

σ

C3 := sup
‖f‖

L2(σ)=1

sup
‖g‖

L2(w)=1

∑

Q∈Q

τQEQ(fσ) · EQ(gw) · |Q| .

We have the equivalence C3 ≃ C1 + C2.

The case of τQ = |Q|α/d for 0 < α < 1 corresponds to the result of Sawyer.
Nazarov-Treil-Volberg identified the critical role of this result in two-weight in-
equalities. And it has been subsequently used in the proofs of several results,
such as [2, 12, 13, 22, 23] among other papers.

The Nazarov-Treil-Volberg proof uses the Bellman Function approach. Our
purpose is to give a new proof of this result, as well as extensions of it. In par-
ticular, our proof will work in all dimensions, a result that is new (but expected)
in dimensions d ≥ 2 and higher. We discuss the general case of 1 < p ≤ q < ∞.
We also focus on the quantitative versions of these Theorems, as such estimates
are important for applications.

Let τ = {τQ : Q ∈ Q} be non-negative constants, and define linear operators
by

Tτ f :=
∑

Q∈Q

τQ · EQf · 1Q ,

Tin
τ,R f :=

∑

Q∈Q
Q⊂R

τQ · EQf · 1Q ,

Tout
τ,R f :=

∑

Q∈Q
Q⊃R

τQ · EQf · 1Q

Here, we are defining the operator Tα and two different ‘localizations’ of Tα cor-
responding to a cube R, one local and the other global. With these definitions,
we have the following equality:

(1.7) Tτ f(x) = Tin
τ,R f(x) + Tout

τ,R(1) f(x′) , x ∈ R x′ ∈ R(1) .

Here and below, we will denote by R(1) the ‘parent’ of R: The minimal dyadic
cube that strictly contains R. Note that the previous Theorem characterizes the
inequality

‖Tτ(fσ)‖L2(w) . ‖f‖L2(σ)
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Below, we consider the Lp(σ) to Lq(w) mapping properties of Tτ , where
1 < p ≤ q < ∞. These inequalities are immediately translatable into bilinear
embedding inequalities. First, we have the weak-type inequalities.

1.8. Theorem. Let τ be non-negative constants, and w, σ weights. Let 1 < p ≤
q < ∞. Define

Jσ, wKLoc
τ,p,q := sup

R∈Q
w(R)−1/q′‖Tin

τ,R(w1R)‖Lp′(σ)

Jσ, wKGlo
τ,p,q := sup

R∈Q
w(R)−1/q′‖Tout

τ,R(w1R)‖Lp′(σ)

We have the equivalence of norms below.

‖Tτ(σ·)‖Lp(σ)7→Lq,∞(w) ≃ Jσ, wKLoc
τ,p,q , 1 < p ≤ q < ∞(1.9)

‖Tτ(σ·)‖Lp(σ)7→Lq,∞(w) ≃ Jσ, wKGlo
τ,p,q , 1 < p < q < ∞ .(1.10)

Note that the first equivalence holds for p ≤ q, while the second requires a strict
inequality.

The ‘global conditions’, in (1.10) above and in (1.13) below, arise from the
observations of Gabidzashvili and Kokilashvili [5]. There is a corresponding,
harder, strong-type characterization.

1.11. Theorem. Under the same assumptions as Theorem 1.8 we have the equiv-
alences of norms below.

‖Tτ(σ·)‖Lp(σ)7→Lq(w) ≃ Jσ, wKLoc
τ,p,q + Jw, σKLoc

τ,q′,p′ , 1 < p ≤ q < ∞(1.12)

‖Tτ(σ·)‖Lp(σ)7→Lq(w) ≃ Jσ, wKGlo
τ,p,q + Jw, σKGlo

τ,q′,p′. , 1 < p < q < ∞ .(1.13)

In particular, the case of (1.12) with p = q = 2 is Theorem 1.6.

We can take σ and w to be finite measures and f a smooth Schwartz function,
so that there are no convergence issues at any point of the arguments below. By
A . B we mean A < KB for an absolute constant K. By A ≃ B we mean
A . B and B . A. We will not try to keep track of constants that depend upon
dimension, choices of p, q or α.

Acknowledgment. Two of the authors completed part of this work while partici-
pating in a research program at the Centre de Recerca Matemática, at the Uni-
versitat Autònoma Barcelona, Spain. We thank the Centre for their hospitality,
and very supportive environment.

2. Proof of the Weak-Type Inequalities

Throughout the proofs of both the strong and weak-type results, we will sup-
press the dependence of the operator Tτ = T upon τ = {τQ}.
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2.1. Proof of the necessity of the testing conditions. Let us assume the
weak-type inequality on T. Set N := ‖T(σ·)‖Lp(σ)7→Lq,∞(w) < ∞. By duality for
Lorentz spaces, we then have

‖T(f · w)‖Lp′(σ) ≤ N‖f‖Lq′,1(w) .

