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Abstract. This paper gives three theorems regarding functions integrable on
[−1, 1] with respect to Jacobi weights, and having nonnegative coefficients in
their (Fourier–)Jacobi expansions. We show that the Lp-integrability (with
respect to the Jacobi weight) on an interval near 1 implies the Lp-integrability
on the whole interval if p is an even integer. The Jacobi expansion of a function
locally in L∞ near 1 is shown to converge uniformly and absolutely on [−1, 1];
in particular, such a function is shown to be continuous on [−1, 1]. Similar
results are obtained for functions in local Besov approximation spaces.

1. Introduction

A well-known theorem by Norbert Wiener states (see e.g. [4, pp. 242, 250])
that if f is a 2π–periodic function in L1(−π, π), f ∈ L2(−δ, δ) for some δ > 0,
and the Fourier coefficients cn(f) ≥ 0, n ∈ Z, then f ∈ L2(−π, π). Since the

Fourier coefficients of |f |2 are given formally by
∑

k∈Z cn−k(f)ck(f), it easy to
deduce that a similar conclusion holds also when the L2 norms are replaced by
Lp norms, p = 2, 4, 6, · · · . More concisely, for 1 ≤ p ≤ ∞, let

Lp
loc,+

:=

{
f ∈ L1(−π, π) : f ∼

∑
n∈Z

cn(f)ein◦,

cn(f) ≥ 0 for every n ∈ Z,

and there exists δ > 0 such that f ∈ Lp(−δ, δ)

}
.

Then Wiener’s theorem states that for even, positive, integer values of p,

Lp
loc,+

⊂ Lp(−π, π).

Wainger [15] and Shapiro [11] have given counterexamples to show that such an
inclusion is not true if p is not an even, positive, integer.

Even though the inclusion Lp
loc,+

⊂ Lp(−π, π) does not hold in general, the

variation stated in the following Theorem 1.1 was proved in [1]. A subspace
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X ⊂ L1(−π, π) is called solid if

f, g ∈ L1(−π, π), |cn(f)| ≤ cn(g), n ∈ Z,
and g ∈ X imply that f ∈ X. (Some authors use the phrase “with upper
majorant property” instead of solid.) For example, if 1 < p ≤ 2, and p′ is its
conjugate exponent, then the Hausdorff–Young inequality [16, Chapter XII, (2.3)]
implies that

Lp(−π, π) ⊂

{
f ∈ L1(−π, π) :

∑
n∈Z

|cn(f)|p′
<∞

}
=: `p

′
.

Similarly, a result of Hardy and Littlewood (cf. [16, Chapter XII, (3.19)]) shows
that if 1 < p ≤ 2 then

Lp(−π, π) ⊂

{
f ∈ L1(−π, π) :

∑
n∈Z

(|n|+ 1)p−2|cn(f)|p <∞

}
=: HLp.

Clearly, both `p
′

and HLp are solid spaces. Other similar examples can be found
in [1].

Theorem 1.1. Let X be a solid space, Lp(−π, π) ⊆ X. Then

Lploc,+ ⊆ X.(1.1)

In the case when p is an even, positive, integer, the space Lp(−π, π) is itself a
solid space, and hence, Theorem 1.1 is a generalization of Wiener’s theorem.

In the case when p = ∞, Paley [10] observed that if f ∈ L∞loc,+, and f is an

even function, then f is continuous on [−π, π] and its Fourier series converges
uniformly and absolutely. In fact, certain smoothness properties of such functions
can be characterized in terms of their Fourier coefficients. For example, a theorem
of Lorentz [8, Section 4] implies immediately the following result: Let

f(x) ∼
∑
n≥0

cn cosnx, cn ≥ 0,

and assume further that {cn} is a monotone sequence. Let En(f) be the best
approximation of f (in the supremum norm) by trigonometric polynomials of
order n, and γ ∈ (0, 1). Then

lim sup
n→∞

nγEn(f) <∞

if and only if
lim sup
n→∞

nγ+1cn <∞.

Extensions of this result to the case of Besov and Besov–Nikolskii spaces have
been given in [6, 2, 13], so as to include the case of Lp, 1 < p <∞ as well.

