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J. I. BURGOS GIL AND E. FELIU

Abstract. We give a new construction of higher arithmetic Chow groups for
quasi-projective arithmetic varieties over a field. Our definition agrees with the
higher arithmetic Chow groups defined by Goncharov for projective arithmetic
varieties over a field. These groups are the analogue, in the Arakelov context,
of the higher algebraic Chow groups defined by Bloch. The degree zero group
agrees with the arithmetic Chow groups of Burgos. Our new construction is
shown to be a contravariant functor and is endowed with a product structure,
which is commutative and associative.

Introduction

Let X be an arithmetic variety, i.e. a regular scheme which is flat and quasi-
projective over an arithmetic ring. In [14], Gillet and Soulé defined the arith-

metic Chow groups of X, denoted as ĈH
p
(X), whose elements are classes of

pairs (Z, gZ), with Z a codimension p subvariety of X and gZ a Green current for
Z. Later, in [5], the first author gave an alternative definition for the arithmetic
Chow groups, involving the Deligne complex of differential forms with logarith-
mic singularities along infinity, D∗log(X, p), that computes real Deligne-Beilinson
cohomology, H∗D(X,R(p)). When X is proper, the two definitions are related by
a natural isomorphism that takes into account the different normalization of both
definitions. In this paper, we follow the latter definition.

It is shown in [5] that the following properties are satisfied by ĈH
p
(X):

• The groups ĈH
p
(X) fit into an exact sequence:

(1) CHp−1,p(X)
ρ−→ D2p−1

log (X, p)/ im dD
a−→ ĈH

p
(X)

ζ−→ CHp(X)→ 0,

where CHp−1,p(X) is the term Ep−1,−p
2 (X) of the Quillen spectral sequence

(see [23], §7) and ρ is the Beilinson regulator.
• There is a pairing

ĈH
p
(X)⊗ ĈH

q
(X)

·−→ ĈH
p+q

(X)Q

turning
⊕

p≥0 ĈH
p
(X)Q into a commutative graded unitary Q-algebra.
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• If f : X → Y is a morphism, there exists a pull-back morphism

f ∗ : ĈH
p
(Y )→ ĈH

p
(X).

Assume that X is proper and defined over an arithmetic field. Then the arith-
metic Chow groups have been extended to higher degrees by Goncharov, in [16].

These groups are denoted by ĈH
p
(X,n) and are constructed in order to extend

the exact sequence (1) to a long exact sequence of the form

· · · → ĈH
p
(X,n)

ζ−→ CHp(X,n)
ρ−→ H2p−n

D (X,R(p))
a−→ ĈH

p
(X,n− 1)→ · · ·

· · · → CHp(X, 1)
ρ−→ D2p−1

log (X, p)/ im dD
a−→ ĈH

p
(X)

ζ−→ CHp(X)→ 0.

Explicitly, Goncharov defined a regulator morphism

Zp(X, ∗) P−→ D2p−∗
D (X, p),

where

• Zp(X, ∗) is the chain complex given by Bloch in [3], whose homology
groups are, by definition, CHp(X, ∗).
• D∗D(X, ∗) is the Deligne complex of currents.

Then the higher arithmetic Chow groups of a regular complex variety X are

defined as ĈH
p
(X,n) := Hn(s(P ′)), the homology groups of the simple of the

induced morphism

P ′ : Zp(X, ∗) P−→ D2p−∗
D (X, p)/D2p(X, p).

For n = 0, these groups agree with the ones given by Gillet and Soulé. However,
this construction leaves the following questions open:

(1) Does the composition of the isomorphism Kn(X)Q ∼=
⊕

p≥0CH
p(X,n)Q with

the morphism induced by P agree with the Beilinson regulator?

(2) Can one define a product structure on
⊕

p,n ĈH
p
(X,n)?

(3) Are there well-defined pull-back morphisms?

The use of the complex of currents in the definition of P is the main obstacle
encountered when trying to answer these questions, since this complex does not
behave well under pull-back or products. Moreover, the usual techniques for
the comparison of regulators apply to morphisms defined for the class of quasi-
projective varieties, which is not the case of P .

In this paper we develop a higher arithmetic intersection theory by giving a
new definition of the higher arithmetic Chow groups, based on a representative
of the Beilinson regulator at the chain complex level. Our strategy has been to
use the Deligne complex of differential forms instead of the Deligne complex of
currents in the construction of the representative of the Beilinson regulator. The
obtained regulator turns out to be a minor modification of the regulator described
by Bloch in [4].
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The present definition of higher arithmetic Chow groups is valid for quasi-
projective arithmetic varieties over a field, pull-back morphisms are well-defined
and can be given a commutative and associative product structure. Therefore,
this construction overcomes the open questions left by Goncharov’s construction.

The authors, jointly with Takeda, prove in [6] that this definition agrees with
Goncharov’s definition when the arithmetic variety is projective. Moreover, by
a direct comparison of our regulator with P , it is also proved that the regulator
defined by Goncharov induces the Beilinson regulator. In this way, the open ques-
tions (1)-(3) are answered positively. Moreover, the question of the covariance of
the higher arithmetic Chow groups with respect to proper morphisms will also
be treated elsewhere.

Note that since the theory of higher algebraic Chow groups given by Bloch,
CHp(X,n), is only fully established for schemes over a field, we have to restrict
ourselves to arithmetic varieties over a field. Therefore, the following question
remains open:

(1) Can we extend the definition to arithmetic varieties over an arithmetic
ring?

Let us now briefly describe the constructions presented in this paper. First,
for the construction of the higher Chow groups, instead of using the simplicial
complex defined by Bloch in [3], we use its cubical analog, defined by Levine
in [19], due to its suitability for describing the product structure on CH∗(X, ∗).
Thus Zp(X,n)0 will denote the normalized chain complex associated to a cubi-
cal abelian group. Let X be a complex algebraic manifold. For every p ≥ 0,
we define two cochain complexes, D∗A,Zp(X, p)0 and D∗A(X, p)0, constructed out
of differential forms on X × �n with logarithmic singularities along infinity
(� = P1 \ {1}). For every p ≥ 0, the following isomorphisms are satisfied:

H2p−n(D∗A,Zp(X, p)0) ∼= CHp(X,n)R, n ≥ 0,
Hr(D∗A(X, p)0) ∼= Hr

D(X,R(p)), r ≤ 2p,

where the first isomorphism is obtained by a explicit quasi-isomorphism

D2p−∗
A,Zp (X, p)0 −→ Zp(X, ∗)0 ⊗ R

(see §2.4 and §2.5).
We show that there is a natural chain morphism (see §3.1)

D2p−∗
A,Zp (X, p)0

ρ−→ D2p−∗
A (X, p)0

which induces, after composition with the isomorphism

Kn(X)Q ∼=
⊕
p≥0

CHp(X,n)Q
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described by Bloch in [3], the Beilinson regulator (Theorem 3.5):

Kn(X)Q ∼=
⊕
p≥0

CHp(X,n)Q
ρ−→
⊕
p≥0

H2p−n
D (X,R(p)).

In the second part of this paper we use the morphism ρ to define the higher

arithmetic Chow group ĈH
p
(X,n), for any arithmetic variety X over a field.

The formalism underlying our definition is the theory of diagrams of complexes
and their associated simple complexes, developed by Beilinson in [1]. Let XΣ

denote the complex manifold associated with X and let σ be the involution that
acts as complex conjugation on the space and on the coefficients. As usual σ as
superindex will mean the fixed part under σ. Then one considers the diagram of
chain complexes

Ẑp(X, ∗)0 =


Zp(XΣ, ∗)σ0 ⊗ R D2p−∗

A (XΣ, p)
σ
0

Zp(X, ∗)0

γ1

;;wwwwwwwww
D2p−∗

A,Zp (XΣ, p)
σ
0

γ′
1

∼

eeJJJJJJJJJJ

ρ

::ttttttttt
ZD2p

log(XΣ, p)
σ

i

ddJJJJJJJJJ


where ZD2p

log(XΣ, p)
σ is the group of closed elements of D2p

log(XΣ, p)
σ considered

as a complex concentrated in degree 0. Then, the higher arithmetic Chow groups

of X are given by the homology groups of the simple of the diagram Ẑp(X, ∗)0

(Definition 4.3):

ĈH
p
(X,n) := Hn(s(Ẑp(X, ∗)0)).

The following properties are shown:

• Theorem 4.8: Let ĈH
p
(X) denote the arithmetic Chow group defined

in [5]. Then, there is a natural isomorphism

ĈH
p
(X)

∼=−→ ĈH
p
(X, 0).

It follows that if X is proper, ĈH
p
(X, 0) agrees with the arithmetic Chow

group defined by Gillet and Soulé in [14].
• Proposition 4.4: There is a long exact sequence

· · · → ĈH
p
(X,n)

ζ−→ CHp(X,n)
ρ−→ H2p−n

D (XΣ,R(p))σ
a−→ ĈH

p
(X,n− 1)→ · · ·

· · · → CHp(X, 1)
ρ−→ D2p−1

log (XΣ, p)
σ/ im dD

a−→ ĈH
p
(X)

ζ−→ CHp(X)→ 0,

with ρ the Beilinson regulator.
• Proposition 4.12 (Pull-back): Let f : X → Y be a morphism between

two arithmetic varieties over a field. Then, there is a pull-back morphism

ĈH
p
(Y, n)

f∗−→ ĈH
p
(X,n),

for every p and n, compatible with the pull-back maps on the groups
CHp(X,n) and H2p−n

D (X,R(p)).
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• Corollary 4.16 (Homotopy invariance): Let π : X × Am → X be the
projection on X. Then, the pull-back map

π∗ : ĈH
p
(X,n)→ ĈH

p
(X × Am, n), n ≥ 1

is an isomorphism.
• Theorem 5.46 (Product): There exists a product on

ĈH
∗
(X, ∗) :=

⊕
p≥0,n≥0

ĈH
p
(X,n),

which is associative, graded commutative with respect to the degree n.

The paper is organized as follows. The first section is a preliminary section.
It is devoted to fix the notation and state the main facts used in the rest of the
paper. It includes general results on homological algebra, diagrams of complexes,
cubical abelian groups and Deligne-Beilinson cohomology. In the second section
we recall the definition of the higher Chow groups of Bloch and introduce the
complexes of differential forms being the source and target of the regulator map.
We proceed in the next section to the definition of the regulator ρ and we prove
that it agrees with Beilinson’s regulator. In sections 4 and 5, we develop the
theory of higher arithmetic Chow groups. Section 4 is devoted to the definition
and basic properties of the higher arithmetic Chow groups and to the comparison
with the arithmetic Chow group for n = 0. Finally, in section 5 we define the

product structure on ĈH
∗
(X, ∗) and prove that it is commutative and associative.
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1. Preliminaries

1.1. Notation on (co)chain complexes. We use the standard conventions on
(co)chain complexes. By a (co)chain complex we mean a (co)chain complex over
the category of abelian groups.

The cochain complex associated to a chain complex A∗ is simply denoted by A∗

and the chain complex associated to a cochain complex A∗ is denoted by A∗. The
translation of a cochain complex (A∗, dA) by an integer m is denoted by A[m]∗.
Recall that A[m]n = Am+n and the differential of A[m]∗ is (−1)mdA. If (A∗, dA) is
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a chain complex, then the translation of A∗ by an integer m is denoted by A[m]∗.
In this case the differential is also (−1)mdA but A[m]n = An−m.

The simple complex associated to an iterated chain complex A∗ is denoted by
s(A)∗ and the analogous notation is used for the simple complex associated to an
iterated cochain complex (see [9] §2 for definitions).

The simple of a cochain map A∗
f−→ B∗ is the cochain complex (s(f)∗, ds) with

s(f)n = An ⊕ Bn−1, and differential ds(a, b) = (dAa, f(a) − dBb). Note that
this complex is the cone of −f shifted by 1. There is an associated long exact
sequence

(1.1) · · · → Hn(s(f)∗)→ Hn(A∗)
f−→ Hn(B∗)→ Hn+1(s(f)∗)→ · · ·

If f is surjective, there is a quasi-isomorphism

(1.2) ker f
i−→ s(−f)∗ x 7→ (x, 0),

and if f is injective, there is a quasi-isomorphism

(1.3) s(f)[1]∗
π−→ B∗/A∗ (a, b) 7→ [b].

Analogously, equivalent results and quasi-isomorphisms can be stated for chain
complexes.

Following Deligne [10], given a cochain complex A∗ and an integer n, we denote
by τ≤nA

∗ the canonical truncation of A∗ at degree n.

1.2. The simple of a diagram of complexes. We describe here Beilinson’s
ideas on the simple complexes associated to a diagram of complexes (see [1]). A
diagram of chain complexes is a diagram of the form
(1.4)

D∗ =


B1
∗ B2

∗ . . . . . . Bn
∗

A1
∗

γ1

>>~~~~~~~
A2
∗

γ′1
``@@@@@@@

γ2

>>~~~~~~~
. . . . . . An∗

γn
>>}}}}}}}}

An+1
∗

γ′n
aaDDDDDDDD

 .

Consider the induced chain morphisms
(1.5)

n+1⊕
i=1

Ai∗
ϕ,ϕ1,ϕ2−−−−→

n⊕
i=1

Bi
∗,

ϕ1(ai) = γi(ai) if ai ∈ Ai∗,
ϕ2(ai) = γ′i−1(ai) if ai ∈ Ai∗,
ϕ(ai) = (ϕ1 − ϕ2)(ai) = (γi − γ′i−1)(ai) if ai ∈ Ai∗.

(where we set γn+1 = γ′0 = 0). The simple complex associated to the diagram D∗
is defined to be the simple of the morphism ϕ:

(1.6) s(D)∗ := s(ϕ)∗.
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1.3. Morphisms of diagrams. A morphism between two diagrams D∗ and D′∗
consists of a collection of morphisms

Ai∗
hAi−→ A

′i
∗ , Bi

∗
hBi−→ B

′i
∗ ,

commuting with the morphisms γi and γ′i, for all i. Any morphism of diagrams

D∗
h−→ D′∗ induces a morphism on the associated simple complexes s(D)∗

s(h)−−→
s(D′)∗. Observe that if, for every i, hAi and hBi are quasi-isomorphisms, then s(h)
is also a quasi-isomorphism.

