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Abstract. We determine the zeroes of Drinfeld-Goss Eisenstein series for
the principal congruence subgroups Γ(N) of Γ = GL(2,Fq[T ]) on the Drinfeld
modular curve X(N).

0. Introduction. In recent years, the study of Eisenstein series, both for the
classical modular group SL(2,Z) and the Drinfeld modular group GL(2,Fq[T ])
and the arithmetic of their zeroes led to remarkable and surprising results, see
[1, 2, 4, 9, 10, 11, 21, 22, 24].

In the present paper we deal with the case of Eisenstein series for the principal
congruence subgroup

Γ(N) = {γ ∈ Γ | γ ≡ 1 (modN)}
of Γ = GL(2, A) for some N ∈ A := Fq[T ].

While the classical Eisenstein series

E(k)(z) =
∑
a,b∈Z

′
=

1

(az + b)k

(the
∑′ denotes the sum over all (a, b) 6= (0, 0)) have all their zeroes in the

standard fundamental domain on the unit circle (equivalently: their j-invariants
belong to the interval [0, 1728]), and the Drinfeld-Goss Eisenstein series [18]

E(k)(z) =
∑
a,b∈A

′ 1

(az + b)k

have a similar property [2, 9], the situation drastically changes once we replace
Γ = GL(2, A) by Γ(N) as above. Here the basic functions are partial sums of
E(k) subject to congruence conditions. For technical reasons, we work with the
equivalent functions

E(k)
u (z) :=

∑′

a,b∈Fq(T )

(a,b)≡u ( mod A×A)

1

(az + b)k
,
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where u = N−1(u1, u2) with ui ∈ A, deg ui < degN (i = 1, 2). It turns out that
these Eisenstein series with level N have their zeroes in the standard fundamen-
tal domain F in specified subdomains Fs “far away from the unit circle”.

The description is given in Theorem 3.1, our main result. The distribution pat-
tern of the zeroes is governed by the Goss polynomial Gk(X) (see section 2) of
the lattice A. Our results depend on the determination of the Newton polygon
of Gk(X) over the valued field K∞ = Fq((T−1)), which has been carried out in
[13] for the case of a prime field Fq. The general case will be given in [14].

The paper is organized as follows.

In section 1 we collect the necessary definitions, notations and background on
Drinfeld modular forms and curves.

In section 2 we review facts about Goss polynomials and determine the vanishing

order of E
(k)
u at the cusp ∞.

Section 3 is devoted to the statement and proof of the main result Theorem 3.1,

which describes the location of the zeroes of E
(k)
u in the fundamental domain F

in terms of Goss polynomials. We also calculate the spectral norm of E
(k)
u along

F (Corollary 3.9).

Section 4 gives the overall picture of the zeroes of E
(k)
u on the modular curve

X(N).

We conclude in section 5 with a more detailed study of the two extremal cases
where the weight k equals q + 1 (the first non-trivial case; if 1 ≤ k ≤ q then

E
(k)
u = (E

(1)
u )k has no non-cuspidal zeroes) or where the conductor N has degree

one.

The present study suggests an abundance of natural questions, for example about
the arithmetic nature of the zeroes, about similar results for other congruence
subgroups of Γ, e.g., the Hecke congruence subgroups Γ0(N), or about the anal-
ogous number-theoretical case.

During work on this paper, the author enjoyed the hospitality of the Centre de
Recerca Matematica (CRM) in Bellaterra, Spain, whose support is gratefully ac-
knowledged.

Notations.

F = Fq = finite field with q elements, q = power of the prime p
A = F[T ] = polynomial ring in an indeterminate T ,
As = {a ∈ A | deg a ≤ s}

K = F(T ) = quotient field of A
K∞ = F((T−1)) = completion of K at the place at infinity, with ring

of integers O∞ = F[[T−1]] and its absolute value | . | normalized
such that |T | = q
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C∞ = completed algebraic closure of K∞ w.r.t. | . |
Ω = C∞\K∞ the Drinfeld upper half-plane
| . |i : C∞ −→ R≥0 the “imaginary part” function, |z|i = infx∈K∞ |z − x|
N a fixed non-constant element of A, of degree δ
Γ = GL(2, A) the Drinfeld modular group, which acts on the projective

line P1(C∞) through fractional linear transformations
Γ(N) = {γ ∈ Γ | γ ≡ 1 (modN)} the principal congruence subgroup

with conductor N
Γ∞ = {γ ∈ Γ | γ =

(∗ ∗
0 ∗

)
}, the stabilizer group of ∞ in Γ

Z = {
(
a 0
0 a

)
| a ∈ F∗} ↪→ Γ, the kernel of the action on P1(C∞)

G(N) = Γ/Γ(N) · Z
Q≥0 = {a ∈ Q | a ≥ 0}

1. Modular forms and curves [6, 7, 9, 18, 19].

Recall that the Drinfeld half-plane Ω carries a natural structure of C∞-analytic
space, so the notion of an analytic (holomorphic, meromorphic) function on Ω is
meaningful. We define the following analytic subspaces of Ω:

(1.1) F := {z ∈ Ω | |z| = |z|i ≥ 1}

and for s ∈ Q≥0

Fs := {z ∈ Ω | |z| = |z|i = qs}.
Then F is the disjoint union of the Fs, and is a fundamental domain for the
action of Γ on Ω, that is, each z ∈ Ω is Γ-equivalent with at least one and at
most finitely many z′ ∈ F . The Fs are rational subdomains, isomorphic with a
“Riemann sphere” P1(C∞) minus q+1 disjoint open balls if s ∈ N0 = {0, 1, 2, . . .}
(resp. minus 2 disjoint open balls if s 6∈ N0), see [3, 16, 17]. Note that for z ∈ F
and a, b ∈ K∞ the following useful formula holds:

(1.2) |az + b| = max{|az|, |b|}.