Apply this inequality to f = 1Q to see that

‖TQ(1Qw)‖Lp′(σ) ≤ ‖T(1Qw)‖Lp′(σ) ≤ Nw(Q)1/q′ .

Hence Jσ, wKLoc
p,q ≤ N. For the global condition, note that

w(Q)−1/q′‖Tout
Q (w1Q)‖Lp′ (σ) ≤ Nw(Q)−1/q′+1/q′ = N .

Hence, Jσ, wKGlo
p,q ≤ N.

2.2. Proof of the weak-type inequality assuming L := Jσ, wKLoc

p,q < ∞. We
consider the proof that the ‘local testing condition’ implies the weak-type bound
for T.

Fix f ∈ Lp(σ), smooth with compact support and λ > 0. We bound the set
{T(fσ) > 2λ}. Let Qλ be the maximal dyadic cubes in {T(fσ) > λ} which also
intersect the set {T(fσ) > 2λ}.

Let Q(1) denote the parent of a dyadic cube. For fixed Q0 ∈ Qλ, we must have

that Q
(1)
0 contains a point z with T(fσ)(z) < λ. It follows that

λ > T(fσ)(z) ≥ Tout

Q
(1)
0

(fσ) .

From this, we must have

λ ≤ Tin
Q0

(fσ)(x) , x ∈ Q0 ∩ {T(fσ)(x) > 2λ} .(2.1)

This represents an important localization of the operation T(fσ).
Note that we can estimate

M :=
∑

Q∈Qλ

[ 1

w(Q)

∫

Q

Tin
Q(fσ)w dx

]q

w(Q)

.
∑

Q∈Qλ

[

∫

Q

fσ Tin
Q(1Qw) dx

]q

w(Q)1−q

. L
q
∑

Q∈Qλ

[

∫

Q

|f |pσ
]q/p

w(Q)q/q′+1−q

. L
q
[

∑

Q∈Qλ

∫

Q

|f |pσ
]q/p

(p ≤ q)

. L
q‖f‖q

Lp(σ) .(2.2)

Note that we have used duality to move the (self-dual) operator Tin
α over to the

simpler function.
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To complete the proof, we will split Qλ into subcollections E and F , where E
consists of those cubes which are ‘empty’ of the set {T(fσ) > 2λ}, precisely for
η = 2−q−1

E :=
{

Q ∈ Qλ : w(Q ∩ {T(fσ) > 2λ}) < ηw(Q)
}

,

and F = Qλ − E . And to conclude the proof, we can estimate, using (2.2),

(2λ)qw(T(fσ) > 2λ) ≤ η(2λ)q
∑

Q∈E

w(Q) + η−qM

≤ η2qλqw(T(fσ) > λ) + Cη−q
L

q‖f‖q
Lp(σ) .

Take λ so that the left-hand side of this inequality is close to maximal. (The
supremum is a finite number by assumption.) By choice of η, this proves the
estimate.

2.3. Proof of the weak-type inequality assuming G := Jσ, wKGlo

p,q < ∞. We
show that the ‘global testing condition’ implies the weak-type inequality for the
fractional integral operator, when p < q. This proof will depend upon a (clever)
comparison to a maximal function. We proceed with the initial steps of the
previous proof, up until (2.1).

We rewrite the sum in (2.1) in a way that permits our application of the ‘global’
testing condition. Inductively define Qk containing x as follows. The cube Q0

and x are as (2.1) above, and given Qk ⊂ Q0, take Qk+1 to be the maximal dyadic
cube containing x that satisfies w(Qk+1) ≤ 1

2
w(Qk). Then, we have, continuing

from (2.1),

λ ≤
∞
∑

k=0

∑

Q : x∈Q
Qk+1$Q⊂Qk

τQ|Q|−1

∫

Q

f σdy

≤
∞
∑

k=0

∫

Q0

{

∑

Q : x∈Q
Qk+1$Q⊂Qk

τQ|Q|−11Q

}

f σdy

.

∞
∑

k=0

∫

Q0

w(Q
(1)
k+1)

−1 Tout

Q
(1)
k+1

(w1
Q

(1)
k+1

) · (f1Qk
) σdy

.

∞
∑

k=0

w(Q
(1)
k+1)

−1‖Tout

Q
(1)
k+1

(w1
Q

(1)
k+1

)‖Lp′(σ)

(

∫

Qk

f pσ
)1/p

. G

∞
∑

k=0

w(Q
(1)
k+1)

−1/q

(

∫

Qk

f p σ

)1/p

. G

∞
∑

k=0

w(Qk)
1/pw(Q

(1)
k+1)

−1/q

(

w(Qk)
−1

∫

Qk

f p σ

)1/p

. Gw(Q0)
1/p−1/qMf(x) .(2.3)
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In the last inequality, we define the maximal function M as follows.