1.4. Product structure on the simple of a diagram. Let D∗ and D′∗ be
two diagrams as (1.4). Consider the diagram obtained by the tensor product of
complexes:
(1.7)

(D ⊗D′)∗ =


B1
∗ ⊗B

′1
∗ B2

∗ ⊗B
′2
∗
. . . . . . Bn∗ ⊗B

′n
∗

A1
∗ ⊗A

′1
∗

γ1⊗ξ1

CC��������
A2
∗ ⊗A

′2
∗

γ′
1⊗ξ

′
1

[[88888888 γ2⊗ξ2

CC��������
. . . . . . An∗ ⊗A

′n
∗

γn⊗ξn

BB��������
An+1
∗ ⊗A

′n+1
∗

γ′
n⊗ξ

′
n

__?????????

 .

In [1], Beilinson defined, for every β ∈ Z, a morphism

s(D)∗ ⊗ s(D′)∗
?β−→ s(D ⊗D′)∗

as follows. For a ∈ A, a′ ∈ A′, b ∈ B and b′ ∈ B′, set:

a ?β a
′ = a⊗ a′,

b ?β a
′ = b⊗ ((1− β)ϕ1(a′) + βϕ2(a′)),

a ?β b
′ = (−1)deg a(βϕ1(a) + (1− β)ϕ2(a))⊗ b′,

b ?β b
′ = 0,

where the tensor product between elements in different spaces is defined to be
zero.

If B∗, C∗ are chain complexes, let

σ : s(B∗ ⊗ C∗)→ s(C∗ ⊗B∗)
be the map sending b⊗ c ∈ Bn ⊗ Cm to (−1)nmc⊗ b ∈ Cm ⊗Bn.

Lemma 1.8 (Beilinson). (i) The map ?β is a morphism of complexes.
(ii) For every β, β′ ∈ Z, ?β is homotopic to ?β′.

(iii) There is a commutative diagram

s(D)∗ ⊗ s(D′)∗
?β //

σ

��

s(D ⊗D′)∗
σ

��
s(D′)∗ ⊗ s(D)∗

?1−β // s(D′ ⊗D)∗.

(iv) The products ?0 and ?1 are associative.
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1.5. A specific type of diagrams. In this work we will use diagrams of the
following form:

(1.9) D∗ =


B1
∗ B2

∗

A1
∗

γ1

>>~~~~~~~
A2
∗

γ′1
∼

``@@@@@@@

γ2

>>~~~~~~~

 ,

with γ′1 a quasi-isomorphism. For this type of diagrams, since γ′1 is a quasi-
isomorphism, we obtain a long exact sequence equivalent to the long exact
equence related to the simple of a morphism. Since a diagram like this induces a
map A1

∗ −→ B2
∗ in the derived category, we obtain

Lemma 1.10. Let D∗ be a diagram like (1.9). Then there is a well-defined
morphism

Hn(A1
∗)

ρ−→ Hn(B2
∗), [a1] 7→ γ2(γ′1)−1γ1[a1].

Moreover, there is a long exact sequence

(1.11) · · · → Hn(s(D)∗)→ Hn(A1
∗)

ρ−→ Hn(B2
∗)→ Hn−1(s(D)∗)→ · · ·

Consider now a diagram of the form

(1.12) D∗ =


B1
∗ B2

∗

A1
∗

γ1

>>~~~~~~~
A2
∗

γ′1
∼

``@@@@@@@

γ2

>>~~~~~~~
A3
∗

``

γ′2
``@@@@@@@

 ,

with γ′1 a quasi-isomorphism and γ′2 a monomorphism.

Lemma 1.13. Let D be a diagram as (1.12) and let D′ be the diagram

(1.14) D′∗ =


B1
∗ B2

∗/A
3
∗

A1
∗

γ1

>>~~~~~~~
A2
∗

γ′1
∼

``@@@@@@@

γ2

<<yyyyyyyyy

 ,

Then, there is a quasi-isomorphism between the simple complexes associated to
D and to D′:

s(D)∗
∼−→ s(D′)∗.

Proof. It follows directly from the definition that the simple complex associated
to D∗ is quasi-isomorphic to the simple associated to the diagram

(1.15) D′′∗ =


B1
∗ s(A3

∗
γ′2−→ B2

∗)[1]

A1
∗

γ1

@@��������
A2
∗.

γ′1
∼

__????????

γ2
99rrrrrrrrrrr

 ,
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Then, the quasi-isomorphism given in (1.3) induces a quasi-isomorphism

s(D′)∗
∼−→ s(D′′)∗

as desired. �

Corollary 1.16. For any diagram of the form (1.12), there is a long exact
sequence

(1.17) · · · → Hn(s(D)∗)→ Hn(A1
∗)

ρ−→ Hn−1(s(γ′2))→ Hn−1(s(D)∗)→ · · ·

Proof. It follows from the previous lemma together with Proposition 1.10. �

1.6. Cubical abelian groups and chain complexes. Let C· = {Cn}n≥0 be

a cubical abelian group with face maps δji : Cn → Cn−1, for i = 1, . . . , n and
j = 0, 1, and degeneracy maps σi : Cn → Cn+1, for i = 1, . . . , n+ 1. Let Dn ⊂ Cn
be the subgroup of degenerate elements of Cn, and let C̃n = Cn/Dn.

Let C∗ denote the associated chain complex, that is, the chain complex whose
n-th graded piece is Cn and whose differential is given by δ=

∑n
i=1

∑
j=0,1(−1)i+jδji .

Thus D∗ is a subcomplex and C̃∗ is a quotient complex. We fix the normalized
chain complex associated to C·, NC∗, to be the chain complex whose n-th graded
group is NCn :=

⋂n
i=1 ker δ1

i , and whose differential is δ =
∑n

i=1(−1)iδ0
i . It is

well-known that there is a decomposition of chain complexes C∗ ∼= NC∗ ⊕ D∗
giving an isomorphism NC∗ ∼= C̃∗.

For certain cubical abelian groups, the normalized chain complex can be further
simplified, up to homotopy equivalence, by considering the elements which belong
to the kernel of all faces but δ0

1.

Definition 1.18. Let C· be a cubical abelian group. Let N0C∗ be the complex
defined by

(1.19) N0Cn =
n⋂
i=1

ker δ1
i ∩

n⋂
i=2

ker δ0
i , and differential δ = −δ0

1.

The proof of the next proposition is analogous to the proof of Theorem 4.4.2
in [2]. The result is proved there only for the cubical abelian group defining the
higher Chow complex (see §2.1 below). We give here the abstract version of
the statement, valid for a certain type of cubical abelian groups.

Proposition 1.20. Let C· be a cubical abelian group. Assume that it comes
equipped with a collection of maps

hj : Cn → Cn+1, j = 1, . . . , n,
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such that, for any l = 0, 1, the following identities are satisfied:

δ1
jhj = δ1

j+1hj = sjδ
1
j ,

δ0
jhj = δ0

j+1hj = id,(1.21)

δlihj =

{
hj−1δ

l
i i < j,

hjδ
l
i−1 i > j + 1.

Then, the inclusion of complexes

i : N0C∗ ↪→ NC∗

is a homotopy equivalence.

Proof. Let gj : NCn → NCn+1 be defined as gj = (−1)n−jhn−j if 0 ≤ j ≤ n − 1
and gj = 0 otherwise. Then there is a well-defined morphism of chain complexes

Hj = (Id +δgj + gjδ) : NC∗ → NC∗.

This morphism is homotopically equivalent to the identity.
Let x ∈ NCn and 0 ≤ j ≤ n− 1. Then,

δhn−j(x) =
n+1∑
i=1

(−1)iδ0
i hn−j(x)

=

n−j−1∑
i=1

(−1)ihn−j−1δ
0
i (x) +

n+1∑
i=n−j+2

(−1)ihn−jδ
0
i−1(x),

hn−j−1δ(x) =
n∑
i=1

(−1)ihn−j−1δ
0
i (x).

Hence,

δgj(x) + gjδ(x)

= (−1)n−j
n∑

i=n−j+1

(−1)i−1hn−jδ
0
i (x) + (−1)n−j−1

n∑
i=n−j

(−1)ihn−j−1δ
0
i (x).

We consider the decreasing filtration G∗ of NC∗, given by

(1.22) GjNCn = {x ∈ NCn | δ0
i (x) = 0, i > max(n− j, 1)}.

Then G0NC∗ = NC∗ and for j ≥ n − 1, GjNCn = N0Cn. If x ∈ Gj+1NC∗,
then δgj(x) + gjδ(x) = 0 and thus, Hj(x) = x. Moreover, if x ∈ GjNC∗, then
Hj(x) ∈ Gj+1NC∗. Thus, Hj is the projector from GjNC∗ to Gj+1NC∗.

Thus, the morphism ϕ : NC∗ → N0C∗ given, on NCn, by ϕ := Hn−2 ◦ · · · ◦H0

forms a chain morphism homotopically equivalent to the identity. Moreover ϕ is
the projector from NC∗ to N0C∗. Hence, ϕ ◦ i is the identity of N0C∗ while i ◦ϕ
is homotopically equivalent to the identity of NC∗. �
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Remark 1.23. To every cubical abelian group C· there are associated four chain

complexes: C∗, NC∗, N0C∗ and C̃∗. In some situations it will be necessary to
consider the cochain complexes associated to these chain complexes. In this case

we will write, respectively, C∗, NC∗, N0C
∗ and C̃∗.

1.7. Cubical cochain complexes. Let X∗· be a cubical cochain complex. Then,

for every m, the cochain complexes NX∗m, N0X
∗
m and X̃∗m are defined.

Proposition 1.24. Let X∗· , Y
∗
· be two cubical cochain complexes and let f :

X∗· → Y ∗· be a morphism. Assume that for every m, the cochain morphism

X∗m
fm−→ Y ∗m

is a quasi-isomorphism. Then, the induced morphisms

NX∗m
fm−→ NY ∗m and X̃∗m

fm−→ Ỹ ∗m

are quasi-isomorphisms.

Proof. The proposition follows from the decompositions

Hr(X∗m) = Hr(NX∗m)⊕Hr(DX∗m),

Hr(Y ∗m) = Hr(NY ∗m)⊕Hr(DY ∗m),

and the fact that fm induces cochain maps

NX∗m
fm−→ NY ∗m, DX∗m

fm−→ DY ∗m. �

Proposition 1.25. Let X∗· be a cubical cochain complex. Then the natural mor-
phism

Hr(NX∗n)
f−→ NHr(X∗n)

is an isomorphism for all n ≥ 0.

Proof. The cohomology groups Hr(X∗· ) have a cubical abelian group structure.
Hence there is a decomposition

Hr(X∗· ) = NHr(X∗· )⊕DHr(X∗· ).

In addition, there is a decomposition X∗n = NX∗n ⊕DX∗n. Therefore

Hr(X∗· ) = Hr(NX∗· )⊕Hr(DX∗· ).

The lemma follows from the fact that the identity morphism in Hr(X∗· ) maps
NHr(X∗· ) to Hr(NX∗· ) and DHr(X∗· ) to Hr(DX∗· ). �
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1.8. Deligne-Beilinson cohomology. In this paper we use the definitions and
conventions on Deligne-Beilinson cohomology given in [5] and [9], chapter 5.

One denotes R(p) = (2πi)p · R ⊂ C. Let X be a complex algebraic manifold
and denote by E∗log,R(X)(p) the complex of real differential forms with logarithmic
singularities along infinity, twisted by p. Let (D∗log(X, p), dD) be the Deligne
complex of differential forms with logarithmic singularities, as described in [5].
It computes real Deligne-Beilinson cohomology of X, that is,

Hn(D∗log(X, p)) = Hn
D(X,R(p)).

This complex is functorial on X.
The product structure in Deligne-Beilinson cohomology can be described by a

cochain morphism on the Deligne complex (see [5]):

Dnlog(X, p)⊗Dmlog(X, q)
•−→ Dn+m

log (X, p+ q)

x⊗ y 7→ x • y.
This product satisfies the expected relations:

(1) Graded commutativity: x • y = (−1)nmy • x.
(2) Leibniz rule: dD(x • y) = dDx • y + (−1)nx • dDy.

Proposition 1.26. The Deligne product • is associative up to a natural homo-
topy, i.e. there exists

h : Drlog(X, p)⊗Dslog(X, q)⊗Dtlog(X, l)→ Dr+s+tlog (X, p+ q + l)

such that

dDh(ω1 ⊗ ω2 ⊗ ω3) + hdD(ω1 ⊗ ω2 ⊗ ω3) = (ω1 • ω2) • ω3 − ω1 • (ω2 • ω3).

Moreover, if ω1 ∈ D2p
log(X, p), ω2 ∈ D2q

log(X, q) and ω3 ∈ D2l
log(X, l) satisfy dDωi = 0

for all i, then

(1.27) h(ω1 ⊗ ω2 ⊗ ω3) = 0.

Proof. This is [5], Theorem 3.3. �

1.9. Cohomology with supports. Let Z be a closed subvariety of a complex
algebraic manifold X. Consider the complex D∗log(X \ Z, p), i.e. the Deligne
complex of differential forms in X \Z with logarithmic singularities along Z and
infinity.

Definition 1.28. The Deligne complex with supports in Z is defined to be

D∗log,Z(X, p) = s(D∗log(X, p)→ D∗log(X \ Z, p)).
The Deligne-Beilinson cohomology with supports in Z is defined as the cohomol-
ogy groups of the Deligne complex with supports in Z:

Hn
D,Z(X,R(p)) := Hn(D∗log,Z(X, p)).
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Lemma 1.29. Let Z,W be two closed subvarieties of a complex algebraic mani-
fold X. Then there is a short exact sequence of Deligne complexes,

0→ D∗log(X\Z∩W, p) i−→ D∗log(X\Z, p)⊕D∗log(X\W, p) j−→ D∗log(X\Z∪W, p)→ 0,

where i(α) = (α, α) and j(α, β) = −α + β.

Proof. It follows from [7], Theorem 3.6. �

In addition, Deligne-Beilinson cohomology with supports satisfies a semipurity
property. Namely, let Z be a codimension p subvariety of an equidimensional com-
plex manifold X, and let Z1, . . . , Zr be its codimension p irreducible components.
Then

(1.30) Hn
D,Z(X,R(p)) =

{
0 n < 2p,⊕r

i=1 R[Zi] n = 2p.

For the next proposition, let δZ denote the current integration along an
irreducible variety Z. In the sequel we will use the conventions of [9] §5.4 with
respect to the current associated to a locally integrable form and to the current δZ .