We also need

(1.3)

Γs = {γ ∈ Γ | γ(Fs) ∩ F 6= ∅} = {γ ∈ Γ | γ(Fs) = Fs}
= GL(2,F), s = 0

= {
(
a b
0 d

)
∈ Γ | a, d ∈ F∗, b ∈ As}, s > 0.

Further, Γs(N) := Γs ∩ Γ(N) has size

(1.4) #Γs(N) = qmax([s]−δ+1,0),

where δ = degN ∈ N = {1, 2, 3, . . .} and [s] = largest integer n ≤ s.

Given a discrete A-submodule X of C∞ (i.e., the intersection of Λ with each ball
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B(0, s) with finite radius s is finite; such Λ are called A-lattices), let

(1.5) eΛ(z) := z
∏

06=λ∈Λ

(1− z/λ)

be its lattice function. The product converges, locally uniformly, and defines
an entire, surjective, F-linear function eΛ : C∞ −→ C∞, which apparently is
Λ-periodic and may be written as

(1.6) eΛ(z) =
∑
i≥0

αi(Λ)zq
i

, α0(Λ) = 1.

Taking logarithmic derivatives, we get the identity of meromorphic functions

(1.7)
e′Λ(z)

eΛ(z)
=

1

eΛ(z)
=
∑
λ∈Λ

1

z − λ
=: tΛ(z).

We define the uniformizer at ∞

(1.8) t(z) := tA(z) =
∑
a∈A

1

z − a
;

it yields an isomorphism of analytic spaces

(1.9) A\F
∼=−→ B(0, 1) \ {0},

where the left hand side is the set of equivalence classes modulo the action of A
on F by shifts z 7−→ z+ a and the right hand side the pointed ball with radius 1
around zero. Regarded as a function on F , |t(z)| depends only on |z| = |z|i, and
is a strictly decreasing function of |z|. Similarly, we let

(1.10) tN(z) :=
1

eNA(z)
=
∑
a∈NA

1

z − a
,

which yields NA \ F
∼=−→ B(0, r) \ {0} with some r.

1.11 Remark. For arithmetical purposes it is useful to choose other normaliza-
tions of t resp. tN , which involve transcendental constants and correspond to the
classical ez  e2πiz. That renormalization is however irrelevant for our purpose,
as is the precise value of the radius r above.

For a function f of Ω and
(
a b
c d

)
= γ ∈ Γ, we put as usual

(1.12) f[γ]k(z) := (cz + d)−kf(
az + b

cz + d
),

which defines a right action of Γ on functions.

A modular form of weight k for Γ(N) is a holomorphic function f : Ω −→ C∞
that satisfies

(1.13) (i) for each
(
a b
c d

)
= γ ∈ Γ(N)), f(az+b

cz+d
) = (cz + d)kf(z);
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(ii) for each γ ∈ Γ, the function f[γ]k has a power series expansion, convergent for
|z|i � 0:

f[γ]k(z) =
∑
i≥0

ait
i
N(z).

Note that |z|i large is equivalent with |tN(z)| small, so the above expansion is

nothing else than the Laurent expansion of f[γ]k on the pointed ball NA \ F
∼=−→

B(0, r) \ {0}. It suffices to check property (ii) for γ running through a set of
representatives in the finite set

(1.14) cusps(N) := Γ/Γ(N)Γ∞.

We further let Mk(N) be the C∞-vector space of modular forms of weight k for
Γ(N) and M(N) =

⊕
k≥0Mk(N) the algebra of all modular forms.

1.15 Example. Let k be a natural number and 0 6= u ∈ (K/A)2 a class with
Nu = 0. The Eisenstein series

E(k)
u (z) :=

∑
(a,b)∈K2

(a,b)≡u ( mod A2)

1

(az + b)k

converges locally uniformly on Ω and defines an element 0 6= E
(k)
u of Mk(N).

Its study and notably the determination of its zeroes is our main objective. We
represent the row vector u by 1

N
(u1, u2) with ui ∈ A not both zero, di := deg ui <

δ = degN (i = 1, 2). Further, we will restrict to considering E
(k)
u with u primitive

of level N , i.e., N ′u 6= 0 for proper divisors N ′ of N ; otherwise, we replace N by
N/ gcd(u1, u2, N).

An easy calculation yields the fundamental property for
(
a b
c d

)
= γ ∈ Γ:

(1.16) E(k)
u (γz) = (cz + d)k(Euγ(z), that is, E(k)

u )[γ]k = E(k)
uγ ,

where uγ is the effect of right matrix multiplication of u with γ. We abbreviate

Eu(z) := E(1)
u (z) =

∑
(a,b)≡u ( mod A2)

1

az + b
,

which by (1.7) equals e−1
u (z), with

(1.17) eu(z) := eAz+A

(
u1z + u2

N

)
.