Our main goal in this paper is to present analogues of the above results for
functions on [−1, 1] and their Jacobi polynomial expansions. In Section 2, we
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review some necessary facts regarding Jacobi polynomials, and introduce certain
notations. In order to avoid unnecessarily complicated notations, the symbols
used in this introduction will have different meanings in the rest of this paper.
In Section 3, we state and prove Wiener-type results for the Jacobi polynomial
expansions.

2. Jacobi polynomials

If x ≥ 0, we will denote by Πx the class of all polynomials of degree at most x.
This notation is usually used with x an integer, but we find it convenient to
extend it to other values of x rather than writing the more cumbersome notation
Πbxc. Let α, β ≥ −1/2, and

wα,β(x) :=

{
(1− x)α(1 + x)β, if −1 < x < 1,
0, otherwise.

For 1 ≤ p < ∞ the space Lp = Lp(α, β) is defined as the space of (equivalence
classes of) functions f with

‖f‖α,β;p :=

(∫ 1

−1

|f(x)|pwα,β(x)dx

)1/p

<∞.

The space of all continuous real valued functions on [−1, 1], equipped with the
supremum norm, will be denoted by C, and the supremum norm of f ∈ C will be
denoted by ‖f‖∞. The space of all infinitely often differentiable f : [−1, 1]→ C
will be denoted by C∞. We will denote the set of all nonnegative integers by N0.

There exists a unique system of (Jacobi) polynomials {Rk
(α,β) ∈ Πk}k∈N0 such

that for integer k, ` ∈ N0, Rk
(α,β)(1) = 1 and

(2.1)

∫ 1

−1

Rk
(α,β)(x)R`

(α,β)(x)wα,β(x)dx =

{
ρk, if k = `,
0, otherwise,

where

ρk = ‖Rk‖2
α,β;2 =

2α+β+1Γ(α + 1)2

2k + α + β + 1

Γ(k + 1)Γ(k + β + 1)

Γ(k + α + 1)Γ(k + α + β + 1)
.

The uniqueness of the system implies that Rk
(β,α)(x) = Rk

(α,β)(−x)/Rk
(α,β)(−1),

x ∈ R, k ∈ N0. Therefore, we may assume in the sequel that α ≥ β. We will
assume also that α ≥ β ≥ −1/2.

For f ∈ L1, we may define the Jacobi coefficients by

f̂(k) := f̂(α, β; k) := ρ−1
k

∫ 1

−1

f(y)Rk
(α,β)(y)wα,β(y)dy, k ∈ N0.

Then the formal Jacobi expansion of f has the form
∑∞

k=0 f̂(k)Rk(x).
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Next, we need formulas for functions f ∗ g such that

f̂ ∗ g(k) = f̂(k)ĝ(k), k ∈ N0,

and for the Jacobi coefficients of the product fg. Following Koornwinder [7], if
x, y ∈ [−1, 1], r ∈ [0, 1], and ψ ∈ [0, π], let

Z(x, y; r, ψ) =(2.2)

1

2
(1 + x)(1 + y) +

√
1− x2

√
1− y2 r cosψ +

1

2
(1− x)(1− y) r2 − 1.

We observe that

Z(x, y; r, ψ) =
1

2

(√
(1 + x)(1 + y)− r

√
(1− x)(1− y)

)2

+r
√

1− x2
√

1− y2(1 + cosψ)− 1 ≥ −1.

If θ, ϕ ∈ [0, π] such that x = cos θ, y = cosϕ, then

Z(x, y; r, ψ) =
1

2
(1 + x)(1 + y) +

1

2
(1− x)(1− y) +

√
1− x2

√
1− y2

+
1

2
(1− x)(1− y)(r2 − 1) +

√
1− x2

√
1− y2(r cosψ − 1)− 1

= xy +
√

1− x2
√

1− y2 +
1

2
(1− x)(1− y)(r2 − 1)

+
√

1− x2
√

1− y2(r cosψ − 1),

and we have

1− Z(x, y; r, ψ) = 1− (xy +
√

1− x2
√

1− y2) +
1

2
(1− x)(1− y)(1− r2)

+(1− r cosψ)
√

1− x2
√

1− y2

≥ 1− (xy +
√

1− x2
√

1− y2) = 1− cos(θ − ϕ) ≥ 0.(2.3)

Thus, Z(x, y; r, ψ) ∈ [−1, 1] for all x, y ∈ [−1, 1], r ∈ [0, 1] and ψ ∈ [0, π].
For α ≥ β ≥ −1/2, Koornwinder [7] has proved that there exists a probability

measure ν(α,β) on [0, 1]× [0, π] such that we have

(2.4) R(α,β)
n (x)R(α,β)

n (y) =

∫ π

0

∫ 1

0

R(α,β)
n (Z(x, y; r, ψ)) dν(α,β)(r, ψ), n ∈ N0.