Proposition 1.31. Let X be an equidimensional complex algebraic manifold and
Z a codimension p irreducible subvariety of X. Let j : X → X be a smooth
compactification of X (with a normal crossing divisor as its complement) and Z
the closure of Z in X. The isomorphism

cl : R[Z]
∼=−→ H2p

D,Z(X,R(p))

sends [Z] to [(j∗w, j∗g)], for any [(w, g)] ∈ H2p

D,Z(X,R(p)) satisfying the relation

of currents in X

(1.32) − 2∂∂̄[g] = [w]− δZ .

Proof. See [9], Proposition 5.58. �

In particular, assume that Z = div(f) is a principal divisor, where f is a
rational function on X. Then [Z] is represented by the couple(

0,−1

2
log(ff̄)) ∈ H2p

D,Z(X,R(p)
)
.

The definition of the cohomology with support in a subvariety can be extended
to the definition of the cohomology with support in a set of subvarieties of X.
We explain here the case used in the sequel. Let Zp be a subset of the set of
codimension p closed subvarieties of X, that is closed under finite unions. The
inclusion of subsets turns Zp into a directed ordered set. We define the complex

(1.33) D∗log(X \ Zp, p) := lim→
Z∈Zp

D∗log(X \ Z, p),

which is provided with an injective map

D∗log(X, p)
i−→ D∗log(X \ Zp, p).
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As above, we define

D∗log,Zp(X, p) := s(i)∗

and the Deligne-Beilinson cohomology with supports in Zp as

Hn
D,Zp(X,R(p)) := Hn(D∗log,Zp(X, p)).

1.10. Real varieties. A real variety X consists of a couple (XC, F∞), with XC
a complex algebraic manifold and F∞ an antilinear involution of XC.

If X = (XC, F∞) is a real variety, we will denote by σ the involution of
Dnlog(XC, p) given by

σ(η) = F ∗∞η.

Then the real Deligne-Beilinson cohomology of X is defined by

Hn
D(X,R(p)) := Hn

D(XC,R(p))σ,

where the superindex σ means the fixed part under σ.
The real cohomology of X is expressed as the cohomology of the real Deligne

complex

Dnlog(X, p) := Dnlog(XC, p)
σ,

i.e. there is an isomorphism

Hn
D(X,R(p)) ∼= Hn(Dnlog(X, p), dD).

1.11. Truncated Deligne complex. In the rest of the work, we will consider
the Deligne complex (canonically) truncated at degree 2p. For simplicity we will
denote it by

τD∗log(X, p) = τ≤2pD∗log(X, p).

The truncated Deligne complex with supports in a variety Z is denoted by
τD∗log,Z(X, p) = τ≤2pD∗log,Z(X, p) and the truncated Deligne complex with sup-
ports in Zp is denoted by τD∗log,Zp(X, p) = τ≤2pD∗log,Zp(X, p).

Note that, since the truncation is not an exact functor, it is not true that
τD∗log,Zp(X, p) is the simple complex of the map τD∗log(X, p)→ τD∗log(X \ Zp, p).

2. Differential forms and higher Chow groups

In this section we construct a complex of differential forms which is quasi-
isomorphic to the complex Zp(X, ∗)0⊗R. This last complex computes the higher
algebraic Chow groups introduced by Bloch in [3] with real coefficients. The key
point of this construction is the set of isomorphisms given in (1.30).

This complex is very similar to the complex introduced by Bloch in [4] in order
to construct the cycle map for the higher Chow groups. In both constructions
one considers a 2-iterated complex of differential forms on a cubical or simplicial
scheme. Since this leads to a second quadrant spectral sequence, to avoid conver-
gence problems, one has to truncate the complexes involved. The main difference
between both constructions is the direction of the truncation. We truncate the
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2-iterated complex at the degree given by the differential forms, while in loc. cit.
the complex is truncated at the degree given by the simplicial scheme.

2.1. The cubical Bloch complex. We recall here the definition and main prop-
erties of the higher Chow groups defined by Bloch in [3]. Initially, they were
defined using the chain complex associated to a simplicial abelian group. How-
ever, since we are interested in the product structure, it is more convenient to
use the cubical presentation, as given by Levine in [19].

Fix a base field k and let P1 be the projective line over k. Let � =
P1 \ {1}(∼= A1). The cartesian product (P1)· has a cocubical scheme structure.
For i = 1, . . . , n, we denote by ti ∈ (k ∪ {∞}) \ {1} the absolute coordinate of
the i-th factor. Then the coface and codegeneracy maps are defined as

δi0(t1, . . . , tn) = (t1, . . . , ti−1, 0, ti, . . . , tn),

δi1(t1, . . . , tn) = (t1, . . . , ti−1,∞, ti, . . . , tn),

σi(t1, . . . , tn) = (t1, . . . , ti−1, ti+1, . . . , tn).

Then, �· inherits a cocubical scheme structure from that of (P1)·. An r-dimen-
sional face of �n is any subscheme of the form δi1j1 · · · δ

ir
jr

(�n−r).
We have chosen to represent A1 as P1\{1} so that the face maps are represented

by the inclusion at zero and the inclusion at infinity. In this way the cubical
structure of �· is compatible with the cubical structure of (P1)· in [8]. In the
literature the usual representation A1 = P1 \{∞} is often used. We will translate
from one definition to the other by using the involution

(2.1) x 7−→ x

x− 1
.

This involution has the fixed points {0, 2} and interchanges the points 1 and ∞.
Let X be an equidimensional quasi-projective algebraic scheme of dimension

d over the field k. Let Zp(X,n) be the free abelian group generated by the
codimension p closed irreducible subvarieties of X×�n, which intersect properly
all the faces of �n. The pull-back by the coface and codegeneracy maps of �·

endow Zp(X, ·) with a cubical abelian group structure. Let (Zp(X, ∗), δ) be the
associated chain complex (see §1.6) and consider the normalized chain complex
associated to Zp(X, ∗),

Zp(X,n)0 := NZp(X,n) =
n⋂
i=1

ker δ1
i .

Definition 2.2. Let X be a quasi-projective equidimensional algebraic scheme
over a field k. The higher Chow groups defined by Bloch are

CHp(X,n) := Hn(Zp(X, ∗)0).
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Let N0 be the refined normalized complex of Definition (1.18). Let Zp(X, ∗)00

be the complex with

Zp(X,n)00 := N0Z
p(X,n) =

n⋂
i=1

ker δ1
i ∩

n⋂
i=2

ker δ0
i .

Fix n ≥ 0. For every j = 1, . . . , n, we define a map

�n+1 hj−→ �n(2.3)

(t1, . . . , tn+1) 7→ (t1, . . . , tj−1, 1− (tj − 1)(tj+1 − 1), tj+2, . . . , tn+1).

The refined normalized complex of [2] §4.4 is given by considering the elements
in the kernel of all faces but δ1

1, instead of δ0
1 like here. Taking this into account,

together with the involution (2.1), the map hj agrees with the map denoted
hn−j in [2] §4.4. Therefore, the maps hj are smooth, hence flat, so they induce
pull-back maps

(2.4) hj : Zp(X,n) −→ Zp(X,n+ 1), j = 1, . . . , n+ 1,

that satisfy the conditions of Proposition 1.20. Therefore the inclusion

Zp(X,n)00 := N0Z
p(X,n)→ Zp(X,n)0

is a homotopy equivalence (see [2] §4.4).

2.2. Functoriality. It follows easily from the definition that the complex
Zp(X, ∗)0 is covariant with respect to proper maps (with a shift in the grad-
ing) and contravariant for flat maps.

Let f : X → Y be an arbitrary map between two smooth schemes X, Y . Let
Zp
f (Y, n)0 ⊂ Zp(Y, n)0 be the subgroup generated by the codimension p irreducible

subvarieties Z ⊂ Y ×�n, intersecting properly the faces of �n and such that the
pull-back X × Z intersects properly the graph of f , Γf . Then, Zp

f (Y, ∗)0 is a

chain complex and the inclusion of complexes Zp
f (Y, ∗)0 ⊆ Zp(Y, ∗)0 is a quasi-

isomorphism. Moreover, the pull-back by f is defined for algebraic cycles in
Zp
f (Y, ∗)0 and hence there is a well-defined pull-back morphism

CHp(Y, n)
f∗−→ CHp(X,n).

A proof of this fact can be found in [20], §3.5. See also [18].

2.3. Product structure. Let X and Y be quasi-projective algebraic schemes
over k. Then, there is a chain morphism

s(Zp(X, ∗)0 ⊗ Zq(Y, ∗)0)
∪−→ Zp+q(X × Y, ∗)0

inducing exterior products

CHp(X,n)⊗ CHq(Y,m)
∪−→ CHp+q(X × Y, n+m).

More concretely, let Z be a codimension p irreducible subvariety of X × �n,
intersecting properly the faces of �n and let W be a codimension q irreducible
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subvariety of Y ×�m, intersecting properly the faces of �m. Then, the codimen-
sion p+ q subvariety

Z ×W ⊆ X ×�n × Y ×�m ∼= X × Y ×�n ×�m ∼= X × Y ×�n+m,

intersects properly the faces of �n+m. By linearity, we obtain a morphism

Zp(X,n)⊗ Zq(Y,m)
∪−→ Zp+q(X × Y, n+m).

It induces a chain morphism on the normalized complexes

s(Zp(X, ∗)0 ⊗ Zq(Y, ∗)0)
∪−→ Zp+q(X × Y, ∗)0,

and hence there is an external product

(2.5) ∪ : CHp(X,n)⊗ CHq(Y,m)→ CHp+q(X × Y, n+m),

for all p, q, n,m.
If X is smooth, then the pull-back by the diagonal map ∆: X → X × X is

defined on the higher Chow groups, CHp(X × X, ∗) ∆∗−→ CHp(X, ∗). Therefore,
for all p, q, n,m, we obtain an internal product
(2.6)

∪ : CHp(X,n)⊗ CHq(X,m)→ CHp+q(X ×X,n+m)
∆∗−→ CHp+q(X,n+m).

In the derived category of chain complexes, the internal product is given by the
morphism

s(Zp(X, ∗)0 ⊗ Zq(X, ∗)0) ∪ // Zp+q(X ×X, ∗)0

Zp+q∆ (X ×X, ∗)0

∼

OO

∆∗ // Zp+q(X, ∗)0.

Proposition 2.7. Let X be a quasi-projective algebraic scheme over k. The
pairing (2.6) defines an associative product on CH∗(X, ∗) =

⊕
p,nCH

p(X,n).
This product is graded commutative with respect to the degree given by n.

Proof. See [19], Theorem 5.2. �

2.4. Differential forms and affine lines. For every n, p≥0, let
τD∗log(X×�n, p) be the truncated Deligne complex of differential forms in X×�n,
with logarithmic singularities at infinity. The structural maps of the cocubical
scheme �· induce a cubical structure on τDrlog(X ×�∗, p) for every r and p.

Consider the 2-iterated cochain complex

Dr,−nA (X, p) = τDrlog(X ×�n, p),

with differential (dD, δ =
∑n

i=1(−1)i(δ0
i − δ1

i )). Let

D∗A(X, p) = s(D∗,∗A (X, p))
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be the associated simple complex. Hence its differential ds in D∗A(X, p) is given,
for every α ∈ Dr,−nA (X, p), by ds(α) = dD(α) + (−1)rδ(α). Since we are using
cubical structures, this complex does not compute the right cohomology and we
have to normalize it.

For every r, n, we write

Dr,−nA (X, p)0 = τDrlog(X ×�n, p)0 := NτDrlog(X ×�n, p).

Hence D∗,∗A (X, p)0 is the normalized 2-iterated complex and we denote by
D∗A(X, p)0 the associated simple complex.

Proposition 2.8. The natural morphism of complexes

τD∗log(X, p) = D∗,0A (X, p)0 → D∗A(X, p)0

is a quasi-isomorphism.

Proof. Consider the second quadrant spectral sequence with E1 term given by

Er,−n
1 = Hr(D∗,−nA (X, p)0).

Since

Dr,−nA (X, p)0 = 0, for r < 0 or r > 2p,

this spectral sequence converges to the cohomology groups H∗(D∗A(X, p)0). This
is the main reason why we use the truncated complexes.

If we see that, for all n > 0, the cohomology of the complex D∗,−nA (X, p)0 is
zero, the spectral sequence degenerates and the proposition is proven. By the
homotopy invariance of Deligne-Beilinson cohomology, there is an isomorphism

δ1
1 ◦ · · · ◦ δ1

1 : H∗(τD∗log(X ×�n, p))→ H∗(τD∗log(X, p)).

By definition, the image of H∗(τD∗log(X × �n, p)0) by this isomorphism is zero.
Since H∗(τD∗log(X × �n, p)0) is a direct summand of H∗(τD∗log(X × �n, p)), it
vanishes for all n > 0. �

We define the complex D∗A(X, p)00 to be the simple complex associated to the
2-iterated complex with

Dr,−nA (X, p)00 = N0τDrlog(X ×�n, p).

Corollary 2.9. The natural morphism of complexes

τD∗log(X, p) = D∗,0A (X, p)00 → D∗A(X, p)00

is a quasi-isomorphism.

Proof. It follows from Proposition 2.8, Proposition 1.20 (using as maps {hj} the
ones induced by the maps hj defined in 2.3) and Proposition 1.24. �
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2.5. A complex with differential forms for the higher Chow groups. Let
Zpn,X be the set of all codimension p closed subvarieties of X × �n intersecting
properly the faces of �n. We consider it as a set ordered by the inclusion relation.
When there is no source of confusion, we simply write Zpn or even Zp. Consider
the cubical abelian group

(2.10) Hp(X, ∗) := H2p
D,Zp∗

(X ×�∗,R(p)),

with faces and degeneracies induced by those of �·. Let Hp(X, ∗)0 be the associ-
ated normalized complex.

Lemma 2.11. Let X be a complex algebraic manifold. For every p ≥ 0, there is
an isomorphism of chain complexes

γ1 : Zp(X, ∗)0 ⊗ R
∼=−→ Hp(X, ∗)0,

sending z to cl(z).

Proof. It follows from the isomorphism (1.30). �

Remark 2.12. Observe that the complex Hp(X, ∗)0 has the same functorial
properties as Zp(X, ∗)0 ⊗ R.

Let D∗,∗A,Zp(X, p)0 be the 2-iterated cochain complex, whose component of bide-
gree (r,−n) is

τDrlog,Zpn(X ×�n, p)0 = NτDrlog,Zpn(X ×�n, p) = Nτ≤2pDrlog,Zpn(X ×�n, p),

and whose differentials are (dD, δ). As usual, we denote by D∗A,Zp(X, p)0 the
associated simple complex and by ds its differential.