This shows in particular that Eu has no zeroes as a function on Ω.

Next, we discuss modular curves. We let X(N) be the smooth connected alge-
braic curve over C∞ (the principal modular curve of level N , see [6, 18]) whose
C∞-points are given by

X(N)(C∞) = Γ(N) \ Ω
·
∪ Γ(N) \ P1(K).
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As Γ acts transitively on P1(K), we may identify

(1.18) cusps(N) = Γ/Γ(N)Γ∞
∼=−→ Γ(N) \ P1(K),

which we call the set of cusps of X(N). Its cardinality is

(1.19) #cusps(N) = (q − 1)−1|N |2
∏
P |N

Pmonic, prime

(1− |P |−2).

The function tN of (1.10) serves as a uniformizer at the cusp∞, and the behavior
of e.g. modular forms f ∈ Mk(N) at the cusp γ∞ (γ ∈ Γ) is described through
the behavior of f[γ]k at ∞.

Similarly, the principal modular curve X(1) of level 1 has points

X(1)(C∞) = Γ \ Ω
·
∪ {∞}

∼=−→ P1(C∞),

where the identification is given by the Drinfeld j-invariant j : Γ \ Ω
∼=−→ C∞

defined and discussed e.g. in [5, 8, 19]. The curve X(N) is a ramified Galois
cover of X(1) with group

(1.20) G(N) := Γ/Γ(N)Z
∼=−→ {γ ∈ GL(2, A/N) | det γ ∈ F∗}/Z,

where Z ist the group of F∗-valued scalar matrices, regarded simultaneously as a
subgroup of Γ and of GL(2, A/N). Studying the ramification of X(N) over X(1),
one finds [5, 18]:

(1.21) g(N) = 1 +
|N | − q − 1

q + 1
#cusps(N)

for the genus g(N) of X(N). There is a line bundle M over X(N), of degree

(1.22) deg(M) = (q2 − 1)−1#G(N) = (q + 1)−1|N |#cusps(N),

such that Mk(N) equals the space H0(X(N),M⊗k) of sections of the k-fold tensor
product M⊗k [7], VII 6.1, [18]. The order of vanishing of Eu (= pole order of
eu) at the cusps of X(N) is described in [6] Korollar 2.2, see (2.12). It is the aim
of the present work to give an overall picture of the zeroes (both cuspidal and

non-cuspidal) of all the E
(k)
u .

Let now z ∈ Ω be Γ-equivalent with z′ ∈ F . Then z′ ∈ Fs with a well-defined
s ∈ Q≥0 (i.e., |z′| = |z′|i = qs is independent of the choice of z′ ∈ F). We define
the type

(1.23) type(z) := s,

which yields a function type: X(N) −→ Q≥0∪{∞} (with the obvious declaration
type (z) =∞ for cusps z). We may now state a weak form of our main result.

1.24 Theorem. All the zeroes of E
(k)
u on X(N) are at points with type i ∈ N =

{1, 2, 3 . . .} or i =∞ (i.e., at cusps).
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In Theorem 3.1 and Proposition 2.12 we will describe in detail which and how

often types i ∈ N∪{∞} occur as zeroes of E
(k)
u . In view of (1.16), possibly replac-

ing u by γu, we may restrict to studying the behavior of E
(k)
u on the fundamental

domain F .

2. Goss polynomials.

Let Λ ⊂ C∞ be an A-lattice with lattice function eΛ(z) =
∑

i≥0 αi(Λ)zq
i

and

tΛ(z) = 1
eΛ(z)

=
∑

λ∈Λ
1

z−λ as in (1.5) to (1.8). The following result has been

proven in [19], see also [8].

2.1 Proposition. There exists a series of polynomials Gk,Λ(X) ∈ C∞[X] (k =
1, 2, 3, . . .) such that we have an identity of meromorphic functions∑

λ∈Λ

1

(z − λ)k
= Gk(tΛ(z)).

These Goss polynomials Gk = Gk,Λ satisfy

(2.2) Gk is monic of degree k with Gk(0) = 0;

(2.3) putting Gk(X) = 0 for k ≤ 0, the recurrence

Gk(X) = X(Gk−1(X) + α1Gk−q(X) + α2Gk−q2(X) + · · · )
with the coefficients αi = αi(Λ) of eΛ(z) holds;

(2.4) Gpk(X) = (Gk(X))p (p = char F = charK);

(2.5) X2(G′k(X) = kGk+1(X);

(2.6) Gk(X) = Xk if k ≤ q.

2.7 Remark. For some questions it is useful to know how the quantities
eΛ, tΛ, Gk,Λ change if the lattice Λ is replaced by Λ′ = c ·Λ with 0 6= c ∈ C∞. The
relevant (and easily proved) formulas can be found in [13] 2.20.