An interesting consequence of (2.4) is the following. For almost all x, y ∈ [−1, 1],
and f ∈ L1, let

(2.5) Tyf(x) =

∫ π

0

∫ 1

0

f(Z(x, y; r, ψ)) dν(α,β)(r, ψ).

Then it is clear that for x, y ∈ [−1, 1], Tyf(x) = Txf(y) and

(2.6) T̂yf(k) = f̂(k)Rk
(α,β)(y).
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The corresponding convolution operator is defined by

(f ∗ g)(x) :=

∫ 1

−1

f(y) Tyg(x) wα,β(y) dy, f, g ∈ L1.

We have

(2.7) (f ∗ g)̂(k) = f̂(k) ĝ(k), k ∈ N0, f, g ∈ L1.

Dual to the product formula (2.4) is a second product formula:

(2.8) R(α,β)
n (x)R(α,β)

m (x) =
n+m∑

k=|n−m|

g(α,β)(n,m; k)R
(α,β)
k (x)

for all n,m ∈ N0, x ∈ [−1, 1]. The coefficients g(α,β)(n,m; k) are non-negative for
all k, n,m ∈ N0 and, moreover,

(2.9)
n+m∑

k=|n−m|

g(α,β)(n,m; k) = 1.

Thus, we may think of g(α,β)(n,m; ◦) as a probability distribution on a subset of
N0 × N0. We note also that

g(α,β)(n,m; k) = ρ−1
k

∫ 1

−1

Rn
(α,β)(y)Rm

(α,β)(y)Rk
(α,β)(y)wα,β(y)dy.

In particular,

(2.10) g(α,β)(k, 0; k) = ρ−1
k

∫ 1

−1

{
Rk

(α,β)(y)
}2

wα,β(y)dy = 1.

Just as (2.4) can be used via (2.5) to define a generalized convolution of two
functions, (2.8) can be used to define a convolution of sequences. If a = {ak}∞k=0

and b = {bk}∞k=0, we define formally

(2.11) (a ∗ b)(k) =
∞∑

n,m=0

g(α,β)(n,m; k)anbm.

Analogous to (2.7) and the classical Cauchy formula for the products of power
series, we have the following formula for products of formal Jacobi expansions:
(2.12)(
∞∑
n=0

anRn
(α,β)(x)

)(
∞∑
m=0

bmRm
(α,β)(x)

)
=
∞∑
k=0

(a∗b)(k)Rk
(α,β)(x), x ∈ [−1, 1].
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3. Main results

In the sequel, we consider α ≥ β ≥ −1/2 to be fixed parameters. Let P be

the class of all f ∈ L1 such that f̂(k) ≥ 0 for k ∈ N0. It is well known that
in the theory of Jacobi expansions, the point 1 plays the role of 0 in the theory
of Fourier series. Thus, if T is a trigonometric polynomial with nonnegative
Fourier coefficients, then maxx∈[−π,π] |T (x)| = T (0). Similarly, in view of [12,
Theorem 7.32.1],

(3.1) max
x∈[−1,1]

|Rk
(α,β)(x)| = Rk

(α,β)(1) = 1.

Therefore, it is easy to verify that

(3.2) max
x∈[−1,1]

|P (x)| = P (1) = max
x∈[a,1]

|P (x)|, P ∈ P ∩ (∪∞n=0Πn), a ∈ [−1, 1).

Accordingly, we define the analogues of local spaces as follows. If Y is any
subspace of L1, then Yloc is the class of all f ∈ L1 with the following property:
there exists a nondegenerate interval I ⊆ [−1, 1] with 1 ∈ I such that for any

φ ∈ C∞ supported on I, fφ ∈ Y . If f, g ∈ L1, we will write f � g if |f̂(k)| ≤ ĝ(k)
for all k ∈ N0. A subspace X ⊂ L1 is called solid if f, g ∈ L1, f � g, and
g ∈ X imply that f ∈ X. For example, using (2.12), (2.11), and the fact that
g(α,β)(n,m; k) ≥ 0 for all n,m, k ∈ N0, it is easy to conclude that when f � g then
|f |2 � |g|2. Hence, if p is an even positive integer, then Lp is a solid space. Thus,
Theorem 3.1 below is the analogue of Wiener’s theorem for Jacobi expansions.