Let D2p−∗
A,Zp (X, p)0 be the chain complex whose n-graded piece is D2p−n

A,Zp (X, p)0.

Proposition 2.13. For every p ≥ 0, the family of morphisms

D2p−n
A,Zp (X, p)0

γ′1−→ Hp(X,n)0

((ωn, gn), . . . , (ω0, g0)) 7→ [(ωn, gn)]

defines a quasi-isomorphism of chain complexes between D2p−∗
A,Zp (X, p)0 and

H∗(X,n)0.

Proof. The map is well defined because (ωn, gn) ∈ τD2p
log,Zpn

(X × �n, p)0. There-

fore, by definition of the truncated complex (ωn, gn) is closed. To see that it is a
morphism of complexes we compute

γ′1ds((ωn, gn), . . . , (ω0, g0)) = γ′1((−1)2pδ(ωn, gn) + dD(ωn−1, gn−1), . . . )

= [δ(ωn, gn) + dD(ωn−1, gn−1)] = δ[(ωn, gn)].

Now we consider the second quadrant spectral sequence with E1-term

E−n,r1 = Hr(τD∗log,Zp(X ×�n, p)0).



20 J. I. BURGOS GIL AND E. FELIU

By construction, E−n,r1 = 0 for all r > 2p. Moreover, for all r < 2p and for all n,
the semipurity property of Deligne-Beilinson cohomology implies that

(2.14) Hr(τD∗log,Zp(X ×�n, p)) = 0.

Hence, by Proposition 1.24, the same is true for the normalized chain complex

Hr(τD∗log,Zp(X ×�n, p)0) = 0, r < 2p.

Therefore, the E1-term of the spectral sequence is

E−n,r1 =

{
0 if r 6= 2p,
H2p(τD∗log,Zp(X ×�n, p)0) if r = 2p.

Finally, from Proposition 1.25, it follows that the natural map

H2p(τD∗log,Zp(X ×�n, p)0)→ Hp(X,n)0

is an isomorphism. Using the explicit description of the spectral sequence asso-
ciated to a double complex, it is clear that the morphism induced in cohomology
by γ′1 agrees with the morphism induced by the spectral sequence. Hence the
proposition is proved. �

We denote

CHp(X,n)R = CHp(X,n)⊗ R.

Corollary 2.15. Let z ∈ CHp(X,n)R be the class of an algebraic cycle z in
X×�n. By the isomorphisms of Lemma 2.11 and Proposition 2.13, the algebraic
cycle z is represented, in H2p−n(DA,Zp(X, p)0), by any cycle

((ωn, gn), . . . , (ω0, g0)) ∈ D2p−n
A,Zp (X, p)0

such that

cl(z) = [(ωn, gn)].

Remark 2.16. Our construction differs from the construction given by Bloch,
in [4], in two points:

• He considered the 2-iterated complex of differential forms on the simplicial
scheme An, instead of the differential forms on the cubical scheme �n.
• In order to ensure the convergence of the spectral sequence in the proof

of last proposition, he truncated the 2-iterated complex in the direction
given by the affine schemes.

2.6. Functoriality of D∗A,Zp(X, p)0. In many ways, the complex D∗A,Zp(X, p)0

behaves like the complex Z∗(X, ∗)0.

Lemma 2.17. Let f : X → Y be a flat map between two equidimensional complex
algebraic manifolds. Then there is a pull-back map

f ∗ : D∗A,Zp(Y, p)0 → D∗A,Zp(X, p)0.
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Proof. We will see that in fact there is a map of iterated complexes

f ∗ : Dr,−nA,Zp(Y, p)→ D
r,−n
A,Zp(X, p).

Let Z be a codimension p subvariety of Y ×�n intersecting properly the faces of
�n. Since f is flat, there is a well-defined cycle f ∗(Z). It is a codimension p cycle
of X × �n intersecting properly the faces of �n, and whose support is f−1(Z).
Then, by [14] 1.3.3, the pull-back of differential forms gives a morphism

τD∗log(Y ×�n \ Z, p) f∗−→ τD∗log(X ×�n \ f−1(Z), p).

Hence, there is an induced morphism

τD∗log(Y ×�n\ZpY , p)
f∗−→ lim→

Z∈ZpY

τD∗log(X×�n\f−1(Z), p)→ τD∗log(X×�n\ZpX , p),

and thus, there is a pull-back morphism

f ∗ : D∗,−nA,Zp(Y, p)→ D
∗,−n
A,Zp(X, p)

compatible with the differential δ. �

Remark 2.18. The pull-back defined here agrees with the pull-back defined by
Bloch under the isomorphisms of Lemma 2.11 and Proposition 2.13. Indeed, let
f : X → Y be a flat map. Then, if Z is an irreducible subvariety of Y and
(ω, g) a couple representing the class of [Z] in the Deligne-Beilinson cohomology
with support, then the couple (f ∗ω, f ∗g) represents the class of [f ∗(Z)] (see [14],
Theorem 3.6.1).

Proposition 2.19. Let f : X → Y be a morphism of equidimensional complex
algebraic manifolds. Let Zpf be the subset consisting of the subvarieties Z of
Y ×�n intersecting properly the faces of �n and such that X×Z×�n intersects
properly the graph of f , Γf . Then,

(i) The complex D∗A,Zpf (Y, p)0 is quasi-isomorphic to D∗A,Zp(Y, p)0.

(ii) There is a well-defined pull-back

f ∗ : D∗A,Zpf (Y, p)0 → D∗A,Zp(X, p)0.

Proof. Arguing as in the proof of the previous proposition, there is a pull-back
map

f ∗ : τD∗log(Y ×�n \ Zpf , p)
f∗−→ τD∗log(X ×�n \ Zp, p),

inducing a morphism

f ∗ : D∗A,Zpf (Y, p)→ D∗A,Zp(X, p),

and hence a morphism

f ∗ : D∗A,Zpf (Y, p)0 → D∗A,Zp(X, p)0.
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All that remains to be shown is that the inclusion

D∗A,Zpf (Y, p)0
i−→ D∗A,Zp(Y, p)0

is a quasi-isomorphism. By the quasi-isomorphism mentioned in paragraph 2.2
and the quasi-isomorphism of Proposition 2.13, there is a commutative diagram

Zp
f (Y, ∗)0 ⊗ R //

∼
��

D∗A,Zpf (Y, p)0

i

��
Zp(Y, ∗)0 ⊗ R ∼ // D∗A,Zp(Y, p)0.

The proof that the upper horizontal arrow is a quasi-isomorphism is analogous to
the proof of Proposition 2.13. Thus, we deduce that i is a quasi-isomorphism. �

3. Algebraic cycles and the Beilinson regulator

In this section we define a chain morphism, in the derived category of chain
complexes, that induces in homology the Beilinson regulator.

The construction is analogous to the definition of the cycle class map given
by Bloch in [4], with the minor modifications mentioned in 2.16. However, in [4]
there is no proof of the fact that the composition of the isomorphism Kn(X)Q ∼=⊕

p≥0CH
p(X,n)Q with the cycle class map agrees with the Beilinson regulator.

3.1. Definition of the regulator. Consider the map of iterated cochain com-
plexes defined by the projection onto the first factor

Dr,−nA,Zp(X, p)=τ≤2ps(D∗log(X×�n, p)→D∗log(X×�n \ Zp, p))r ρ−→τDrlog(X×�n, p)
(ω, g) 7→ ω.

It induces a cochain morphism

D∗A,Zp(X, p)0
ρ−→ D∗A(X, p)0,

and hence a chain morphism

(3.1) D2p−∗
A,Zp (X, p)0

ρ−→ D2p−∗
A (X, p)0.

The morphism induced by ρ in homology, together with the isomorphisms of
Propositions 2.8, 2.11 and 2.13, induce a morphism

(3.2) ρ : CHp(X,n)→ CHp(X,n)R → H2p−n
D (X,R(p)).

By abuse of notation, it will also be denoted by ρ.
By corollary 2.15, we deduce that, if z ∈ Zp(X,n)0, then

ρ(z) = (ωn, . . . , ω0),

for any cycle ((ωn, gn), . . . , (ω0, g0)) ∈ D2p−n
A,Zp (X, p)0 such that [(ωn, gn)] = cl(z).

Proposition 3.3. (i) The morphism ρ : D2p−∗
A,Zp (X, p)0 → D2p−∗

A (X, p)0 is con-
travariant for flat maps.



HIGHER ARITHMETIC CHOW GROUPS 23

(ii) The induced morphism ρ : CHp(X,n) → H2p−n
D (X,R(p)) is contravariant

for arbitrary maps.

Proof. Both assertions are obvious. Let z = ((ωn, gn), . . . , (ω0, g0)) ∈ D2p−n
A,Zp (X, p)0

be a cycle such that its inverse image by f is defined. This is the case when f is
flat or when z belongs to D2p−∗

A,Zpf
(X, p)0. In both cases

f ∗((ωn, gn), . . . , (ω0, g0)) = ((f ∗ωn, f
∗gn), . . . , (f ∗ω0, f

∗g0))

and the claim follows. �

Remark 3.4. Let X be an equidimensional compact complex algebraic manifold.
Observe that, by definition, the morphism

ρ : CHp(X, 0) = CHp(X)→ H2p
D (X,R(p))

agrees with the cycle class map cl.
Now let E be a vector bundle of rank n over X. For every p = 1, . . . , n, there

exists a characteristic class CCH
p (E) ∈ CHp(X) (see [17]) and a characteristic

class CDp (E) ∈ H2p
D (X,R(p)), called the p-th Chern class of the vector bundle E.

By definition, cl(CCH
p (E)) = CDp (E). Hence,

ρ(CCH
p (E)) = CDp (E),

for all p = 1, . . . , n.

3.2. Comparison with the Beilinson regulator. We prove here that the reg-
ulator defined in (3.2) agrees with the Beilinson regulator.

The comparison is based on the following facts:

• The morphism ρ is compatible with inverse images.
• The morphism ρ is defined for quasi-projective schemes.

In view of these properties, it is enough to prove that the two regulators agree
when X is a Grassmanian manifold, which in turn follows from Remark 3.4.

Theorem 3.5. Let X be an equidimensional complex algebraic scheme. Let ρ′ be
the composition of ρ with the isomorphism given by the Chern character

ρ′ : Kn(X)Q
∼=−→
⊕
p≥0

CHp(X,n)Q
ρ−→
⊕
p≥0

H2p−n
D (X,R(p)).

Then, the morphism ρ′ agrees with the Beilinson regulator.

Proof. The outline of the proof is as follows. We first recall the description of
the Beilinson regulator in terms of homotopy theory of simplicial sheaves as in
[15]. Then, we recall the construction of the Chern character given by Bloch. We
proceed reducing the comparison of the two maps to the case n = 0 and for X a
Grassmanian scheme. We finally prove that at this stage both maps agree. Our
site will always be the small Zariski site over X.
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Consider X as a smooth quasi-projective scheme over C. Let B·GLN be the
simplicial version of the classifying space of the group GLN(C) viewed as a simpli-
cial complex manifold. Recall that all the face morphisms are flat. Let B·GLN,X
be the simplicial sheaf over X given by the sheafification of the presheaf

U 7→ B·GLN(Γ(U,OU))

for every Zariski open U ⊆ X. This is the same as the simplicial sheaf given by

U 7→ Hom(U,B·GLN),

where Hom means the simplicial function complex.
Consider the inclusion morphisms B·GLN,X → B·GLN+1,X , for all N ≥ 1, and

let
B·GLX = lim

→
B·GLN,X .

Let Z∞B·GLN,X and Z∞B·GLX be the sheaves associated to the respective
Bousfield-Kan completions. Finally, let Z be the constant simplicial sheaf on
Z and consider the following sheaves on X

KX = Z× Z∞B·GLX ,
KN
X = Z× Z∞B·GLN,X .

By [15], Proposition 5, there is a natural isomorphism

Km(X) ∼= H−m(X,KX) = lim→
N

H−m(X,KN
X).

Here H−∗(·, ∗) denotes the generalized cohomology with coefficients in KX and
KN
X , as described in [15].

The Beilinson regulator is the Chern character taking values in Deligne-
Beilinson cohomology. The regulator can be described in terms of homotopy
theory of sheaves as follows.

Consider the Dold-Puppe functor K·(·) (see [12]), which associates to every
cochain complex of abelian groups concentrated in non-positive degrees, G∗, a
simplicial abelian group K·(G), pointed by zero. It satisfies the property that
πi(K·(G), 0) = H−i(G∗).

In [13], Gillet constructs Chern classes

CDp ∈ H2p(B·GLN ,R(p)), N � 0,

which induce morphisms

cDp,X : KN
X,· → K·(D∗X(·, p)[2p]), N � 0

in the homotopy category of simplicial sheaves.
These morphisms are compatible with the morphisms KN

X,· → KN+1
X,· . Therefore,

we obtain a morphism

Km(X) = lim→
N

H−m(X,KN
X)

CDp,X−−−→ H2p−m
D (X,R(p)).
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Using the standard formula for the Chern character in terms of the Chern classes,
we obtain a morphism

Km(X)
chD−−→ H2p−m

D (X,R(p)),

which is the Beilinson regulator.
The Chern character for higher Chow groups. The description of the isomor-

phism Kn(X)Q
∼=−→
⊕

p≥0CH
p(X,n)Q given by Bloch follows the same pattern

as the description of the Beilinson regulator. However, since the complexes that
define the higher Chow groups are not sheaves (in fact not even functors) on the
big Zariski site, a few modifications are necessary. We give here a sketch of
the construction. For details see [3].

If Y· is a simplicial scheme whose face maps are flat, then there is a well-defined
2-iterated cochain complex Zp(Y·, ∗)0, whose (n,m)-bigraded group is

Zp(Y−n,m)0,

and induced differentials. The higher algebraic Chow groups of Y· are then de-
fined as

CHp(Y·, n) = Hn(Zp(Y·, ∗)0).

Since the face maps of the simplicial scheme B·GLN are flat, the group
CHp(B·GLN , n) is well defined for every p and n.

First, Bloch constructs universal Chern classes

CCH
p ∈ CHp(B·GLN , 0),

following the ideas of Gillet. These classes are represented by elements

CCH,i
p ∈ Zp(BiGLN , i)0.