Recalling the notation of section 1, the identity

Eu(z) = tΛ

(
u1z + u2

N

)
holds with the lattice Λ = Az + A. Therefore (2.4)+(2.6) yield the following
immediate consequence:

2.8 Corollary. Suppose that k = k1 · pn with 1 ≤ k1 ≤ q. Then

E(k)
u = Ek

u

holds. In particular, E
(k)
u has no non-cuspidal zeroes. �

From now on, we focus on the Goss polynomials of the A-lattice A, which are
crucial for our purposes. Therefore, Gk(X) = Gk,A(X) will always refer to the
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lattice A; it is obvious from definitions that it has coefficients in K∞. The next
result has been shown in [13] in the special case where q = p is prime; the proof
of the general case will be given in [14].

2.9 Theorem. Let 0 6= x ∈ C∞ be a zero of Gk(X) = Gk,A(X). Then there

exists some n ∈ N0 such that logq |x| = −q( q
n−1
q−1

).

In terms of the Newton polygon of the polynomial Gk(X) over the valued field
K∞ ([23], Ch. II), the theorem may be phrased as follows: All the slopes of the
Newton polygon of Gk(X) have the form −q( qn−1

q−1
) for some n ∈ N0. (In fact,

the possible n are less or equal to logq(k − 1)− 1, see [13].)

Given k, we define

(2.10)

γ(k) := multiplicity of 0 as a zero of Gk(X),
and for n ≥ 0

γn(k) := number of zeroes x of Gk(X) (counted
with multiplicity) with logq |x| = −q( q

n−1
q−1

)

= width of the segment with slope − q( qn−1
q−1

)

of the Newton polygon of Gk(X).

By the theorem, k = γ(k) +
∑

n≥0 γn(k). Explicit formulas for these numbers in
terms of the q-adic expansion of k − 1 can be found in [13] and [14].

(2.11) As in (1.15), we let 0 6= u ∈ (K/A)2 with Nu = 0 be represented by
1
N

(u1, u2) with ui ∈ A of degree di < δ = degA (i = 1, 2). We put deg 0 = −∞
and evaluate formulas containing −∞ in the usual fashion. In particular, qd1 =
|u1| = 0 if u1 = 0.

2.12 Proposition. The vanishing order of E
(k)
u at the cusp ∞ equals |u1|γ(k).

Proof. In what follows, we calculate formally and interchange limits and summa-
tion orders. The estimates justifying these operations are almost trivial, due to
our non-archimedean situation, and are left to the reader. We have

E(k)
u (z) =

∑
a,b∈A×A

1((
u1

N
+ a
)
z + u2

N
+ b
)k =

∑
a

∑
b

. . .

=
∑
a

Gk,A

(
tA

((
u1

N
+ a

)
z +

u2

N

))
.

Suppose that u1 = 0. The terms corresponding to a 6= 0 in the double sum vanish
upon |z|i −→∞, which implies

E(k)
u (∞) =

∑
b∈A

1(
u2

N
+ b
)k =

(
u2

N

)−k
+ smaller terms,
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which thus doesn’t vanish. Let now u1 6= 0. As deg u1 < degN , Lemma 2.13
and the definition of γ(k) show that Gk,A(tA(u1

N
z + u2

N
)) is a power series in the

uniformizer tN at infinity with precise vanishing order |u1|γ(k), while the terms
Gk,A(tA(u1

N
+ a)z + u2

N
with a 6= 0 have strictly larger vanishing orders when

regarded as power series in tN . �

2.13 Lemma. Let c, d be elements of A, c 6= 0. The function tA( c
N
z + d

N
) may

be expanded as a power series in tN(z) of shape C · t|c|N+ terms of higher order in
tN with some constant C 6= 0.

Proof. The assertion is a well-known fact, and we give the proof for the reader’s
convenience only, who is assumed to be familiar with the basic theory of Drinfeld
modules as e.g. presented in [20] Ch. IV or [7] Ch. IV.

Let ρ be the rank-one Drinfeld module that corresponds to the lattice NA. It
yields for each c ∈ A an operator polynomial ρc(X) of degree |c| such that

(1) eNA(cz) = ρc(eNA(z))

holds. Further, the lattice functions of A and NA are related by

(2) eNA(Nz) = NeA(z).

Now

tA

(
c

N
z + d

)
=

1

eA
(
cz+d
N

) (2)
=

N

eNA(cz + d)

(1)
=

N

ρc(eNA(z)) + eNA(d)
.

Taking into account that eNA(z) = tN(z)−1 and expanding by t
|c|
N , we get Nt

|c|
N

divided by a polynomial in tN with non-vanishing absolute term. �

3. The zeroes of E
(k)
u on F .

We keep the notation of (1.15) and (2.11): 0 6= u ∈ (K/A)2 with Nu = 0,
represented by 1

N
(u1, u2) with di = deg ui < δ = degN and N ′u 6= 0 for all

proper divisors N ′ of N . Our goal is to prove the following result.

3.1 Theorem. Suppose that u1 6= 0. For i = 0, 1, 2, . . . , the Eisenstein series

E
(k)
u has γi(k)qi+1 zeroes (counted with multiplicity) on Fδ−d1+i and no other

zeroes on F . If u1 = 0, E
(k)
u has no zeroes on F .