Mf(x) := sup
Q : Q⊂Q0

1Q(x)
[

w(Q)−1

∫

Q

f p σ
]1/p

.

This is a localized maximal function, with both weights involved in the definition.
In passing to (2.3), we should note that we are certainly using the strict inequality

p < q: By construction, w(Q
(1)
k+1) ≥

1
2
w(Qk), so that

∞
∑

k=0

w(Qk)
1/pw(Q

(1)
k+1)

−1/q .

∞
∑

k=0

w(Qk)
1/p−1/q . w(Q0)

1/p−1/q .

The conclusion of these calculations is that for maximal dyadic Q0

⊂{T(fσ)>λ}, and x ∈ Q0 ∩ {T(fσ) > 2λ}, we have

λ ≤ cGw(Q0)
1/p−1/qMf(x) .

We proceed with an estimate for w(Q0 ∩ {T(fσ) > 2λ}).
Take P0 to be the maximal dyadic cubes Q ⊂ Q0 so that

λ ≤ cGw(Q0)
1/p−1/q

[

w(Q)−1

∫

Q

f p σ

]1/p

,

or, what is the same

w(Q) ≤ cGpλ−pw(Q0)
1−1/q

∫

Q

f p σ .

And this permits us to estimate

λqw
(

Q0 ∩ {T(fσ) > 2λ}
)

≤ λq
∑

Q∈P0

w(Q)

. G
pλq−pw(Q0)

1−p/q
∑

Q∈Q0

∫

Q

f p σ

. G
pλq−pw(Q0)

1−p/q

∫

Q0

f p σ .

We have to this moment been working with a single maximal Q0 ⊂
{T(fσ) > λ} which also meets the set {T(fσ) > 2λ}. Let Q0 be the collec-
tion of all such Q0. We can estimate

(2λ)qw(Iα(fσ) > 2λ) . G
pλq−p

∑

Q0∈Q0

w(Q0)
1−p/q

∫

Q0

f p σ

. G
pλq−p

[

∑

Q0∈Q0

w(Q0)

]1−p/q

·

[

∑

Q0∈Q0

(

∫

Q0

f pσ
)q/p

]p/q

. G
p
[

λqw(T(fσ) > λ)
]1−p/q

∫

f p σ .(2.4)
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Apply (2.4) with a choice of λ so that the left-hand side is close to maximal.
It follows that we have

[λqw(Iα(fσ) > 2λ)]p/q . G
p

∫

f p σ .

And this completes the proof.

3. Proof of Sawyer’s Two Weight Norm Result

3.1. Linearizations of Maximal Functions. The maximal theorem Theo-
rem 1.3, giving universal bounds on the maximal function Mw, will be an
essential tool, arising in proof of the sufficiency of the testing conditions below.
It will arise in a ‘linearized’ form. By this we mean the usual way to pass from a
sub-linear maximal operator to a linear one, which for Mw means the following.

Let {E(Q) : Q ∈ Q} be any selection of measurable disjoint sets E(Q) ⊂ Q
indexed by the dyadic cubes. Define a corresponding linear operator L by

(3.1) L f(x) :=
∑

Q∈Q

1E(Q)(x)Ew
Qf .

Then, (1.4) is equivalent to the bound ‖L f‖Lp(w) . ‖f‖Lp(w) with implied con-
stant independent of w and the sets {E(Q) : Q ∈ Q}.

3.2. Initial Considerations. Whitney Decomposition. In this proof we will
only explicitly use the ‘local’ testing conditions, which is sufficient to deduce the
Theorem as the previous arguments show that the ‘local’ and ‘global’ conditions
are equivalent, in the case of 1 < p < q < ∞. Let us set

L := Jσ, wKLoc
p,q , L∗ := Jw, σKLoc

q′,p′ .(3.2)

There is a very useful strengthening of the assumption that we can exploit, due to
the fact that we have already proved the weak-type results, namely Theorem 1.8.
Due to (1.9), we have

(3.3) sup
Q∈Q

w(Q)−1/q′‖T(1Qw)‖Lp′(σ) . L .

We take f to be a finite combination of indicators of dyadic cubes. We work
with the sets Ωk = {T(fσ) > 2k}, which are open, and begin by making a
Whitney-style decomposition of all of these sets.

Let Q(1) denote the parent of Q, and inductively define Q(j+1) = (Q(j))(1). For
an integer ρ ≥ 2, we should choose collections Qk of disjoint dyadic cubes so that
these several conditions are met.