Because at the level of complexes the pull-back morphism is not defined for
arbitrary maps, one cannot consider the pull-back of these classes CCH,i

p to X, as
was the case for the Beilinson regulator. However, by [3] §7, there exists a purely
transcendental extension L of C, and classes CCH,i

p defined over L, such that the

pull-back f ∗CCH,i
p is defined for every C-morphism f : V → BiGLN .

Then, there is a map of simplicial Zariski sheaves on X

B·GLN,X → KX(g∗Z
p
XL

(−, ∗)0),

where g : XL → X is the natural map obtained by extension to L.
There is a specialization process described in [3], which, in the homotopy cat-

egory of simplicial sheaves over X, gives a well-defined map

KX(g∗Z
p
XL

(−, ∗)0)→ KX(Zp
X(−, ∗)0).

Therefore, there are maps CCH
p,X ∈ [B·GLN,X ,KX(Z∗X(·, p))], where [·, ·] denotes

the set of arrows in the homotopy category. Proceeding as above, we obtain the
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Chern character morphism

Km(X)→
⊕
p≥0

CHp(X,m)Q.

For m = 0, this is the usual Chern character.
End of the proof. Since, at the level of complexes, ρ is functorial for flat maps,

there is a sheaf map

ρ : KX(Z∗X(·, p))→ K·(Dlog(X, p))

in the small Zariski site of X.
It follows that the composition ρ ◦ CCH

p is obtained by the same procedure

as the Beilinson regulator, but starting with the characteristic classes ρ(CCH
p ) ∈

H2p
D (X,R(p)) instead of the classes CDp . Therefore, it remains to see that

(3.6) ρ(CCH
p ) = CDp .

For integers N, k ≥ 0 let Gr(N, k) be the complex Grassmanian scheme of
N -planes in Ck. It is a smooth complex projective scheme. Let EN,k be the
rank N universal bundle of Gr(N, k) and Uk = (Uk,α)α its standard trivializa-
tion. Let N·Uk denote the nerve of this cover. It is a hypercover of Gr(N, k),

N·Uk
π−→ Gr(N, k). Consider the classifying map of the vector bundle EN,k,

ϕk : N·Uk → B·GLN , which satisfies π∗(EN,k) = ϕ∗k(E
N
· ), for EN

· the universal
vector bundle over B·GLN . Observe that all the faces and degeneracy maps of the
simplicial scheme N·Uk are flat, as well as the inclusion maps NlUk → Gr(N, k).
Therefore, CHp(N·Uk,m) is defined and there is a pull-back map

CHp(Gr(N, k),m)
π∗−→ CHp(N·Uk,m).

Since ρ is defined on N·Uk and is a functorial map, we obtain the following
commutative diagram

CHp(B·GLN , 0)
ρ //

ϕ∗k
��

H2p
D (B·GLN ,R(p))

ϕ∗k
��

CHp(N·Uk, 0)
ρ // H2p

D (N·Uk,R(p))

K0(Gr(N, k))
CCHp //

CDp

33
CHp(Gr(N, k), 0)

ρ //

π∗

OO

H2p
D (Gr(N, k),R(p))

π∗

OO

By construction, CCH
p (EN,k) is the standard p-th Chern class in the classical Chow

group of Gr(N, k), and CDp (EN,k) is the p-th Chern class in Deligne-Beilinson
cohomology. It then follows from Remark 3.4 that

(3.7) ρ(CCH
p (EN,k)) = CDp (EN,k).
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The vector bundle EN,k ∈ K0(Gr(N, k)) = lim→
M

[Gr(N, k),KM
· ] is represented,

in the homotopy category of simplicial sheaves, by the diagram

Gr(N, k)
π←− N·Uk

ϕk−→ B·GLN ,

where the map π is a weak equivalence of sheaves because N·Uk is a hypercover
of Gr(N, k). This means that

(3.8) ϕ∗k(C
CH
p (EN

· )) = π∗(CCH
p (EN,k)).

Also, since π is an hypercover, π∗ is an isomorphism in Deligne-Belinson coho-
mology. Moreover, for each m0, there exists k0 such that, if m ≤ m0 and k ≥ k0,
ϕ∗k is an isomorphism on the cohomology group H2m

D ( ,R(m)). To see this, we
first use the computation of the mixed Hodge structure of the cohomology of
the classifying space given in [11] and the well known mixed Hodge structure
of the cohomology of the Grassmanian manifolds to reduce it to a comparison
at the level of singular cohomology. Then we use that the infinite Grassmanian
is homotopically equivalent to the classifying space. Finally we use the cellular
decomposition of the infinite Grassmanian to compare its cohomology with the
cohomology of the finite Grassmanian (see for instance [22]).

Under these isomorphisms, we obtain the equality

(3.9) CDp (EN,k) = (π∗)−1ϕ∗k(C
D
p (EN

· )).

Hence,

ρ(CCH
p (EN

· )) = CDp (EN
· )⇔ ϕ∗kρ(CCH

p (EN
· )) = ϕ∗kC

D
p (EN

· )

⇔ ρϕ∗k(C
CH
p (EN

· )) = ϕ∗kC
D
p (EN

· ).

The last equality follows directly from (3.7), (3.8) and (3.9). Therefore, the
theorem is proved. �

4. Higher arithmetic Chow groups

Let X be an arithmetic variety over a field. Using the description of the Beilin-
son regulator given in section 3, we define the higher arithmetic Chow groups,

ĈH
n
(X, p). The definition is analogous to the definition given by Goncharov, in

[16], but using differential forms instead of currents.
We need to restrict ourselves to arithmetic varieties over a field, because the

theory of higher algebraic Chow groups by Bloch is only well established for
schemes over a field. That is, we can define the higher arithmetic Chow groups
for arbitrary arithmetic varieties, but since the functoriality properties and the
product structure of the higher algebraic Chow groups are described only for
schemes over a field, we cannot give a product structure or define functoriality
for the higher arithmetic Chow groups of arithmetic varieties over a ring. Note
however that, using work by Levine [21], it should be possible to extend the
constructions here to smooth varieties over a Dedekind domain, at least after
tensoring with Q. In fact, when extending the definition to arithmetic varieties
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over a ring, it might be better to use the point of view of motivic homology à la
Voevodsky or any of its more recent variants.

4.1. Higher arithmetic Chow groups. Following [14], an arithmetic field is a
triple (K,Σ, F∞), where K is a field, Σ is a nonempty set of complex immersions
K ↪→ C and F∞ is a conjugate-linear C-algebra automorphism of CΣ that leaves
invariant the image of K under the diagonal immersion. By an arithmetic variety
X over the arithmetic ring K we mean a regular quasi-projective K-scheme X.

To the arithmetic variety X we associate a complex variety XC =
∐

ι∈ΣXι,
and a real variety XR = (XC, F∞). The Deligne complex of differential forms on
X is defined from the real variety XR as

Dnlog(X, p) := Dnlog(XC, p)
σ=id,

where σ is the involution as in paragraph 1.10. We define analogously the chain
complexes

D2p−∗
A (X, p)0, D2p−∗

A (X, p)00, D2p−∗
A,Zp (X, p)0, and D2p−∗

A,Zp (X, p)00.

Let γ1 be the composition

γ1 : Zp(X,n)0
⊗R−−→ Zp(X,n)0 ⊗ R ×FR−−→ Zp(XR, n)0 ⊗ R ∼= Hp(X,n)0.

We consider the diagram of complexes of the type of (1.12)
(4.1)

Ẑp(X, ∗)0 =


Hp(X, ∗)0 D2p−∗

A (X, p)0

Zp(X, ∗)0

γ1

==zzzzzzzzz
D2p−∗

A,Zp (X, p)0

γ′1
∼

ccGGGGGGGGG

ρ
::ttttttttt

ZD2p
log(X, p)∗

i
ddJJJJJJJJJ


where ZD2p

log(X, p)∗ is the chain complex which is zero in all degrees except in

degree zero, where it consists of the vector subspace of cycles in D2p
log(X, p). Note

that it agrees with ZEp,p
log,R(X)(p), the subspace of Ep,p

log,R(X)(p) consisting of
differential forms with logarithmic singularities that are real up to a product by
(2πi)p, of type (p, p) and that vanish under ∂ and ∂. The morphism i is the
inclusion of chain complexes.

Definition 4.2. The higher arithmetic Chow complex is the simple complex

associated to the diagram Ẑp(X, ∗)0, as defined in (1.6):

Ẑp(X, ∗)0 := s(Ẑp(X, ∗)0).

Recall that, by definition, Ẑp(X,n)0 consists of 5-tuples

(Z, α0, α1, α2, α3) ∈
Zp(X,n)0 ⊕D2p−n

A,Zp (X, p)0 ⊕ ZD2p
log(X, p)n ⊕Hp(X,n+ 1)0 ⊕D2p−n−1

A (X, p)0,
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and the differential is given by

Ẑp(X,n)0
d−→ Ẑp(X,n− 1)0

(Z, α0, α1, α2, α3) 7→ (δ(Z), ds(α0), 0, γ1(Z)−γ′1(α0)−δ(α2), ρ(α0)−α1−ds(α3)).

Note that α1 will be zero unless n = 0. Its differential, however, is always zero.

Definition 4.3. Let X be an arithmetic variety over an arithmetic field. The
(p, n)-th higher arithmetic Chow group of X is defined by

ĈH
p
(X,n) := Hn(Ẑp(X, ∗)0), p, n ≥ 0.

By its definition as the cohomology of a simple of a diagram of complexes it
comes equipped with the following morphisms

ζ : ĈH
p
(X,n) −→ CHp(X,n), ζ[(Z, α0, . . . , α3)] = [Z],

a: H2p−n
D (X,R(p)) −→ ĈH

p
(X,n), a([a]) = [(0, 0, 0, 0,−a)],

a: D2p−1
log (X, p) −→ ĈH

p
(X, 0), a(ã) = [(0, 0,−dDa, 0,−a)],

ω : ĈH
p
(X, 0) −→ ZD2p

log(X, p), ω([(Z, α0, . . . , α3)]) = α1.

Proposition 4.4. There is a long exact sequence

(4.5)

· · · → ĈH
p
(X,n)

ζ−→ CHp(X,n)
ρ−→ H2p−n

D (X,R(p))
a−→ ĈH

p
(X,n− 1)→ · · ·

→ CHp(X, 1)
ρ−→ D2p−1

log (X, p)/ im dD
a−→ ĈH

p
(X, 0)

ζ−→ CHp(X, 0)→ 0,

where ρ is the Beilinson regulator.

Proof. It follows from Theorem 3.5, Lemma 1.16 and the fact that the homology
groups of the complex

s(ZD2p
log(X, p)∗

i−→ D2p−∗
A (X, p)0)

are H2p−n
D (X,R(p)) in degree n 6= 0 and D2p−1

log (X, p)/ im dD in degree 0. �

Remark 4.6. Let D̂∗,∗A (X, p)0 be the 2-iterated cochain complex given by the
quotient D∗,∗A (X, p)0/D2p,0(X, p). That is, for all r, n,

D̂r,−nA (X, p)0 =

{
0 if r = 2p and n = 0,
Dr,−nA (X, p)0 otherwise.

Let D̂∗A(X, p)0 denote the simple complex associated to D̂∗,∗A (X, p)0. Consider the
composition of ρ with the projection map

ρ : D2p−∗
A,Zp (X, p)0

ρ−→ D2p−∗
A (X, p)0 → D̂2p−∗

A (X, p)0.
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Then, there is a diagram of chain complexes of the type of (1.9)

(4.7)


Hp(X, ∗)0 D̂2p−∗

A (X, p)0

Zp(X, ∗)0

γ1

==zzzzzzzzz
D2p−∗

A,Zp (X, p)0

γ′1
∼

ccGGGGGGGGG

ρ
::ttttttttt

 .

By Proposition 1.13, the simple complex associated to the diagram (4.7) is

quasi-isomorphic to the complex Ẑp(X, ∗)0 and hence, its homology groups are

isomorphic ĈH
p
(X, ∗). Nevertheless, in order to define a product structure in

ĈH
∗
(X, ∗) it is better to work with the diagram (4.1).

4.2. Agreement with the arithmetic Chow groups. Let X be an arithmetic

variety and let ĈH
p
(X) denote the p-th arithmetic Chow group of X as defined

by Burgos in [5]. We recall here its definition.
For every p, let Zp(X) = Zp(X, 0) and let ZD2p

log(X, p) denote the subgroup of

cycles of D2p
log(X, p). Let

Ẑp(X)=

{
(Z, (ω, g̃)) ∈ Zp(X)⊕ ZD2p

log(X, p)⊕
D2p−1

log (X \ Zp, p)
im dD

∣∣∣∣ ω = dDg̃,
cl(Z) = [(ω, g)]

}
.

If Z ∈ Zp(X), a Green form for Z is a couple (ω, g̃) as before such that cl(Z) =
[(ω, g)], where g is any representative of g̃.

Let Y be a codimension p− 1 subvariety of X and let f ∈ k∗(Y ). As shown in
[5], §7, there is a canonical Green form attached to div f . It is denoted by g(f)
and it is of the form (0, g̃(f)) for some class g̃(f).

One defines the following subgroup of Ẑp(X):

R̂at
p
(X) = {(div f, g(f))| f ∈ k∗(Y ), Y ⊂ X a codimension p− 1 subvariety}.

For every p ≥ 0, the arithmetic Chow group of X is defined by

ĈH
p
(X) = Ẑp(X)/R̂at

p
(X).

It is proved in [14], Theorem 3.3.5 and [5], Theorem 7.3, that these groups fit
into exact sequences

CHp−1,p(X)
ρ−→ D2p−1

log (X, p)/ im dD
a−→ ĈH

p
(X)

ζ−→ CHp(X)→ 0

where:

• CHp−1,p(X) is the term Ep−1,−p
2 in the Quillen spectral sequence (see [23],

§7).
• The map ρ is the cycle class map and is the Beilinson regulator after

composition with the isomorphism K1(X)Q ∼=
⊕

p≥0CH
p−1,p(X)Q.

• The map ζ is the projection on the first component.
• The map a sends α to (0, (−dDα,−α)).
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Theorem 4.8. The morphism

ĈH
p
(X)

Φ−→ ĈH
p
(X, 0)

[(Z, (ω, g̃))] 7→ [(Z, (ω, g), 0, 0, 0)],

where g is any representative of g̃ ∈ D2p−1
log (X, p)/ im dD, is an isomorphism.