In view of (1.16) and (2.12) we then know the location of all the zeroes of all E
(k)
u

on X(N) = Γ(N) \ (Ω∪P1(K)). In particular, Theorem 1.24 is a consequence of
Theorem 3.1. As the group Γδ−d1+i(N) (which by (1.4) has order qmax(i+1−d1,0))

acts without fixed points on Fδ−d1+i, E
(k)
u has γi(k)qmin(d1,i+1) zeroes on

Γδ−d1+i(N) \ Fδ−d1+i ↪→ Γ(N) \ Ω ↪→ X(N).

Before proving the theorem, we collect some more information.
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3.2 Lemma. Consider the functions z 7−→ t(u1z+u2

N
) and Eu = E

(1)
u on F and

their absolute values. Then

(i) |Eu(z)| = |t(u1z+u2

N
)|.

(ii) logq |t(u1z+u2

N
)| = −q qs+d1−δ−1

q−1
, s ≥ δ − d1

= min(δ − d1 − s, δ − d2), s < δ − d1

for z ∈ Fs, s ∈ N0.

(iii) logq |t(u1z+u2

N
)| depends only on s = logq |z|. Regarded as a function of

s ∈ Q≥0, it is linear on intervals [i, i+ 1] ∩Q≥0, i ∈ N0.

Proof. (i) As Eu(z) = eAz+A(u1z+u2

N
)−1 and t(u1z+u2

N
) = eA(u1z+u2

N
)−1, both num-

bers differ by the factor
∏

a,b∈A
a6=0

(1 − u1z+u2

N(az+b)
). Since |u1z + u2| < |Naz| ≤

|N(az + b)|, that factor has absolute value 1.

(ii) This follows from an elementary (but tedious) calculation, using (1.2), and is
left to the reader.

(iii) This is a general property of invertible holomorphic functions, see e.g. [25],
but results in our case from the calculation that shows (ii). �

We thus have control on |t(u1z+u2

N
)|. In particular, for z ∈ F :

(3.3)

∣∣∣∣t(u1z + u2

N

)∣∣∣∣ > 1⇔ |z| < qδ−d1 .

Next, let Fs be one of the subspaces described in (1.1). For a holomorphic
function f on Fs, let

(3.4) ‖f‖s = sup{f(z) | z ∈ Fs} = max{f(z) | z ∈ Fs}

denote the spectral norm on Fs.

3.5 Lemma. Suppose that f may be written as f = fp + fc with a holomorphic
principal part fp and a complementary part fc that satisfy ‖f‖s = ‖fp‖s > ‖fc‖s.
Then the number of zeroes of f on Fs (counted with multiplicity) agrees with the
number of zeroes of fp on Fs.

Proof. Without restriction, ‖f‖s = 1. Let x1, . . . , xn (resp. y1, . . . , ym) be the ze-
roes of f (resp. fp) on Fs, each counted with multiplicities. Then ([3], Théorème
I.2.2) we can write

f(z) =
∏

1≤i≤n

(z − xi)g(z),

where |g| = ‖f‖s = 1 is constant on Fs. Similarly, fp(z) =
∏

1≤j≤m(z − yj)gp(z)

with |gp| = 1 on Fs. Since the canonical reductions f and fp of f and fp agree,

we find n = number of zeroes of f = number of zeroes of fp = m. �
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As in the proof of (2.12), we write

(3.6) E(k)
u (z) =

∑
a∈A

Gk

(
t

((
u1

N
+ a

)
z +

u2

N

))
.

3.7 Lemma. Put fp(z) := Gk(t(
u1z+u2

N
)) and fc := E

(k)
u − fp. For each s ∈ Q≥0,

the (in-)equalities

‖fp‖s = ‖E(k)
u ‖s > ‖fc‖s

hold.

Proof. For s given, let σ := logq |t(u1z+u2

N
)| be the constant absolute value of the

function z 7−→ t(u1z+u2

N
) on Fs. Write the Goss polynomial

(1) Gk(X) =
∏

1≤i≤n

(X − xi)
∏

1≤j≤m

(X − yj) (n+m = k)

with zeroes xi and yj that satisfy |xi| < qσ, |yj| ≥ qσ. Note that n > 0 since
Gk(X) is divisible by X (and even by X2 if k > 1). Replacing the term fp, which
corresponds to a = 0 in (3.6), by Gk(t((

u1

N
+ a)z + u2

N
)) with a 6= 0, the quantity∣∣∣∣eA(u1

N
+ a

)
z +

u2

N

∣∣∣∣ =

∣∣∣∣eA(u1z + u2

N

)
+ eA(az)

∣∣∣∣ = |eA(az)|

becomes strictly larger, as follows from (3.2). Hence for the reciprocals:

qσa :=

∣∣∣∣t((u1

N
+ a

)
z +

u2

N

)∣∣∣∣ < ∣∣∣∣t(u1z + u2

N

)∣∣∣∣ = qσ.

Since these functions are invertible on Fs, the absolute values are constant on
Fs and agree with the spectral norms. We read off from (1) that ‖Gk(t((

u1

N
+a)z+

u2

N
))‖s decreases compared to ‖fp‖s by a factor smaller or equal to∏
1≤i≤n(sup(qσa , |xi|)q−σ) < 1. As σa −→ −∞ with increasing deg a, we are

done. �

Proof of Theorem 3.1. From the preceding lemmas, the number of zeroes of E
(k)
u

and of fp(z) = Gk(t(
u1z+u2

N
)) on Fs agree. We abbreviate τ(z) for t(u1z+u2

N
).