Ωk =
⋃

Q∈Qk

Q (disjoint cover)(3.4)

Q(ρ) ⊂ Ωk , Q(ρ+1) ∩ Ωc
k 6= ∅ (Whitney condition)(3.5)

∑

Q∈Qk

1Q(ρ) . 1Ωk
(finite overlap)(3.6)
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sup
Q∈Qk

♯{Q′ ∈ Qk : Q′ ∩ Q(ρ) 6= ∅} . 1 , (crowd control)(3.7)

Q ∈ Qk , Q′ ∈ Ql , Q $ Q′ implies k > l . (nested property)(3.8)

Proof. Take Qk to be the maximal dyadic cubes Q ⊂ Ωk which satisfy (3.5). Such
cubes are disjoint and (3.4) holds. As the sets Ωk are themselves nested, (3.8)
holds.

Let us show that (3.6) holds. Note that holding the volume of the cubes
constant we have

∑

|Q|=1

1Q(ρ) ≤ 2ρd

where d is the dimension. So if we take an integer ρ, and assume that for some
k and x ∈ Rd

∑

Q∈Qk

1Q(ρ)(x) ≥ 8 · 2(ρ+1)d ,

then we can choose Q, R ∈ Qk with x ∈ Q(ρ) ∩ R(ρ) and the side-length of R
satisfies |R|1/d ≤ 2−3|Q|1/d. But then it will follow that R(ρ+1) ⊂ Q(ρ). We thus
see that R(ρ+1) does not meet Ωc

k, which is a contradiction.

Let us see that (3.7) holds. Fix Q ∈ Qk. If we had Q′ % Q(ρ) for any Q′ ∈ Qk,
we would violate (3.5). Thus, we must have Q′ ⊂ Q(ρ), and these cubes Q’
are disjoint. Suppose that there were more than 2ρ+2 in number. Then, there
would have to be a Q′ ⊂ Q(ρ) with |Q′| ≤ 2−ρ−1|Q(ρ)|. That is, (Q′)(ρ+1) ⊂ Q(ρ),
violating the Whitney condition (3.5). �

Let us comment on a subtle point that enters in a decisive way at the end of the
proof, see Proposition 3.33. A given cube Q can be a member of an unbounded
number of Qk. Namely, there are integers K−(Q) ≤ K+(Q) so that

(3.9) Q ∈ Qk , K−(Q) ≤ k ≤ K+(Q) ,

and there is no a priori upper bound on K+(Q) − K−(Q).

3.3. Maximum Principle. Decomposition of ‖Tαf‖p
Lp(w). There is an im-

portant maximum principle which will serve to further localize the operation Tα.
For all k and Q ∈ Qk we have

max
{

Tout
Q(ρ)(f1Q(ρ+1)σ)(x) , T(1(Q(ρ+1))cfσ)(x)

}

≤ 2k , x ∈ Q .

Proof. We can choose z ∈ Q(ρ+1) ∩ Ωc
k, which exists by (3.5). Then, for x ∈ Q

T(1(Q(ρ+1))cfσ)(x) = Tout
Q(ρ)(1(Q(ρ+1))cfσ)(x) ≤ T(fσ)(z) ≤ 2k .

Also, it is clear that Tout
Q(ρ)(f1Q(ρ+1)σ)(x) ≤ T(fσ)(z) ≤ 2k. �
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Figure 1. The set Ek(Q).

Let us set m = 5. We will use this integer throughout the remainder of the
proof. Define the sets

(3.10) Ek(Q) := Q ∩ (Ωk+m−1 − Ωk+m) , Q ∈ Qk .

It is required to include the subscript k here, and in other places below, due to
(3.9). See Figure 1 for an illustration of this set.

Now, the Maximum Principle, the equality (1.7), and choice of m gives us for
x ∈ Ek(Q)

Tin
Q(ρ)(1Q(ρ+1)fσ)(x) = T(fσ)(x)−Tout

Q(ρ)(f1Q(ρ+1)σ)(x)−T(1(Q(ρ+1))cfσ)(x)

≥ 2k+m−1 − 2k+1 ≥ 2k .

We should make one more observation. By the definition of Tin, we have

Tin
Q(ρ)(1Q(ρ+1)fσ)(x) = Tin

Q(ρ)(1Q(ρ)fσ)(x) , x ∈ Q .

On the right, we replace the cube Q(ρ+1) inside T with Q(ρ). This will be useful
for us as it will, at a moment below, place the crowd control principle (3.7) at
our disposal.

This permits us the following calculation which is basic to the organization of
the proof.

2kw(Ek(Q)) ≤

∫

Ek(Q)

Tin
Q(ρ)(1Q(ρ)fσ) w

=

∫

Q(ρ)

f · Tin
Q(ρ)(1Ek(Q)w) σ

= αk(Q) + βk(Q) ,

αk(Q) :=

∫

Q(ρ)\Ωk+m

f · Tin
Q(ρ)(1Ek(Q)w) σ ,
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βk(Q) :=

∫

Q(ρ)∩Ωk+m

f · Tin
Q(ρ)(1Ek(Q)w) σ .(3.11)

It is the term βk(Q) that leads to the (much) harder term.
And then, we can estimate

∫

|T(fσ)|q w ≤ 2mq
∞
∑

k=−∞

2kqw(Ωk+m−1 − Ωk+m)

= 2mq
∞
∑

k=−∞

∑

Q∈Qk

2kqw(Ek(Q))

= 2mq

3
∑

j=1

Sj .