Our first main result is the analogue of Theorem 1.1.

Theorem 3.1. Let X ⊂ L1 be a solid space. Then Xloc ∩ P = X ∩ P. In
particular, if 1 < p ≤ ∞ and Lp ⊆ X then Lploc ∩ P ⊆ X.

In the case when p is not a positive, even integer, we note that using the coun-
terexamples of Wainger and Shapiro, we can always construct a cosine trigono-
metric series with positive coefficients such that its sum is not p–th power inte-
grable on [0, π]. Since Rk

(−1/2,−1/2) are Chebyshev polynomials, these counterex-
amples also demonstrate that with α = β = −1/2,

Lp
loc
∩ P 6⊂ Lp

when p is not a positive, even integer.
The proof of Theorem 3.1 relies upon the following two lemmas. If f ∈ C, we

define

(3.3) Ex(f) := min
P∈Πx

‖f − P‖∞.

Lemma 3.2. Let f ∈ C∞, and x ∈ [−1, 1]. Then the function x 7→ Txf is in
C∞.

Proof. The well-known direct theorem of approximation theory [14,
Section 5.1.5, (22)] implies that for any integer S ≥ 1, En(f) ≤ c1(f, S)n−S
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for some positive constant c1(f, S) independent of n. Let ` ≥ 0 be an integer.
We choose S > 2`+ 2α+ 3. In view of (2.1) and (3.1), we obtain for k = 2, 3, · · ·
and any P ∈ Πk−1,

|f̂(k)| = ρ−1
k

∣∣∣∣∫ 1

−1

f(t)Rk(t)wα,β(t)dt

∣∣∣∣ = ρ−1
k

∣∣∣∣∫ 1

−1

(f(t)− P (t))Rk(t)wα,β(t)dt

∣∣∣∣
≤ ρ−1

k ρ0 ‖f − P‖∞.
Thus,

|f̂(k)| ≤ c2(S, α, β, f)k2α+1−S.

Moreover, Markov’s inequality [14, Section 4.8.62, (32)] implies that ‖Rk
(`)‖∞ ≤

k2`. Since S > 2`+ 2α + 3, it follows that
∞∑
k=2

|f̂(k)|‖Rk‖∞‖Rk
(`)‖∞ ≤ c2(S, α, β, f)

∞∑
k=2

k2α+1−S+2` <∞.

This completes the proof. �

Lemma 3.3. Let δ∈(0, 1). There exists φδ : [−1, 1]→ [0,∞) such that φδ ∈ C∞,

φδ(t) = 0 if −1 ≤ t ≤ 1− δ, φδ ∈ P, and φ̂δ(0) = 1. If f ∈ P, then f � fφδ.

Proof. In this proof only, let θ0 ∈ (0, π/4) be chosen so that 1 − δ = cos(2θ0),
and g = gδ : [−1, 1]→ [0,∞) be a function in C∞, supported on [cos θ0, 1], such
that ĝ(0) = 1. Let

φδ(x) := (g ∗ g)(x) =

∫ 1

−1

g(y)Tyg(x)wα,β(y)dy

=

∫ 1

−1

g(y)Txg(y)wα,β(y)dy, x ∈ [−1, 1].

In view of Lemma 3.2, φδ : [−1, 1] → [0,∞) is in C∞. Also, in view of (2.7),

φ̂δ(k) = (ĝ(k))2 ≥ 0, k ∈ N0, and in particular, φ̂δ(0) = (ĝ(0))2 = 1.
If |θ − ϕ| ≥ θ0, then (2.3) implies that Z(x, y; r, ψ) ≤ cos(θ − ϕ) ≤ cos θ0.

Therefore, g(Z(x, y; r, ψ)) = 0 and hence, Tyg(x) = 0. If J denotes the set
{cosϕ : |θ − ϕ| ≤ θ0}, then

φδ(x) =

∫
J

g(y)Tyg(x)wα,β(y)dy.