If u1 = 0, then τ(z) and fp(z) = Gk(τ(z)) are constant, and there are no zeroes
of fp on F . Thus suppose u1 6= 0. By (2.9) there are precisely γi(k) many values

τ of τ(z) with logq |τ | = −q( q
i−1
q−1

) (i = 0, 1, 2, . . .) which are zeroes of Gk(X), and

no other zeroes. By (3.2), these arise on Fδ−d1+i.

How many z ∈ Fδ−d1+i are there that give rise to the same value of τ(z)?
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We have for z, z′ ∈ Fδ−d1+i:

τ(z) = τ(z′)⇔ eA

(
u1z + u2

N

)
= eA

(
u1z

′ + u2

N

)
⇔ eA

(
u1(z − z′)

N

)
⇔ z − z′ ∈ N

u1

A

Hence the map τ is m-to-one on Fδ−d1+i, with

m = #

{
w

u1

∈ N

u1

A

∣∣∣∣ ∣∣∣∣ wu1

∣∣∣∣ ≤ qδ−d1+i

}
= #{w ∈ NA | degw ≤ δ + i} = qi+1.

Therefore there are precisely γi(k)qi+1 zeroes of fp, thus of E
(k)
u , on Fδ−d1+i

(i = 0, 1, 2, . . .), and no other zeroes on F . �

The spectral norm defines a function

(3.8)
ν

(k)
u : Q≥0 −→ R

s 7−→ ‖E(k)
u ‖s.

Recall that Gk(X) is exactly divisible by Xγ(k). Let gγ(k) be the coefficient of

Xγ(k) and ψ(k) := − logq |gγ(k)| ∈ N0 its∞-adic valuation. We further need ω(k),
the largest i such that γi(k) > 0 (which is less than logq(k − 1) [13]).

3.9 Corollary. The function ν
(k)
u enjoys the following properties:

(i) logq |ν
(k)
u | is linear on intervals [i, i+ 1] ∩Q≥0, i ∈ N0;

(ii) ν
(k)
u is non-increasing;

(iii) if u1 = 0 then ν(s) = |E(k)
u (z)| = 1 for each s ∈ Q≥0 and z ∈ F .

From now on, suppose u1 6= 0. Then

(iv) ν
(k)
u (s) = |E(k)

u (z)| for each z ∈ Fs if s 6∈ {δ − d1 + i | γi(k) 6= 0}.
Let s ∈ N0.

(v) If s ≤ δ − d1 then logq ν
(k)
u (s) = k ·min(δ − d1 − s, δ − d2);

(vi) if s ≥ δ − d1 + ω(k) then logq ν
(k)
u (s) = −γ(k) q

s−δ+d1−1
q−1

− ψ(k).

Proof. (i) follows from (3.1), i.e., the fact that E
(k)
u has its zeroes in F only in⋃

s∈NFs.
(ii) results from (3.2) (the non-increasingness of logq |t(u1z+u2

N
)| as a function of

logq |z|) and (3.7).

(iii) has already been shown in the proof of (3.1).

(iv) comes from the description of zeroes of E
(k)
u .

(v) If z ∈ Fs with s ∈ N0, s < δ−d1 then logq |t(u1z+u2

N
)|=min(δ−d1−s, δ−d2)>0

(cf. (3.2)), so t(u1z+u2

N
) is larger in absolute value than the zeroes of Gk(X), and



EISENSTEIN SERIES 13

|E(k)
u (z)| = |Gk(t(

u1z+u2

N
))| is determined through the leading term of Gk.

(vi) For z ∈ Fs with s > δ − d1 + ω(k), |t(u1z+u2

N
)| < |x| for each zero x 6= 0 of

Gk(X), hence |E(k)
u (z)| is given by the lowest order term of Gk. �

3.10 Remark. Combining the explicit description of the Newton polygon of
Gk(X) given in [13] and [14] with (3.2), it is possible to work out the precise value

of ν
(k)
u (s) = ‖E(k)

n ‖s also for s on the critical strip {δ−d1, δ−d1 +1, δ−d1 +ω(k)}.

4. Distribution of the zeroes of E
(k)
u on X(N).

Recall that G(N) = Γ/Γ(N) · Z is the group of the ramified Galois covering of

X(N) over X(1)
∼=−→ P1(C∞). It acts transitively on the set of cusps

cusps(N) = Γ/Γ(N) · Γ∞

and on

(4.1) Eis(N) := {u ∈ (K/A)2 | Nu = 0}prim/Z,

where {. . .}prim refers to those u for which N ′u 6= 0 for all proper divisors N ′ of

N . As non-primitive u’s give rise to Eisenstein series E
(k)
u of strictly smaller level

than N and Z-equivalent u, u′ yield essentially the same Eisenstein series (i.e.,

u′ = cu with c ∈ F∗
∼=−→ Z implies E

(k)
u′ = c−kE

(k)
u ), we use Eis(N) as an index

set for them. Both cusps(N) and Eis(N) have the same cardinality

(4.2) #Eis(N) = #cusps(N) = (q − 1)|N |2
∏
P |N

P monic, prime

(1− |P |−2).