Proof. We first prove that Φ is well defined. Afterwards, we will prove that the
diagram

CHp−1,p(X)
ρ //

∼=
��

D2p−1
log (X, p)/ im dD

a //

=

��

ĈH
p
(X)

ζ //

Φ

��

CHp(X) //

∼=
��

0

CHp(X, 1)
ρ // D2p−1

log (X, p)/ im dD
a // ĈH

p
(X, 0)

ζ // CHp(X, 0) // 0

is commutative. The statement then follows from the five lemma.
The proof is a consequence of Lemmas 4.9, 4.10 and 4.11 below.

Lemma 4.9. The map Φ is well defined.

Proof. We have to prove that:

(i) The elements in the image of Φ are indeed cycles in Ẑp(X, 0)0.
(ii) The map Φ does not depend on the choice of a representative of g.

(iii) The map Φ is zero on R̂at
p
(X).

Let [(Z, (ω, g̃))] ∈ ĈH
p
(X). The claim (i) follows from the equality cl(Z) =

[(ω, g̃)] = [(ω, g)]. Indeed, since ds(ω, g) = 0,

d(Z, (ω, g), 0, 0, 0) = (0, 0, 0, cl(Z)− cl(ω, g), 0) = 0.

To see (ii), assume that g1, g2 ∈ D2p−1
log (X, p) are representatives of g̃, i.e. there

exists h ∈ D2p−2
log (X, p) such that dDh = g1 − g2. Then

d(0, (0, h), 0, 0, 0) = (0, (0, g1−g2), 0, 0, 0) = (Z, (ω, g1), 0, 0, 0)−(Z, (ω, g2), 0, 0, 0)

and therefore we have [(Z, (ω, g1), 0, 0, 0)] = [(Z, (ω, g2), 0, 0, 0)].
Finally, to prove (iii), we have to see that, if Y is a codimension p−1 subvariety

and f ∈ k∗(Y ), then

Φ(div f, g(f)) = 0 ∈ ĈH
p
(X, 0),

i.e. that

[(div f, (0, g(f)), 0, 0, 0)] = 0,

for any fixed representative g(f) of g̃(f).

Let f̂ be the function of Y × �1 given by (y, (t1 : t2)) 7→ t1−t2f(y)
t1−t2 . Its divisor

defines a codimension p subvariety of X × �1. Moreover, it intersects properly
X × (0 : 1) and X × (1 : 0). Fix g(f̂) to be any representative of g̃(f̂). Since
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δ(g̃(f̂)) = g̃(f), there exists h ∈ D2p−1
log (X \ div f, p) with dDh = δ(g(f̂)) − g(f).

Then,

d(div f̂ , (0, g(f̂), (0, h)), 0, 0, 0) = (div f, (0, g(f)), 0, 0, 0)

as desired. �

Lemma 4.10. There are isomorphisms

CHp(X)
ϕ1−→ CHp(X, 0),

CHp−1,p(X)
ϕ2−→ CHp(X, 1),

making the following diagrams commutative

CHp−1,p(X)
ρ //

ϕ2

��

D2p−1
log (X, p)/ im dD

=

��

CHp(X, 1)
ρ // D2p−1

log (X, p)/ im dD

ĈH
p
(X)

ζ //

Φ
��

CHp(X)

ϕ1

��

ĈH
p
(X, 0)

ζ // CHp(X, 0).

Proof. Both isomorphisms are well known. The morphism ϕ1 is the isomorphism
between the classical Chow group CHp(X) and the Bloch Chow group CHp(X, 0).
The diagram is obviously commutative, since ϕ1([Z]) = [Z].

The isomorphism ϕ2 is defined as follows. Let f ∈ CHp−1,p(X). It can be rep-
resented by a linear combination

∑
i[fi], where fi ∈ k∗(Wi), Wi is a codimension

p-1 subvariety of X and
∑

div fi = 0. Let Γfi be the restriction of the graph of
fi in ⊂ X×P1, to X×�1. That is, Γfi is the codimension p subvariety of X×�1

given by

{(y, fi(y))| y ∈ Wi, fi(y) 6= 1}.
Then ϕ2(f) is represented by the image in

Zp(X, 1)/DZp(X, 1) ∼= Zp(X, 1)0

of
∑

Γfi , where DZp(X, 1) are the degenerate elements.
We want to see that ρϕ2 = ρ, i.e., ρ(

∑
i Γfi) = ρ(

∑
[fi]). See [5] or [9] for more

details on the definition of ρ on the right hand side.
Let f =

∑
i[fi] ∈ CHp−1,p(X) be as above. For every i, we can choose:

• a rational function f̃i ∈ k∗(X) whose restriction to Wi is fi,
• a Green form for Wi, g(Wi) = (ωi, gi).

The form

g(f̃i) := (0,−1

2
log f̃if̃ i)

is a Green form for the divisor div f̃i on X.
Let ? denote the ?-product of Green forms as described by Burgos in [5]. Then,

we write

(ωρ, g̃ρ) =
∑

g(f̃i) ? g(Wi).
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Since the first component of g(f̃i) is zero, we have that ωρ = 0 as well. Moreover,

since (0, g̃ρ) is a Green form for
∑

i div f̃i ∩Wi =
∑

i div fi = 0, we can obtain a
representative gρ of g̃ρ that is a closed smooth form. Then gρ is a representative
of ρ(

∑
[fi]).

Let us show now that gρ is a representative of ρ(ϕ2(f)) as well. By the re-
sults of the previous sections, the form ρ(

∑
i Γfi) is obtained as follows. Let

Z ∈ Zp(X, 1)0 be a cycle in the normalized group that differs from
∑

Γfi by a

degenerate element. We consider a representative (ωZ , gZ) ∈ τD2p
Zp(X × �1, p)0

of Z. Since

β = δ0
1(ωZ , gZ)− δ1

1(ωZ , gZ)

represents the class of
∑

i div fi = 0, the class of β is zero and hence there exists
(ω, g) such that dD(ω, g) = β. Moreover, since dDωZ = 0 and the complex
τD∗log(X × �1, p)0 is acyclic (see the proof of Proposition 2.8), there exists α ∈
D2p−1

log (X × �1, p)0 such that dD(α) = ωZ . Then, ρ(
∑

i Γfi) is represented by
ω + δ(α).

Therefore, we start by constructing the cycle Z and suitable forms (ωZ , gZ)
representing the class of Z. Consider the rational function hi ∈ k∗(X×�1) given
by

(y, (t1 : t2)) 7→ t1 − t2f̃i(y)

t1 − t2
.

If we write div fi = (div fi)
0 − (div fi)

∞ where (div fi)
0 is the divisor of zeroes

and (div fi)
∞ is the divisor of poles, the intersection of the divisor of hi with Wi,

div hi ∩Wi, is exactly Γfi − (div fi)
∞. Observe that (div fi)

∞ is a codimension p
degenerate cycle. Moreover div hi ∩Wi belongs to Zp(X, 1)0. Hence

Z =
∑

div hi ∩Wi

is the cycle we need. Let g(hi) = (0,−1
2

log hihi) be the canonical Green form for
div hi. Then, as above, a Green form for Z is given by∑

g(hi) ? g(Wi) = (0, g̃Z).

Now, observe that

δ(0, g̃Z) =
∑
i

δ0
1(g(hi)) ? g(Wi) =

∑
i

g(f̃i) ? g(Wi) = (0, g̃ρ).

Since we can assume that gρ is a smooth representative of g̃ρ, we have that
ds(gρ, 0) = (0, gρ), and hence by the above description of ρ we see that

ρ
(∑

i

Γfi
)

= gρ.

This finishes the proof of the lemma. �
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Lemma 4.11. The following diagram is commutative:

ĈH
p
(X)

Φ

��
D2p−1

log (X, p)/ im dD

a 33fffffff

a
++XXXXXX

ĈH
p
(X, 0)

Proof. Let α̃ ∈ D2p−1
log (X, p)/ im dD. Then, the lemma follows from the equality

d(0, (α, 0), 0, 0, 0) = (0, (dDα, α), 0, 0, 0) + (0, 0, 0, 0, α)

in ĈH
p
(X, 0). �

This finishes the proof of Theorem 4.8. �

4.3. Functoriality of the higher arithmetic Chow groups.

Proposition 4.12 (Pull-back). Let f : X → Y be a morphism between two arith-

metic varieties. Then, for all p ≥ 0, there exists a chain complex, Ẑp
f (Y, ∗)0 such

that:

(i) There is a quasi-isomorphism

Ẑp
f (Y, ∗)0

∼−→ Ẑp(Y, ∗)0.

(ii) There is a pull-back morphism

f ∗ : Ẑp
f (Y, ∗)0 → Ẑp(X, ∗)0,

inducing a pull-back morphism of higher arithmetic Chow groups

ĈH
p
(Y, n)

f∗−→ ĈH
p
(X,n),

for every p, n ≥ 0.
(iii) The pull-back is compatible with the morphisms a and ζ. That is, there are

commutative diagrams

(4.13) · · · // H2p−n−1
D (Y,R(p))

a //

f∗

��

ĈH
p
(Y, n)

ζ //

f∗

��

CHp(Y, n) //

f∗

��

· · ·

· · · // H2p−n−1
D (X,R(p)) a

// ĈH
p
(X,n)

ζ
// CHp(X,n) // · · ·

Proof. Recall that there are inclusions of complexes

Zp
f (Y, ∗)0 ⊆ Zp(Y, ∗)0,

Hp
f (Y, ∗)0 ⊆ Hp(Y, ∗)0,

D∗A,Zpf (Y, p)0 ⊆ D∗A,Zp(Y, p)0,
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which are quasi-isomorphisms. The pull-back by f is defined for any α in
Zp
f (Y, ∗)0, in Hp

f (Y, ∗)0 or in D∗A,Zpf (Y, p)0. Moreover, by construction, there is

a commutative diagram

Zp
f (Y, ∗)0

f∗

��

γ1 // Hp
f (Y, ∗)0

f∗

��

D∗A,Zpf (Y, p)0

f∗

��

γ′1
∼

oo ρ // D∗A(Y, p)0

f∗

��

ZD2p
log(X, p)∗

ioo

f∗

��

Zp(X, ∗)0 γ1

// Hp(X, ∗)0 D∗A,Zp(X, p)0
γ′1

∼oo
ρ

// D∗A(X, p)0 ZD2p
log(Y, p)∗.

ioo

Let Ẑp
f (Y, ∗)0 denote the simple associated to the first row diagram. Then, there

is a pull-back morphism

f ∗ : Ẑp
f (Y, ∗)0 → Ẑp(X, ∗)0.

Moreover, as noticed in §1.3, the natural map

Ẑp
f (Y, ∗)0 → Ẑp(Y, ∗)0

is a quasi-isomorphism. Therefore, (i) and (ii) are proved. Statement (iii) follows
from the construction. �

Remark 4.14. If the map is flat, then the pull-back is already defined at the

level of the chain complexes Ẑp(Y, ∗)0 and Ẑp(X, ∗)0.

Proposition 4.15 (Functoriality of pull-back). Let f : X → Y and g : Y → Z
be two morphisms of arithmetic varieties. Then,

f ∗ ◦ g∗ = (g ◦ f)∗ : ĈH
p
(Z, n)→ ĈH

p
(X,n).

Proof. Let Ẑp
gf∪g(Z, n)0 be the subgroup of Ẑp(Z, n)0 obtained considering, at

each of the complexes of the diagram Ẑp(Z, ∗)0, the subvarieties W of Z × �n
intersecting properly the faces of �n and such that

• X ×W ×�n intersects properly the graph of g ◦ f ,
• Y ×W ×�n intersects properly the graph of g.

That is,

Ẑp
gf∪g(Z, n)0 = Ẑp

gf (Z, n)0 ∩ Ẑp
g (Z, n)0.

Then, the proposition follows from the commutative diagram

Ẑp(X, ∗)0

Ẑp
gf∪g(Z, ∗)0

(g◦f)∗ 44iiiiii

g∗
**TTTTTT

Ẑp
f (Y, ∗)0. �

f∗

OO
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Corollary 4.16 (Homotopy invariance). Let π : X × Am → X be the projection
on X. Then, the pull-back map

π∗ : ĈH
p
(X,n)→ ĈH

p
(X × Am, n)

is an isomorphism for all n ≥ 1.

Proof. It follows from the five lemma in the diagram (4.13), using the fact that
both the higher Chow groups and the Deligne-Beilinson cohomology groups are
homotopy invariant. �

5. Product structure

Let X, Y be arithmetic varieties over an arithmetic field K. In this section, we

define an external product, ĈH
∗
(X, ∗) ⊗ ĈH

∗
(Y, ∗) → ĈH

∗
(X × Y, ∗), and an

internal product ĈH
∗
(X, ∗)⊗ĈH

∗
(X, ∗)→ ĈH

∗
(X, ∗), for the higher arithmetic

Chow groups. The internal product endows ĈH
∗
(X, ∗) with a ring structure. It

will be shown that this product is commutative and associative. There are two
main technical difficulties. The first one is that we are representing a cohomology
class with support in a cycle by a pair of forms, the first one smooth on the whole
variety and the second one with singularities along the cycle. The product of two
singular forms has singularities along the union of the singular locus. Therefore,
in order to define a cohomology class with support on the intersection of two
cycles we need a little bit of homological algebra. To this end we adapt the
technique used in [5]. The second difficulty is that the external product in higher
Chow groups is not graded commutative at the level of complexes, but only
graded commutative up to homotopy. To have explicit homotopies we will adapt
the techniques of [19].

Recall that the higher arithmetic Chow groups are the homology groups of
the simple complex associated to a diagram of complexes. Therefore, in order to
define a product, we use the general procedure developed by Beilinson, as recalled
in §1.4. To this end, we need to define a product for each of the complexes in the

diagram Ẑp(X, ∗)0 (4.1), commuting with the morphisms γ1, γ′1, ρ and i. The
pattern for the external product construction is analogous to the pattern followed
to define the external product for the cubical higher Chow groups, described in
§2.3.

For the complex Zp(X, ∗)0 we already have an external product recalled in §2.3.
Since the complex Hp(X, ∗)0 is isomorphic to Zp

R(XR, ∗)0, the external product
on the complex H∗(X, ∗)0 can be defined by means of this isomorphism. We will
now construct the product for the remaining complexes.