The last three sums are defined by a choice of 0 < η < 1 and

Sj :=

∞
∑

k=−∞

∑

Q∈Qj
k

2kqw(Ek(Q)) , j = 1, 2, 3 ,

Q1
k := {Q ∈ Qk : w(Ek(Q)) ≤ ηw(Q)} ,(3.12)

Q2
k := {Q ∈ Qk : w(Ek(Q)) > ηw(Q) , αk(Q) > βk(Q)} ,(3.13)

Q3
k := Qk −Q1

k −Q2
k .(3.14)

Here, let us note that Q1
k consists of those Q ∈ Qk such that Ek(Q) is ‘empty,’

and these terms will be handled much as they were in the weak-type argument.
Using the notation of (3.9), observe that

♯{K−(Q) ≤ k ≤ K+(Q) : Q ∈ Qk\Q
1
k} ≤ η−1 .

This follows from the definition of Q1
k, and that the sets Ek(Q) are pairwise

disjoint in k. This point enters in Proposition 3.33 below.
We will bound each of the Sj in turn. In fact, recalling (3.2), we show that

S1 . η‖T(fσ)‖q
Lq(w)(3.15)

S2 . η−q
L

q

∫

‖f‖q
Lp(σ)(3.16)

S3 . η−q
[

L
q + L

q
∗

]

‖f |‖q
Lp(σ) .(3.17)

Thus, the term S2 requires the weak-type testing condition, while S3 requires
both testing conditions. In particular, the analysis of S3 requires the introduction
of the ‘principal cubes,’ see Remark 3.24, and some delicate combinatorics, see
Proposition 3.33. We include a schematic tree of the proof in Figure 2.

This permits us to estimate
∫

|T(fσ)|q w . η · ‖T(fσ)‖q
Lq(w) + η−q

[

L
q + L

q
∗

]

· ‖f |‖q
Lp(σ) .
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Figure 2. Schematic Tree for the proof of the strong type in-
equality. Terms in diamonds are further decomposed, while those
in boxes are final estimates. The testing conditions used to control
each final estimate are indicated on the edges. The label ‘absorb’
on S1 indicates that this term is absorbed into the main term.

The selection of η is independent of the selection of m (which is after all specified).
So for small 0 < η < 1, we can absorb the first term on the right into the left-hand
side, proving our Theorem.

3.4. Two Easy Estimates. Now, the estimates (3.15) for S1 and (3.16) for S2

are reasonably straight forward, but more involved for S3. Let us bound S1. By
the definition in (3.12), the sets Ek(Q) are nearly empty.

S1 =

∞
∑

k=−∞

∑

Q∈Q1
k

2kqw(Ek(Q))

≤ η
∞
∑

k=−∞

∑

Q∈Q1
k

2kqw(Q)

≤ η

∞
∑

k=−∞

2kqw({T(fσ) > 2k})

. η · ‖T(fσ)‖q
Lq(w)

Here, we have used the condition (3.4).

Let us turn to S2. The defining condition in (3.13) is that

η2kw(Q) ≤ 2kw(Ek(Q))

. αk(Q)

=

∫

Q(ρ)\Ωk+m

f · Tin
Q(ρ)(1Ek(Q)w) σ
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≤
[

∫

Q(ρ)\Ωk+m

f p σ
]1/p

·
[

∫

Q(ρ)

(

Tin
Q(ρ)(1Ek(Q)w)

)p′
σ
]1/p′

≤ L

[

∫

Q(ρ)\Ωk+m

f p σ
]1/p

· w(Q)1/q′ .

We have used the weak-type testing condition, and in particular (3.3). The
estimate we use from this is

2k . Lη−1w(Q)−1/q
[

∫

Q(ρ)\Ωk+m

f p σ
]1/p

.

Using this estimate, we can finish the estimate for S2.

S2 =

∞
∑

k=−∞

∑

Q∈Q2
k

2kqw(Ek(Q))

. η−q
L

q
∞
∑

k=−∞

∑

Q∈Q2
k

w(Ek(Q))

w(Q)

[

∫

Q(ρ+1)\Ωk+m

f p σ
]q/p

. η−q
L

q
[

∫

f p

∞
∑

k=−∞

∑

Q∈Q2
k

1Q(ρ+1)\Ωk+m
σ
]q/p

(q/p ≥ 1)

. η−q
L

q
[

∫

f p σ
]q/p

.