If θ ≥ 2θ0 then for y ∈ J , 0 < θ0 ≤ θ − θ0 ≤ ϕ; i.e., y = cosϕ ≤ cos θ0, and
g(y) = 0. Thus, φδ is supported on [cos(2θ0), 1] = [1− δ, 1].

Next, let f ∈ P. Since f̂(n) ≥ 0 for all n ∈ N0, we obtain in view of (2.12),
(2.11), (2.10) that for each k ∈ N0,

f̂φδ(k) =
∞∑

n,m=0

g(α,β)(n,m; k)f̂(n)φ̂δ(m)

≥ g(α,β)(k, 0; k)f̂(k)φ̂δ(0) = f̂(k).(3.4)

Thus, f � fφδ. �
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Proof of Theorem 3.1. Let f ∈ Xloc ∩ P, and δ ∈ (0, 1) be found such
that fφ ∈ X for every φ ∈ C∞ supported on [1 − δ, 1]. We take φ = φδ as in
Lemma 3.3. Since X is solid, f � fφδ, and fφδ ∈ X, it follows that f ∈ X
as well. �

Next, we consider the case p =∞. First, we state an analogue of the result of
Paley.

Theorem 3.4. If f ∈ L∞loc ∩P then
∑∞

k=0 f̂(k)|Rk(x)| <∞, x ∈ [−1, 1], with the
series converging uniformly on [−1, 1]. In particular, L∞loc ∩ P = C ∩ P.

The proof of this theorem depends upon the following lemma, which is observed
by several authors; a proof can be found, for example, in [9, Lemma 4.2]. First,
we define the de la Vallée-Poussin type operators. Let h : [0,∞) → [0, 1] be a
C∞, nonincreasing function, = 1 on [0, 1/2], and = 0 on [1,∞). For f ∈ L1,
n ≥ 0, x ∈ [−1, 1], let

(3.5) σn(h, f, x) =
n−1∑
k=0

h

(
k

n

)
f̂(k)Rk(x),

and

(3.6) τn(h, f) = σ2n(h, f)− σn(h, f).

Lemma 3.5. Let f ∈ C. Then

(3.7) ‖σn(h, f)‖∞ ≤ c‖f‖∞,

where c is a positive constant depending only on α, β, and h. Moreover,
σn(h, P ) = P if P ∈ Πn/2, and hence,

(3.8) En(f) ≤ ‖f − σn(h, f)‖∞ ≤ (1 + c)En/2(f).

Proof of Theorem 3.4. Let f ∈ L∞loc∩P, and δ ∈ (0, 1) be such that fφ ∈ L∞
for every φ ∈ C∞ supported on [1− δ, 1]. We choose φ = φδ, where φδ is defined
in Lemma 3.3. Let n ≥ 1 be an integer. Since h is a nonnegative function, f ∈ P,
and f � fφδ, we see using (3.1) that

h

(
k

2n

)
f̂(k)‖Rk‖∞ = h

(
k

2n

)
f̂(k) ≤ h

(
k

2n

)
f̂φδ(k), k ∈ N0.

Since h(t) = 1 for 0 ≤ t ≤ 1/2, we obtain using (3.2) and (3.7) that for every
integer n ≥ 1,

n∑
k=0

f̂(k)‖Rk‖∞ ≤
∞∑
k=0

h

(
k

2n

)
f̂(k)‖Rk‖∞ ≤

∞∑
k=0

h

(
k

2n

)
f̂φδ(k)

= ‖σ2n(h, fφδ)‖∞ ≤ c‖fφδ‖∞ <∞.

This completes the proof. �
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Finally, we discuss a variant for Besov spaces, which we now define. Let
0 < ρ ≤ ∞, γ > 0, and a = {an}∞n=0 be a sequence of real numbers. We define a
sequence space as follows

(3.9) ‖a‖ρ,γ :=


{ ∞∑
n=0

2nγρ|an|ρ
}1/ρ

, if 0 < ρ <∞,

supn≥0 2nγ|an|, if ρ =∞

The space of sequences a for which ‖a‖ρ,γ < ∞ will be denoted by bρ,γ. For
0 < ρ ≤ ∞, γ > 0, the Besov space Bρ,γ consists of functions f ∈ L∞ for which
the sequence {E2n(f)}∞n=0 ∈ bρ,γ. We have proved in [9, Theorem 2.1] that

f ∈ Bρ,γ if and only if {‖τ2n(h, f)‖∞} ∈ bρ,γ.