(In [6] sect. 3 it is shown how one can find a common set of representatives in
G(N) for both sets which actually is a subgroup of G(N).)

Now let us count the total number of zeroes of E
(k)
u . Choose a set R of rep-

resentatives for G(N) in Γ. In view of (1.16) and X(N) =
⋃
γ∈R γ(F ∪ {∞}),

non-cuspidal zeroes of E
(k)
u on X(N) are described by pairs (γ, z), where γ ∈ R

and z is a zero of E
(k)
uγ on F . Two such pairs, (γ1, z1) and (γ2, z2), yield the same

zero if and only if γγ1z1 = γ2z2 with some γ ∈ Γ(N). If so, type(z1) = type(z2),
i.e., z1 and z2 belong to the same Fs (s ∈ N) and are equivalent under Γs. On

the other hand, if z1 ∈ Fs is a zero of E
(k)
uγ1 and z2 = βz1 with β ∈ Γs, then there

exists a unique γ2 ∈ R such that z2 is a zero of E
(k)
uγ2 . Hence the equivalence class

of (γ, z) has length #Γs/Z = (q−1)qs+1. We thus find (where we abuse language
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and write #{. . .} for the number of zeroes counted with multiplicity):

#{non-cuspidal zeroes of E
(k)
u on X(N)}

=
∑
γ∈R

∑
s∈N

#{zeroes of E
(k)
uγ on Fs}

(q − 1)qs+1

= (q − 1)qδ
∑

v∈Eis(N)

∑
s∈N

#{zeroes of E
(k)
v on Fs}

(q − 1)qs+1
,

as each E
(k)
v occurs (q − 1)qδ times as E

(k)
uγ when γ runs through R.

For v = class of N−1(v1, v2) with deg vi < δ (i = 1, 2), we let d1 = d1(v) = deg v1.
With (3.1) the expression becomes

qδ
∑

v∈Eis(N)

∑
i≥0

γi(k)qi+1

qδ−d1(v)+i+1
=

∑
v∈Eis(N)

qd1(v)
∑
i≥0

γi(k)

=
∑

v∈Eis(N)

|v1|
∑
i≥0

γi(k).

A similar calculation, based on (2.12), yields
∑

v∈Eis(N) |v1|γ(k) for the number

of cuspidal zeroes of E
(k)
u on X(N). Together

#{zeroes of E
(k)
u on X(N)}

=
∑

v∈Eis(N)

|v1|
(∑

i≥0

γi(k) + γ(k)

)
= k

∑
v∈Eis(N)

|v1|.

As may be verified by elementary means (although this is rather delicate), but
also follows from Korollar 2.2 in [6], the identity

(4.4)
∑

v∈Eis(N)

|v1| = |N |
#cusps(N)

q + 1
= deg(M)

holds. Hence the above calculation is (of course . . . ) compatible with (1.22).
Beyond the sheer number, it exhibits a more precise picture of the location of the
zeroes, which will be exemplified in the next section.

5. Examples.

We consider in more detail the two extremal cases where either the weight k or
the conductor N is as small as possible without leading to a trivial situation. We
keep the notation of the preceding sections.

5.1 Example. Let k = q + 1 and u ∈ (K/A)2 be primitive of level N . Here
Gk(X) = Gq+1(X) = Xq+1 +α1X

2 with a constant α1 ∈ O∞ of absolute value 1,

so γ(q+ 1) = 2, ψ(q+ 1) = 0 = ω(q+ 1) (cf. (3.8)). If u1 = 0 then E
(q+1)
u has no
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zeroes on F ∪ {∞} and |E(q+1)
u | = 1 on F . Thus suppose u1 6= 0. Then E

(q+1)
u

has (q − 1)q zeroes on Fδ−d1 and no other zeroes on F . The formulas of (3.9)
yield for z ∈ Fs, s ∈ N0:

logq |E
(q+1)
u (z)| = (q + 1) min(δ − d1 − s, δ − d2), s < δ − d1

= −2q q
s−δ+d1−1
q−1

, s > δ − d1

‖E(q+1)
u ‖δ−d1 = 1

The zeroes of E
(q+1)
u are of type s with s = δ − d1 between 1 and δ. The

considerations of Section 4 show that

#{x ∈ X(N) | x is a non-cuspidal zero of type s of E
(q+1)
u }

= (q − 1)#{v ∈ Eis(N) | d1(v) = δ − s},

which apart from s and δ = degN depends in general on the splitting type of N .
However for s = δ that number is (q−1)#{v ∈ Eis(N) | d1(v) = 0} = (q−1)|N |.
Hence the number (counted with multiplicity) of all zeroes of type δ of all E

(q−1)
u

(u ∈ Eis(N)) is (q − 1)|N |#Eis(N) = #G(N).

As G(N) acts on the corresponding set Z, and acts fixed-point free (the only
fixed points of G(N) are at cusps and at elliptic points, of type 0), Z forms one
orbit of G(N), of size #G(N). We have thus shown the following result.

5.2 Proposition. Let u, v ∈ (K/A)2 be primitive of level N and inequivalent

modulo Z (i.e., v 6= cu, c ∈ F∗). The sets of zeroes of type δ = degN of E
(q+1)
u

and E
(q+1)
v are disjoint, and all these zeroes are simple.