Here, the Ωk are decreasing sets, so the sum over k above is bounded by m = 5.
This completes the proof of (3.16) for S2.

3.5. The Difficult Case, Part 1. We turn to the last and most difficult case,
namely the estimate for (3.17). This subsection will introduce the essential tools
for the analysis of this term, namely the collections Rk(Q) in (3.19) and the
‘principal cubes’ construction, see the paragraph around (3.21).

For integers 0 ≤ M < m we will show that

(3.18) S3,M :=
∑

k≡M modm
k≥−N

∑

Q∈Q3
k

2kqw(Ek(Q)) .
{

L + L∗

}q
η−q‖f‖q

Lp(σ) ,

where the implied constant is independent of M and N . Summing over M and
taking N → ∞ will prove (3.16) for S3. It is the standing assumption for the
remainder of the proof of (3.18) that k ≡ M mod m.

This collection of cubes is important for us.

(3.19) Rk(Q) := {R ∈ Qk+m : Q(ρ) ∩ R 6= ∅} , Q ∈ Q3
k .

Recall that the set we are integrating over in βk(Q) is Q(ρ) ∩Ωk+m, (3.11). Now,
for R ∈ Rk(Q), we have R ⊂ Q(ρ). Indeed, if this is not the case, we have
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Q(ρ) ( Q(ρ+1) ⊂ R ⊂ Ωk+m, so that we have violated (3.5). Thus, we can write

Q(ρ) ∩ Ωk+m =
⋃

R∈Rk(Q)

R .

In addition, for R ∈ Rk(Q), we must have that R(ρ) ⊂ Ωk+m, by the Whitney
condition (3.5). Hence R(ρ) ∩ Ek(Q) = ∅. See the definition of Ek(Q) in (3.10).
It follows that we have

1R(x) Tin
Q(ρ)(1Ek(Q)w)(x) = 1R(x)

∑

P∈Q
R(ρ)$P⊂Q(ρ)

αP · EP (1Ek(Q)w) .

In particular, the right hand side is independent of x ∈ R. Putting these obser-
vations together, we see that

βk(Q) =
∑

R∈Rk(Q)

∫

R

f · Tin
Q(ρ)(1Ek(Q)w) σ

=
∑

R∈Rk(Q)

∫

R

Tin
Q(ρ)(1Ek(Q)w) σ · Eσ

Rf .(3.20)

The maximal function Mσ f has appeared in the last display, in the guise of the
average Eσ

Rf . We proceed with the construction of the so-called ‘principal cubes.’
This construction consists of a subcollection G ⊂

⋃

k≡M modm
k≥−N

Qk satisfying these

two properties:

∀ Q ∈
⋃

k≡M modm
k≥−N

Qk ∃G ∈ G ∋ Q ⊂ G and Eσ
Qf ≤ 2Eσ

Gf ,(3.21)

G, G′ ∈ G , G $ G′ implies 2Eσ
G′f < Eσ

Gf .(3.22)

It is easy to recursively construct this collection. Let Γ(Q) be the minimal element
of G which contains it. (So Γ(Q) is the ‘father’ of Q in the collection G.) It
follows by construction that Eσ

Qf ≤ 2Eσ
Γ(Q)f for all Q. A basic property of this

construction, which we rely upon below is that
∑

G∈G

1G(x)Eσ
Gf . Mσ f(x) .

Indeed, for each fixed x, the terms in the series on the left are growing at least
geometrically, by (3.22), whence the sum on the left is of the order of its largest
term, proving the inequality. It follows from (3.1), that we have

(3.23)
∑

G∈G

σ(G)|Eσ
Gf |p . ‖f‖p

Lp(σ) .

Both of these facts will be used below.
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3.24. Remark. Sawyer’s paper on the fractional integrals [17] attributes this con-
struction to Muckenhoupt and Wheeden [9]. In the intervening years, very similar
constructions have been used many times, to mention just a few references, see
these papers, which frequently use the words ‘corona decomposition:’ David and
Semmes [3, 4], which discuss the use of singular integrals in the context of rec-
tifability. Consult the corona decomposition in [20], and the paper [1] includes
several examples in the context of dyadic analysis. Its use in weighted inequalities
appears in [7].

We can now make a further estimate of βk(Q). Let us set Nk(Q) = {Q′ ∈ Qk :
Q′ ∩ Q(ρ) 6= ∅}. (These are the ‘neighbors’ of Q in the collection Qk.) The basic
fact, a consequence of the crowd control property (3.7), is that

(3.25) ♯Nk(Q) . 1 .