5.1. Product structure on the complexes D∗A(X, p) and ZD2p
log(X, p)∗. We

start by defining a product structure on D∗A(X, p). Let

X × Y ×�n ×�m p13−−→ X ×�n, X × Y ×�n ×�m p24−−→ Y ×�m
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be the projections indicated by the subindices. For every ω1 ∈ τDrlog(X ×�n, p)
and ω2 ∈ τDslog(Y ×�m, q), we define

ω1 •A ω2 := (−1)nsp∗13ω1 • p∗24ω2 ∈ τDr+slog (X × Y ×�n+m, p+ q).

This gives a map

Dr1A (X, p)⊗Dr2A (Y, q)
•A−→ Dr1+r2

A (X × Y, p+ q)

(ω1, ω2) 7→ ω1 •A ω2,

where • in the right hand side is the product in the Deligne complex (see §1.8).

Lemma 5.1. The map •A satisfies the Leibniz rule. Therefore, there is a cochain
morphism

s(D∗A(X, p)⊗D∗A(Y, q))
•A−→ D∗A(X × Y, p+ q).

Proof. Let ω1 ∈ τDrlog(X,n) and ω2 ∈ τDslog(Y,m). By definition of δ, the follow-
ing equality holds

δ(p∗13ω1 • p∗24ω2) = p∗13(δω1) • p∗24ω2 + (−1)np∗13ω1 • p∗24(δω2).

Then,

ds(ω1 •A ω2) = (−1)nsds(p
∗
13ω1 • p∗24ω2)

= (−1)nsdD(p∗13ω1 • p∗24ω2) + (−1)r+s+nsδ(p∗13ω1 • p∗24ω2)

= (−1)nsdD(p∗13ω1) • p∗24ω2 + (−1)r+nsp∗13ω1 • dD(p∗24ω2)+

+ (−1)r+s+nsp∗13(δω1) • p∗24ω2 + (−1)r+s+n+nsp∗13ω1 • p∗24(δω2)

= dDω1 •A ω2 + (−1)r+nω1 •A dD(ω2)+

+ (−1)rδω1 •A ω2 + (−1)r+n+sω1 •A δ(ω2)

= ds(ω1) •A ω2 + (−1)r+nω1 •A ds(ω2),

as desired. �

Definition 5.2. Let τD∗log(X×Y ×�∗×�∗, p)0 be the 3-iterated cochain complex
whose (r,−n,−m)-th graded piece is the group τDrlog(X ×Y ×�n×�m, p)0 and
whose differentials are (dD, δ, δ). Let

(5.3) D∗A×A(X × Y, p)0 := s
(
τD∗log(X × Y ×�∗ ×�∗, p)0

)
be the associated simple complex.

Remark 5.4. Observe that there is a cochain morphism

D∗A×A(X × Y, p)0
κ−→ D∗A(X × Y, p)0

sending α ∈ τDrlog(X × Y ×�n ×�m, p) to α ∈ τDrlog(X × Y ×�n+m, p) under
the identification

�n+m ∼=−→ �n ×�m

(x1, . . . , xn+m) 7→ ((x1, . . . , xn), (xn+1, . . . , xn+m)).
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Moreover, the product •A that we have defined previously, factors through the
morphism κ and a product, also denoted by •A,

D∗A(X, p)⊗D∗A(Y, q)
•A−→ D∗A×A(X × Y, p+ q).

In order to define the product on the complex ZD2p
log(X, p)∗, recall that we have

an isomorphism (see [5])

ZD2p
log(X, p) ∼= ZEp,p

log,R(X)(p)

and that the restriction of the product • to this subspace is given by the prod-
uct ∧.

The inclusion i is compatible with the product •A and the product ∧. That
is, consider the projections pX : X × Y → X and pY : X × Y → Y . Then, if
α ∈ ZEp,p

log,R(X)(p) and β ∈ ZEq,q
log,R(Y )(q), we put

α ∧ β = p∗X(α) ∧ p∗Y (β) ∈ ZEp+q,p+q
log,R (X × Y )(p+ q).

We have a commutative diagram

ZEp,p
log,R(X)(p)⊗ ZEq,q

log,R(Y )(q) ∧ //

i⊗i
��

ZEp+q,p+q
log,R (X × Y )(p+ q)

i

��
s(D∗A(X, p)0 ⊗D∗A(Y, q)0) •A

// D∗A(X × Y, p+ q)0.

5.2. Product structure on the complex D∗A,Zp(X, p). We define here a prod-
uct on the complex D∗A,Zp(X, p). It will be compatible with the product on
D∗A(X, p), under the morphism ρ, and with the product on Hp(X, ∗)0 under γ′1.

Let X, Y be two real varieties. For every p, let ZpX,n be the subset of codimen-
sion p subvarieties of X ×�n intersecting properly the faces of �n. Let

Zp,qX,Y,n,m ⊆ Z
p+q
X×Y,n+m

be the subset of the set of codimension p + q subvarieties of X × Y × �n+m,
intersecting properly the faces of �n+m, which are obtained as the cartesian
product Z ×W with Z ∈ ZpX,n and W ∈ ZqY,m.

For shorthand, we make the following identifications:

ZqY,m = {X × Z | Z ∈ ZqY,m} ⊆ Z
q
X×Y,n+m,

ZpX,n = {W × Y | W ∈ ZpX,m} ⊆ Z
p
X×Y,n+m.

To ease the notation, we write temporarily

�n,mX,Y := X × Y ×�n ×�m.
For every n,m, p, q, let jp,qX,Y (n,m) be the morphism

D∗log(�n,mX,Y \Z
p
X,n, p+q)⊕D

∗
log(�n,mX,Y \Z

q
Y,m, p+q)

jp,qX,Y (n,m)
−−−−−−→ D∗log(�n,mX,Y \Z

p
X,n∪Z

q
Y,m, p+q)

induced on the limit complexes by the morphism j in Lemma 1.29.
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Lemma 5.5. There is a short exact sequence

0→ D∗log(�n,mX,Y \Z
p,q
X,Y,n,m, p+ q)→ D∗log(�n,mX,Y \Z

p
X,n, p+ q)⊕D∗log(�n,mX,Y \Z

q
Y,m, p+ q)

jp,qX,Y (n,m)
−−−−−−→ D∗log(�n,mX,Y \ Z

p
X,n ∪ Z

q
Y,m, p+ q)→ 0.

Proof. It follows from Lemma 1.29. �

By the quasi-isomorphism between the simple complex and the kernel of an
epimorphism (see (1.2)), for every n,m, there is a quasi-isomorphism

D∗log(�n,mX,Y \ Z
p,q
X,Y,n,m, p+ q)

∼−→ s(−jp,qX,Y (n,m))∗

ω 7→ (ω, ω, 0).

It induces a quasi-isomorphism
(5.6)

D∗log,Zp,qX,Y,n,m
(�n,mX,Y , p+ q)

∼−→ s

(
D∗log(�n,mX,Y , p+ q)∗

ip,qX,Y (n,m)
−−−−−−→ s(−jp,qX,Y (n,m))

)∗
,

where ip,qX,Y (n,m) is defined by

D∗log(�n,mX,Y , p+ q)
ip,qX,Y (n,m)
−−−−−−→ s(−jp,qX,Y (n,m))∗

ω 7→ (ω, ω, 0).

Remark 5.7. Observe that there is an induced bicubical cochain complex struc-
ture on s(ip,qX,Y (·, ·))∗. For every r, let s(ip,qX,Y (∗, ∗))r0 denote the 2-iterated complex
obtained by taking the normalized complex functor to both cubical structures.
Consider the 3-iterated complex s(ip,qX,Y (∗, ∗))∗0 whose piece of degree (r,−n,−m)
is the group τr≤2p+2qs(i

p,q
X,Y (n,m))r0, and whose differential is (ds, δ, δ). Denote

by s(ip,qX,Y )∗0 the associated simple complex. Observe that the differential of
α = (α0, (α1, α2), α3) ∈ s(ip,qX,Y )r0 is given by

d′s(α0, (α1, α2), α3) = (dDα0, (α0 − dDα1, α0 − dDα2),−α1 + α2 + dDα3).

Definition 5.8. Let •A be the map

Drlog,Zp(X ×�n, p)0 ⊗Dslog,Zq(Y ×�m, q)0
•A−→s(ip,qX,Y (n,m))r+s0

defined by sending (ω, g)⊗ (ω′, g′) to

(−1)ns(ω • ω′, (g • ω′, (−1)rω • g′), (−1)r−1g • g′).

Lemma 5.9. The map •A defines a pairing of complexes

s
(
D∗A,Zp(X, p)0 ⊗D∗A,Zq(Y, q)0

) •A−→ s(ip,qX,Y )∗0.

Proof. Let (ω, g) ∈ Drlog,Zp(X ×�n, p)0 and (ω′, g′) ∈ Dslog,Zq(Y ×�m, q)0. Then,
we have to see that

d′s((ω, g) •A (ω′, g′)) = d′s(ω, g) •A (ω′, g′) + (−1)r−n(ω, g) •A d′s(ω′, g′).
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That is, we have to show that the following two equalities hold:

ds((ω, g) •A (ω′, g′)) = ds(ω, g) •A (ω′, g′) + (−1)r−n(ω, g) •A ds(ω
′, g′)

δ((ω, g) •A (ω′, g′)) = (−1)sδ(ω, g) •A (ω′, g′) + (−1)n(ω, g) •A δ(ω′, g′).
The proof of the second equality is analogous to the proof of Lemma 5.1. The
first equality is a direct computation. �

We define a complex D∗A×A,Zp,qX,Y
(X×Y, p+q)0 that is analogous to the complex

D∗A×A(X, p)0 of Definition 5.2.

Definition 5.10. Let D∗A×A,Zp,qX,Y
(X×Y, p+q)0 be the simple complex associated

to the 3-iterated complex whose (r,−n,−m) graded piece is τDr
log,Zp,qX,Y,n,m

(X ×
Y ×�n ×�m, p+ q)0.

As in Remark 5.4, we will denote by κ the morphisms obtained by identifying
�n ×�m with �n+m.

D∗A×A,Zp+q(X × Y, p+ q)0
κ−→ D∗A,Zp+q(X × Y, p+ q)0.

We will denote by ρ the morphisms obtained by forgetting the support

D∗A×A,Zp,qX,Y
(X × Y, p+ q)0

ρ−→ D∗A×A(X × Y, p)0,

s(ip,qX,Y )∗0
ρ−→ D∗A×A(X × Y, p)0.

There are also natural morphisms, whose definitions are obvious,

D∗A×A,Zp,qX,Y
(X × Y, p+ q)0 → D∗A×A,Zp+q(X × Y, p+ q)0,

D∗A×A,Zp,qX,Y
(X × Y, p+ q)0 → s(ip,qX,Y )∗0.

Lemma 5.11. The natural map

(5.12) D∗A×A,Zp,qX,Y
(X × Y, p+ q)0 → s(ip,qX,Y )∗0

is a quasi-isomorphism. Moreover, it commutes with ρ.

Proof. It follows from the quasi-isomorphism (5.6). �

The external product on D∗A,Z∗(·, ∗)0 is given, in the derived category of com-
plexes, by

DrA,ZpX (X, p)0 ⊗DsA,ZqY (Y, q)0
•A // s(ip,qX,Y )r+s0

Dr+sA×A,Zp,qX,Y
(X × Y, p+ q)0

∼

OO

κ // Dr+s
A,Zp+qX×Y

(X × Y, p+ q)0.

The fact that to define the product in this complex we need to invert a quasi-
isomorphism is the main reason of the complexity of the definition of the product
on the higher arithmetic Chow groups.
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By definition, it is clear that this morphism commutes with the morphism
defined on the complex D∗A(X, p). It remains to be seen that the product on
D2p−n

A,Zp (X, p)0 is compatible with the product on Hp(X,n)0, under the quasi-
isomorphism γ′1.

Let ω ∈ s(ip,qX×Y )2p+2q−l
0 and let

(ω0
l , . . . , ω

l
l) ∈

l⊕
j=0

τ≤2p+2qs(i
p,q
X,Y (j, l − j))2p+2q

0

be the components of ω corresponding to the degree (2p + 2q,−j, j − l). These
are the components that have maximal degree as differential forms and, by the
definition of the truncated complex they satisfy dsω

j
l = 0. Thus, the form ωjl

defines a cohomology class [ωjl ] in the complex s(ip,qX,Y (j, l− j))∗0. Since there is a
quasi-isomorphism

D∗log,Zp,qX,Y
(X × Y ×�l, p+ q)0

∼−→ s(ip,qX,Y (j, l − j))∗0,

we obtain a cohomology class in H∗(D∗
log,Zp,qX,Y

(X × Y ×�l, p+ q)0). Hence, a co-

homology class [ωjl ] ∈ Hp+q(X×Y, l)0. This procedure defines a chain morphism,
denoted γ′1,

s(ip,qX,Y )2p+2q−l
0

γ′1−→ Hp+q(X × Y, l)0

ω 7−→
∑
j

[ωjl ].

By composition, we can define a morphism, also denoted γ′1,

D∗A×A,Zp,qX,Y (X × Y, p+ q)0

γ′1−→ Hp+q(X × Y, ∗)0.

Moreover there is a commutative diagram

D∗A×A,Zp,qX,Y
(X × Y, p+ q)0

κ

��

γ′1

**TTTTTTTTTTTTTTTT

Hp+q(X × Y, ∗)0

D∗A,Zp+q(X × Y, p+ q)0

γ′1

44iiiiiiiiiiiiiiii

Proposition 5.13. Let Z ∈ ZpX,n and T ∈ ZqY,m. Let [(ωZ , gZ)] ∈ Hp(X,n)0

represent the class of a cycle z ∈ Zp(X,n)0 with support on Z and [(ωT , gT )] ∈
Hq(Y,m)0 represent the class of a cycle t ∈ Zq(Y,m)0 with support on T . Then,

[(ωZ , gZ) •A (ωT , gT )] ∈ Hp+q(X × Y, n+m)0

represents the class of the cycle z × t in Zp+q(X × Y, n+m)0.

Proof. It follows from [14], Theorem 4.2.3 and [5], Theorem 7.7. �
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Corollary 5.14. For every p, q, n,m, the following diagram is commutative:

D2p−n
A,Zp (X, p)0 ⊗D2q−m

A,Zq (Y, q)0

γ′1 //

•A
��

Hp(X,n)0 ⊗Hq(Y,m)0

×
��

s(ip,qX,Y )2p+2q−n−m
0 γ′1

// Hp+q(X × Y, n+m)0 �

5.3. Product structure on the higher arithmetic Chow groups. Once we
have defined a compatible product on each of the complexes involved, the product
on the higher arithmetic Chow groups is given by the following diagram.