The following theorem is a refinement of Theorem 3.4. Let Sn(f) be the n-th

partial sum of the Jacobi expansion of f , i.e., Sn(f) =
∑n−1

k=0 f̂(k)Rk.

Theorem 3.6. Let 0 < ρ ≤ ∞, γ > 0. For f ∈ P the following conditions are
equivalent:

(a)
f ∈ (Bρ,γ)loc,

(b)
f ∈ Bρ,γ,

(c) {
‖S2n+1 − S2n(f)‖∞ =

2n+1−1∑
k=2n

f̂(k)

}
∈ bρ,γ.

Proof. To prove (a) ⇒ (b), we need to show that (Bρ,γ)loc ∩ P ⊂ Bρ,γ. Let
f ∈ (Bρ,γ)loc ∩ P, and δ ∈ (0, 1) be such that fφδ ∈ Bρ,γ ∩ P, where φδ is as in
Lemma 3.3. Then {‖τ2n(h, fφδ)‖∞} ∈ bρ,γ. Since h is nonincreasing, we have

gk,n := h(k/2n+1)− h(k/2n) ≥ 0, k ∈ N0, n = 1, 2, · · · .
Since f � fφδ, this implies that

0 ≤ gk,nf̂(k) ≤ gk,nf̂φδ(k), k ∈ N0, n = 1, 2, · · · .
So, using (3.2), we conclude that for n = 1, 2, · · · ,

‖τ2n(h, f)‖∞ = τ2n(h, f, 1) =
∞∑
k=0

gk,nf̂(k)

≤
∞∑
k=0

gk,nf̂φδ(k) = ‖τ2n(h, fφδ)‖∞.

Since {‖τ2n(h, fφδ)‖∞}∈bρ,γ, this implies that {‖τ2n(h, f)‖∞}∈bρ,γ; i.e., f ∈Bρ,γ.
The implication (b) ⇒ (a) is clear.
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We prove that (a) (alternatively (b))⇒ (c). Since (a) implies in particular that

f ∈ L∞loc ∩P, Theorem 3.4 implies that the series
∑
f̂(k)Rk converges uniformly

and absolutely to f . Then, by (3.1) and (3.8), we have

En(f) ≤ ‖f − Sn(f)‖∞ ≤
∞∑
k=n

f̂(k) ≤
∞∑
k=0

(1− h(k/n))f̂(k) = f(1)− σn(h, f, 1)

≤ ‖f − σn(h, f)‖∞ ≤ (1 + c)En/2(f).

Thus, f ∈ Bρ,γ if and only if {‖f − S2n(f)‖∞} ∈ bρ,γ and secondly, f ∈ Bρ,γ

if and only if {
∑∞

k=2n f̂(k)} ∈ bρ,γ. In light of the discrete Hardy inequality [5,
Lemma 3.4, p. 27], the latter is equivalent to{ 2n+1−1∑

k=2n

f̂(k)

}
∈ bρ,γ

for any positive ρ. �
Remark 1. Assuming additional conditions on the coefficients, we obtain an
analogue of Lorentz’ result: under conditions of Theorem 3.6, conditions (a)

and (b) are equivalent to the condition {f̂(2n)} ∈ bρ,γ if {f̂(n)} is lacunary, or

{f̂(2n)} ∈ bρ,γ+1 if {f̂(n)} is monotone.
Remark 2. Let a ≥ b ≥ −1/2. In [3], Askey and Gasper have given sufficient
conditions in order that the connection coefficients γj,k in the expansion below
are all nonnegative.

(3.10) Rk
(α,β)(x) =

k∑
j=0

γj,kRj
(a,b)(x), k ∈ N0, x ∈ R.

If f ∈ C, and f̂(α, β; k) ≥ 0 for k ∈ N0, then (3.8) can be used to deduce easily
that

f̂(a, b; j) = lim
n→∞

n∑
k=j

γj,kh(k/n)f̂(α, β; k) ≥ 0.

Thus, Theorem 3.4 implies that for f ∈ L∞loc ∩ P, the series∑
|f̂(a, b; k)|‖Rj

(a,b)‖∞

converges for all a ≥ b ≥ −1/2 for which the connection coefficients in (3.10) are
all nonnegative. A similar conclusion can be made also about Theorem 3.6, and
Remark 1 above.
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