Continuing from (3.20), let us observe that by construction of G, for Q ∈ Qk,
and R ∈ Rk(Q) ⊂ Qk+m we have that Γ(R) = Γ(Q) or R ∈ G. This permits us
to estimate

βk(Q) ≤
∑

Q′∈Nk(Q)

∑

R∈Rk(Q′)

∫

R

Tin
Q(ρ)(1Ek(Q)w) σ · Eσ

Rf

≤ βk,4(Q) + βk,5(Q) ,

βk,4(Q) :=
∑

Q′∈Nk(Q)

∑

R∈Rk(Q′)
Γ(R)=Γ(Q′)

R⊂Q′

∫

R

T(1Qw) σ · Eσ
Rf(3.26)

βk,5(Q) :=
∑

Q′∈Nk(Q)

∑

R∈Rk(Q)
R∈G

∫

R

T(1Qw) σ · Eσ
Rf .(3.27)

We have replaced Tin
Q(ρ)(1Ek(Q)w) by the larger term T(w1Q).

We use the defining condition of Q3
k, recall (3.14), which gives us

η2kw(Q) ≤ 2kw(Ek(Q)) ≤ βk(Q) ,

whence 2k .
βk(Q)

ηw(Q)
.

Thus, our estimate of the term in (3.18), S3,M is given by

S3,M . η−q
[

S4,M + S5,M

]

(3.28)

Sv,M :=
∑

k≥−N
k≡M mod m

∑

Q∈Q3
k

w(Ek(Q))

w(Q)q
βk,v(Q)q v = 4, 5 .(3.29)

We estimate these last two terms separately.
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3.6. The Difficult Case, Part 2. The term below is part of the expression
in S4,M . In particular, in the expression (3.26), we will use the fact that the
cardinality of Nk(Q) admits a uniform bound, see (3.25). With this, we can
estimate

βk,4(Q)q .
∑

Q′∈Nk(Q)

[

∑

R∈Rk(Q′)
Γ(R)=Γ(Q′)

R⊂Q′

∫

R

T(1Qw) σ · Eσ
Rf

]q

.

Let us fix a G ∈ G, that is one of the principal cubes, and define

S ′
k,4(Q, G) :=

w(Ek(Q))

w(Q)q

∑

Q′∈Nk(Q)
Γ(Q′)=G

[

∑

R∈Rk(Q′)
Γ(R)=Γ(Q′)

R⊂Q′

∫

R

T(1Qw) σ · Eσ
Rf

]q

. (Eσ
Gf)qw(Ek(Q))

∑

Q′∈Nk(Q)

[

w(Q)−1
∑

R∈Rk(Q′)
Γ(R)=Γ(Q′)

R⊂Q′

∫

R

T(1Qw) σ

]q

. (Eσ
Gf)qw(Ek(Q))

[

w(Q)−1

∫

Q′

T(1Qw) σ
]q

. (Eσ
Gf)qw(Ek(Q))

[

w(Q)−1

∫

Q

T(1Q′σ) w
]q

(duality)

. (Eσ
Gf)qw(Ek(Q))

[

w(Q)−1

∫

Q

T(1Gσ) w
]q

(1Q′ ≤ 1G)

In the last line, we have replaced 1Q′ by the larger 1G, since Q′ ⊂ G, as Γ(Q′) = G.
The sets Ek(Q) are themselves disjoint, so that the sum above itself arises from a
linearization of the maximal function Mw. And we can estimate, again for fixed
G ∈ G,

∑

k

∑

Q∈Qk

S ′
k,4(Q, G) ≤ (Eσ

Gf)q
∑

k

∑

Q∈Qk

w(Ek(Q))
[

w(Q)−1

∫

Q

T(1Gσ) w
]q

. (Eσ
Gf)q

∫

Mw(T(1Gσ))q w

. (Eσ
Gf)q

∫

T(1Gσ)q w

. L
q
∗(E

σ
Gf)qσ(G)q/p .

Here we have used Lq(w) bound on Mw, the dual testing condition, and the
analog of (3.3) for L∗, which holds since we have already established the weak-
type Theorem.
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Combining these last two estimates, observe that we have the following esti-
mate.

S4,M =
∑

G∈G

∑

k

∑

Q∈Qk

S ′
k,4(Q, G)

. L
q
∗

∑

G∈G

(Eσ
Gf)qσ(G)q/p

. L
q
∗

[

∑

G∈G

(Eσ
Gf)pσ(G)

]q/p

(q/p ≤ 1)

. L
q
∗‖f‖

q
Lp(σ) .

The last line follows from (3.23). This completes the estimate for S4,M .

3.7. The Difficult Case, Part 3. It remains to bound S5,M , with βk,5(Q) as
defined in (3.27). With an abuse of notation we are going to denote the summand
in the definition of S5,M , see (3.29), as follows.

βk,6(Q) :=
w(Ek(Q))

w(Q)q

[

∑

R∈Rk(Q)
R∈G

∫

R

T(1Qw) σ · Eσ
Rf

]q

. βk,7(Q) · βk,8(Q) ,(3.30)

βk,7(Q) :=
w(Ek(Q))

w(Q)q

[

∑

R∈Rk(Q)
R∈G

σ(R)−p′/p

(

∫

R

T(1Qw) σ

)p′]q/p′

,(3.31)

βk,8(Q) :=

[

∑

R∈Rk(Q)
R∈G

σ(R) · (Eσ
Rf)p

]q/p

.