5.3 Remarks. (i) It would be interesting to know whether such properties (sim-

plicity of non-cuspidal zeroes of E
(k)
u , disjointness of the corresponding divisors)

hold in greater generality. Of course, (2.4) and (2.8) yield some restrictions.

(ii) Since Z = {x ∈ X(N) of type δ|∃u ∈ Eis(N) s.t. E
(q+1)
u (x) = 0} forms an or-

bit under G(N), it corresponds to one point j(Z) on the modular curve X(1)
∼=−→

P1(C∞) without level. From [12] 2.3 we see that logq |j(Z)| = qδ+1. It is worth-
while to determine that number and, more generally, the j-invariants of other

zeroes of E
(k)
u and to study their arithmetic. See (5.8) for a special case.

Finally, we treat the case where the weight k is unrestricted but δ = degN = 1,
without restriction, N = T .

5.4 Example. The case N = T .
The modular curve X(T ), of genus 0, is a well-studied object, see e.g. [1, 2, 15].
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There are natural identifications

(5.5)

G(T ) = PGL(2,F)

cusps(T ) = G(T )/B
∼=−→ P1(F)

class of
(
a b
c d

)
7−→ (a : c)

Eis(T ) = B \G(T )
∼=−→ P1(F),

class of T−1(u1, u2) 7−→ (u1 : u2)

where B = {
(∗ ∗

0 ∗

)
} ⊂ G(T ) is the standard Borel subgroup and u1, u2 ∈ F. (The

description in [6] sect. 3 might be helpful. It applies to general conductors.)
Going through the identifications we find:

(5.6) E
(k)
u with u = T−1(u1, u2) vanishes at the cusp (a : c) of X(T ) if and only

if u1a+ u2c 6= 0. In this case, the vanishing order is γ(k).

For each cusp (a : c) let αa:c =
(
a ∗
c ∗

)
∈ GL(2,F) ↪→ Γ be a representative, and let

R = {αa:c | (a : c) ∈ cusps(T )}. Then

X(T ) =
⋃
α∈R

α(F ∪ {∞}),

where the intersection of α(F ∪ {∞}) and β(F ∪ {∞}) for α, β ∈ R, α 6= β,
is in α(F0) = β(F0) = F0. This corresponds to the fact that the Bruhat-Tits
tree T of PGL(2, K∞) divided out by Γ(T ) is a star composed of q + 1 half lines
• − − − • − − − • − − · · · glued together in their origins, see [15] and [1]. For

u = T−1(u1, u2) as above, the zeroes of E
(k)
u on X(T ) are

• γ(k) zeroes at each of the q cusps (a : c) with u1a+ u2c 6= 0;
• γi(k) zeroes (counted with multiplicity) on αa:c(F1+i), for each of the q

representatives αa:c with u1a+ u2c 6= 0.

The conjunction of the two examples is the case where

(5.7) N = T and k = q + 1 .

There are precisely #Eis(T ) × γ0(q + 1) × degM = (q + 1)(q − 1)q = #G(T )

non-cuspidal zeroes of E
(q+1)
u , u ∈ Eis(T ), all different, which form a complete

orbit under G(T ). Here we can directly calculate the j-invariant.

5.8 Proposition. Let z ∈ X(T ) be a non-cuspidal zero of E
(q+1)
u for some

u ∈ Eis(T ). Then j(z) = (T q−T )q+1

T q−2T
.

Proof. As in the proof of (2.13), we use rudiments of the theory of Drinfeld
modular forms and the corresponding notation, see [8] or [9].

Fix 0 6= u ∈ (K/A)2 with Tu = 0, let E := Eu and e := E−1. Then

(1) E(q+1)
u (z) = Gq+1,Λ(E(z))

with the lattice Λ := Az + A in C∞ (cf. (2.8)).

(2) Gq+1,Λ(X) = Xq+1 + α1X
2,
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where α1 = α1(Az + A) is the first coefficient of eΛ(ω) =
∑

i≥0 αi(Az + A)ωq
i
.

Regarded as a function of z, α1 is a modular form of weight q − 1 for Γ.

Let φ be the Drinfeld module corresponding to Λ, given by the operator polyno-
mial

φT (X) = TX + gXq + ∆Xq2

with g,∆ ∈ C∞, ∆ 6= 0. Again, g and ∆ depend in such a way on z that they
are modular forms of weights q − 1 and q2 − 1, respectively. In fact, from the
functional equation of eΛ,

(3) eΛ(Tz) = φT (eΛ(z),

we find

(4) α1(z) =
1

T q − T
g(z).

Also from (3) and (1.7), e = E−1 is a T -division point of φ, i.e., φT (e) = 0, and
since e has no zeroes,

(5) T + geq−1 + ∆eq
2−1 = 0

identically on Ω. From (1), (2), (4) we see

(6) E(q+1)
u (z) = 0⇔ Eq−1

u +
g(z)

T q − T
= 0⇔ g(z) =

T − T q

eq−1(z)
.

Thus, if z is a zero then (5) and (6) imply

∆(z) =
T q − 2T

eq2−1(z)
,

and so

j(z) =
gq−1(z)

∆(z)
=

(T q − T )q+1

T q − 2T
as stated. �
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