Here, we have introduced the terms σ(Q′)±1/p, and used the Hölder inequality in
the ℓp–ℓp′ norms.

Our first observation that the terms βk,7(Q) admit a uniform bound. On the
right in (3.31), we use the trivial bound w(Ek(Q)) ≤ w(Q), and push the p′

inside the integral to place ourselves in a position where we can appeal to the
dual testing condition, namely (3.3).

βk,7(Q) .
1

w(Q)q−1

[

∑

R∈Rk(Q)
R∈G

∫

R

T(1Qw)p′ σ

]q/p′

.
1

w(Q)q−1
‖T(1Qw)‖q

Lp′(σ)
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. L
q w(Q)q/q′

w(Q)q−1

. L
q .

In the definition (3.27), the term Nk(Q) appears. But this collection has a
uniformly bounded size, see (3.25), so it follows from (3.28) and (3.30) that we
have

S5,M . L
q
∑

k

∑

Q∈Q3
k

βk,8(Q)

. L
q

[

∑

k

∑

Q∈Q3
k

βk,8(Q)p/q

]q/p

(p ≤ q)

. L
q

[

∑

k

∑

Q∈Q3
k

∑

R∈Rk(Q)
R∈G

σ(R) · (Eσ
Rf)p

]q/p

.(3.32)

At this point, a subtle point arises. The cubes R ∈ Rk(Q) ⊂ Qk+m, but a given
cube R can potentially arise in many Qk+m, as we noted in (3.9). A given R
can potentially arise in the sum above many times, however this possibility is
excluded by Proposition 3.33 below. In particular, we can continue the estimate
above as follows.

(3.32) . L
q

[

∑

G∈G

σ(G)(Eσ
Gf)p

]q/p

. L
q‖f‖q

Lp(σ) ,

with the last inequality following from (3.23). The proof of Theorem 1.11 is
complete, aside from the next proposition.

3.33. Proposition. [Bounded Occurrences of R] Fix a cube R, and for 1 ≤ ℓ ≤ L
suppose that

(1) there is an integer k(ℓ) and Qℓ ∈ Q3
k(ℓ) with R ∈ Rk(ℓ)(Q),

(2) the pairs (Qℓ, k(ℓ)) are distinct.

We then have that L . 1, with the implied constant depending upon ρ, dimension,
and η, the small constant that enters the proof at (3.12)—(3.14).

Proof. There are two principal obstructions to the Lemma being true: (1) It could
occur, after a potential reordering that Q1 ( Q2 ⊂ · · · ( QL. (2) It could happen
that Q1 = · · · = QL but the kℓ are distinct. We treat these two obstructions
in turn.

Fix R. We have see that R ⊂ Q
(ρ)
ℓ for all 1 ≤ ℓ ≤ L, see the paragraph after

(3.19). Suppose we have R ⊂ Q
(ρ)
ℓ1

( Q
(ρ)
ℓ2

with k(ℓ1) < k(ℓ2). This would violate
the Whitney condition (3.5).
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Let us now consider the obstruction (1) above, namely after a relabeling, we
have k(1) > k(2) > · · · > k(m + ρ + 1), and

R ⊂ Q
(ρ)
k(1) ( Q

(ρ)
k(2) ( Q

(ρ)
k(3) ( · · · ( Q

(ρ)
k(m+ρ+1)

This implies that R ∈ Qk(1)+m and R ∈ Qk(m+ρ+1)+m, so that again by the nested
property, R ∈ Qk for all k(m + ρ + 1) + m ≤ k ≤ k(1) + m. Therefore, for

s = m + ρ + 1 we have R, Qs ∈ Qs and R(ρ+1) ⊂ Q
(ρ)
s . That is, R violates the

Whitney condition (3.5), a contradiction.
We conclude that there are only a bounded number of positions for the cube

Q
(ρ)
ℓ , and hence a bounded number of positions for the cubes Qℓ. Thus, after

a pigeonhole argument, and relabeling, we are concerned with the obstruction
(2) above. We can after a relabeling, add to the conditions (1) and (2) in the
Proposition that there is a fixed cube Q with Qℓ = Q for 1 ≤ ℓ ≤ L′, and have
L . L′. This means in particular that the kℓ are distinct.

The defining condition, (3.14), that Q ∈ Q3
kℓ

means in particular that we have

w(Ekℓ
(Q)) > ηw(Q). But, the condition that the kℓ be distinct means that the

sets Ekℓ
(Q) are distinct, hence L′ ≤ η−1 and our proof is finished. �
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