Hp(X,n)0 ⊗Hq(Y,m)0

×

��

D2p−n
A (X, p)0 ⊗D2q−m

A (Y, q)0

•A

��

Zp(X,n)0 ⊗ Zq(Y,m)0

×

��

γ1

<<yyyyyyyyy
D2p−n

A,Zp (X, p)0 ⊗D2q−m
A,Zq (Y, q)0

γ′
1

∼

eeKKKKKKKKKK

ρ
88ppppppppppp

•A

��

ZD2p
log(X, p)n ⊗ ZD2q

log(Y, q)m

i

ffNNNNNNNNNNN

∧

��

Hp+q(X × Y, n+m)0 D2(p+q)−n−m
A×A (X × Y, p+ q)0

Zp+q(X × Y, n+m)0

γ1

<<zzzzzzzzz
s(ip,qX,Y )2p+2q−n−m

0

γ′
1

ddJJJJJJJJJJ

ρ
88qqqqqqqqqqq

ZD
2(p+q)
log (X × Y, p+ q)n+m

i

ffMMMMMMMMMMM

Hp+q(X × Y, n+m)0 D2(p+q)−n−m
A×A (X × Y, p+ q)0

κ

��

Zp+q(X × Y, n+m)0

γ1

==zzzzzzzzz
D2(p+q)−n−m

A×A,Zp,q
X,Y

(X × Y, p+ q)0

γ′
1

ddIIIIIIIIII
ρ

88qqqqqqqqqq

κ

��

∼

OO

ZD
2(p+q)
log (X × Y, p+ q)n+m

i

ffMMMMMMMMMMM

Hp+q(X × Y, n+m)0 D2(p+q)−n−m
A (X × Y, p+ q)0

Zp+q(X × Y, n+m)0

γ1

<<zzzzzzzzz
D2(p+q)−n−m

A,Zp+q (X × Y, p+ q)0

γ′
1

∼

eeJJJJJJJJJJ

ρ
88qqqqqqqqqqq

ZD
2(p+q)
log (X × Y, p+ q)n+m

i

ffMMMMMMMMMMM

Observe that, in the first set of vertical arrows is where the product is defined,
in the second set of vertical arrows we are just inverting the quasi-isomorphism
(5.12), finally in the last set of vertical arrows we are applying the morphism κ.

The above diagram induces a morphism in the derived category of chain com-
plexes

s
(
Ẑp(X, ∗)0 ⊗ Ẑq(Y, ∗)0

) ∪−→ s
(
Ẑp+q(X × Y, ∗)0

)
= Ẑp+q(X × Y, ∗)0.
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Recall here the notation we are using, the symbol Ẑp(X, ∗)0 denotes the diagram

where the symbol Ẑp(X, ∗)0 denotes the associated simple complex.
By §1.4, for any β ∈ Z there is a morphism ?β

Ẑp(X, ∗)0 ⊗ Ẑq(Y, ∗)0

?β−→ s
(
Ẑp(X, ∗)0 ⊗ Ẑq(Y, ∗)0

)
.

The composition of ?β with ∪ induces a product

ĈH
p
(X,n)⊗ ĈH

q
(Y,m)

∪−→ ĈH
p+q

(X × Y, n+m),

independent of β.

Finally the pull-back by the diagonal map X
∆−→ X × X gives an internal

product on ĈH
p
(X, ∗):

ĈH
p
(X,n)⊗ ĈH

q
(X,m)

∪−→ ĈH
p+q

(X ×X,n+m)
∆∗−→ ĈH

p+q
(X,n+m).

Thus, in the derived category of complexes, the product is given by the com-
position

Ẑp(X,n)0 ⊗ Ẑq(X,m)0

?β
��

s
(
Ẑp(X,n)0 ⊗ Ẑq(X,m)0

) ∪ // Ẑp+q(X ×X,n+m)0

Ẑp+q∆ (X ×X,n+m)0

∼

OO

∆∗ // Ẑp+q(X,n+m)0.

Remark 5.15. It follows from the definition that, for n = 0, the product ∪
agrees with the product on the arithmetic Chow group ĈH

p
(X) defined in [5].

5.4. Commutativity of the product. Let X, Y be arithmetic varieties over a
field K. We prove here that the pairing defined in the previous subsection on the
higher arithmetic Chow groups is commutative, in the sense detailed below.

We first introduce some notation:

• If B∗, C∗ are chain complexes, let

σ : s(B∗ ⊗ C∗)→ s(C∗ ⊗B∗)

be the map sending b⊗ c ∈ Bn ⊗ Cm to (−1)nmc⊗ b ∈ Cm ⊗Bn.
• Let σX,Y be the morphism

σX,Y : Y ×X → X × Y

interchanging X with Y .
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We will prove that there is a commutative diagram

ĈH
p
(X,n)⊗ ĈH

q
(Y,m)

∪ //

σ

��

ĈH
p+q

(X × Y, n+m)

σ∗X,Y
��

ĈH
q
(Y,m)⊗ ĈH

p
(X,n)

∪ // ĈH
p+q

(Y ×X,n+m)

In particular, the internal product on the higher arithmetic Chow groups will be

graded commutative with respect to the degree n. That is, if W ∈ ĈH
p
(X,n)

and Z ∈ ĈH
q
(X,m), then

W ∪ Z = (−1)nmZ ∪W.
Recall that, by definition, the product factorizes as

ĈH
p
(X,n)⊗ĈH

q
(Y,m)

?β−→ Hn+m(s(Ẑp(X, ∗)0⊗Ẑq(Y, ∗)0)) ∪−→ ĈH
p+q

(X×Y, n+m).

By Lemma 1.8, this factorization is independent on the integer β. Moreover,
there is a commutative diagram

ĈH
p
(X,n)⊗ ĈH

q
(Y,m)

?β //

σ

��

Hn+m(s(Ẑp(X, ∗)0 ⊗ Ẑq(Y, ∗)0))

σ

��

ĈH
q
(Y,m)⊗ ĈH

p
(X,n)

?1−β // Hn+m(s(Ẑp(Y, ∗)0 ⊗ Ẑq(X, ∗)0))

Therefore, all that remains is to check the commutativity for

(5.16) s
(
Ẑp(X, ∗)0 ⊗ Ẑq(Y, ∗)0

) ∪
99K Ẑp+q(X × Y, ∗)0.

Hence, we want to see that, in the derived category of chain complexes, there is
a commutative diagram

s
(
Ẑp(X, ∗)0 ⊗ Ẑq(Y, ∗)0

)
σ

��

∪ // Ẑp+q(X × Y, ∗)0

σ∗X,Y
��

s
(
Ẑq(Y, ∗)0 ⊗ Ẑp(X, ∗)0

)
∪

// Ẑp+q(Y ×X, ∗)0.

The obstruction to strict commutativity comes from the change of coordinates

�n+m = �m ×�n σn,m−−−→ �n ×�m = �n+m(5.17)

(y1, . . . , ym, x1, . . . , xn) 7→ (x1, . . . , xn, y1, . . . , ym).

Recall that the product is described by the big diagram in §5.3. In order to
prove the commutativity, we change the second and third row diagrams of this big
diagram, by more suitable diagrams. These changes do not modify the definition
of the product, but ease the study of the commutativity.
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We define a complex Zp
A×A(X,n)0 analogously to the definition complex

D∗A×A(X, p)0 (see §5.2). Let

Zp(X,n,m)0 := Zp(X,n+m)0,

and let δ′ =
∑n

i=1(−1)iδ0
i and δ

′′
=
∑n+m

i=n+1(−1)i−nδ0
i . Then, (Zp(X, ∗, ∗)0, δ

′, δ
′′
)

is a 2-iterated chain complex. For the sake of simplicity, we denote both δ′ and
δ
′′

by δ.
Denote by Zp

A×A(X,∗)0 the associated simple complex. The complexHp
A×A(X,∗)0

is defined analogously.

Let Ẑp,qA×A(X × Y, ∗)0 be the diagram

Hp+qA×A(X × Y, ∗)0 D2(p+q)−∗
A×A (X × Y, p+ q)0.

Zp+qA×A(X × Y, ∗)0

γ1

;;wwwwwwwww

s(ip,qX,Y )2(p+q)−∗
0

ρ
99rrrrrrrrrr

γ′1
∼

bbEEEEEEEE

ZD2p+q
log (X × Y, p+ q)∗

i
ggPPPPPPPPPPPP

This diagram will fit in the second row of the new big diagram. Denote by

Ẑp,q
A×A(X × Y, ∗)0 the simple complex associated to this diagram.
The third row of the new big diagram corresponds to a diagram whose com-

plexes are obtained from the refined normalized complex of Definition 1.18. The
fact that, in these complexes, most of the face maps vanish is the key point to
construct explicit homotopies for the commutativity of the product. So, consider
the following complexes:

• Let Zq(X, ∗, ∗)00 be the 2-iterated chain complex with

Zq(X,n,m)00 :=
⋂

i 6=0,n+1

ker δ0
i ⊂ Zq(X,n+m)0,

and with differentials (δ′, δ′′) = (−δ0
1,−δ0

n+1). Denote by Zq
A×A(X, ∗)00 the

associated simple complex.
• Let τD∗log(X×�∗×�∗, p)00 be the 3-iterated complex whose (r,−n,−m)-

graded piece is

τDrlog(X ×�n ×�m, p)00 =
⋂

i 6=0,n+1

ker δ0
i ⊂ τDrlog(X ×�n+m, p)0,

and with differentials (dD,−δ0
1,−δ0

n+1). Let D∗A×A(X, p)00 be the associ-
ated simple complex.
• Let τD∗

log,Zp,qX,Y,∗,∗
(X×Y ×�∗×�∗, p+q)00 be the 3-iterated complex with

τDrlog,Zp,qX,Y,n,m
(X × Y ×�n ×�m, p+ q)00 =

⋂
i 6=0,n+1

ker δ0
i
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as a subset of τDr
log,Zp,qX,Y,n,m

(X × Y ×�n+m, p+ q)0. The differentials are

given by (dD,−δ0
1,−δ0

n+1). Let D∗A×A,Zp,qX,Y
(X × Y, p)00 be the associated

simple complex.

Remark 5.18. Observe that there are induced morphisms

Zp+q
A×A(X × Y, ∗)00

γ1−→ Hp+q
A×A(X × Y, ∗)00,

D2(p+q)−∗
A×A,Zp,qX,Y

(X × Y, p+ q)00

γ′1−→ Hp+q
A×A(X × Y, ∗)00,

D2(p+q)−∗
A×A,Zp,qX,Y

(X × Y, p+ q)00
ρ−→ D2(p+q)−∗

A×A (X × Y, p+ q)00.

Let Ẑp,qA×A(X × Y, ∗)00 be the diagram

Hp+qA×A(X × Y, ∗)00 D2(p+q)−∗
A×A (X × Y, p+ q)00.

Zp+qA×A(X × Y, ∗)00

γ1

==zzzzzzzzz
D2(p+q)−∗

A×A,Zp,q
X,Y

(X × Y, p+ q)00

ρ
77ooooooooooo

γ′
1

∼

eeKKKKKKKKKK

ZD2p+q
log (X × Y, p+ q)∗

i

ffNNNNNNNNNNN

This is the diagram fitting in the third row of the new diagram. Let

Ẑp,q
A×A(X × Y, ∗)00 be the simple complex associated to this diagram.

Lemma 5.19. Let X be an arithmetic variety over a field.

(i) The natural chain morphisms

Zq
A×A(X, ∗)00

i−→ Zq
A×A(X, ∗)0,(5.20)

Zq
A×A(X, ∗)0

κ−→ Zq(X, ∗)0,(5.21)

are quasi-isomorphisms.
(ii) The natural cochain morphisms

D∗A×A(X, p)00
i−→ D∗A×A(X, p)0,(5.22)

D∗A×A,Zp,qX,Y
(X × Y, p+ q)00

i−→ D∗A×A,Zp,qX,Y
(X × Y, p+ q)0,(5.23)

D∗A×A(X, p)0
κ−→ D∗A(X, p)0,(5.24)

are quasi-isomorphisms.

Proof. The proofs of the facts that the morphisms i are quasi-isomorphisms
are analogous for the three cases. For every n,m, let B(n,m) denote either
Zp(X,n,m), τDrlog(X ×�n ×�m, p) or τDr

log,Zp,qX,Y,n,m
(X × Y ×�n ×�m, p+ q),

for some r. The groups B(n,m)0 and B(n,m)00 are defined analogously.
Observe that for every n,m, B(·,m) and B(n, ·) are cubical abelian groups.

We want to see that there is a quasi-isomorphism

(5.25) s(N2
0N

1
0B(∗, ∗)) i−→ s(N2N1B(∗, ∗)),
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where superindex 1 refers to the cubical structure given by the first index n and
superindex 2 to the cubical structure given by the second index m. An spectral se-
quence argument together with Lemma 1.20 and Proposition 1.24 show that there
is a quasi-isomorphism s(N2N1

0B(∗, ∗)) ∼−→ s(N2N1B(∗, ∗)). By Lemma 1.20 and
an spectral sequence argument again, we obtain that there is a quasi-isomorphism

s(N2
0N

1
0B(∗, ∗)) i−→ s(N2N1

0B(∗, ∗)). Therefore, (5.25) is a quasi-isomorphism.
The proofs of the facts that the morphisms in (5.21) and (5.24) are quasi-

isomorphisms are analogous to each other. Therefore, we just prove the statement
for the morphism (5.21). Consider the composition morphism

j : Zq(X,m)0 → Zq(X, 0,m)0 → Zq
A×A(X,m)0.

The composition of morphisms Zq(X,m)0
j−→ Zq

A×A(X,m)0
κ−→ Zq(X,m)0 is the

identity. Hence, it is enough to see that j is a quasi-isomorphism. Consider
the 1st quadrant spectral sequence with

E1
n,m = Hm(Zq(X,n, ∗)0).

We will see that if n ≥ 1, E1
n,m = 0. By the homotopy invariance of higher Chow

groups, the map

f : Zq(X ×�n, ∗)0

δ1
1 ···δ1

1−−−→ Zq(X, ∗)0

is a quasi-isomorphism. By Proposition 1.24, it induces a quasi-isomorphism

f : Zq(X ×�n, ∗)0 = NZq(X ×�n, ∗)0 → NZq(X, ∗)0

where the cubical structure on Zq(X, ∗)0 is the trivial one. Since for a trivial
cubical abelian group NZq(X, ∗)0 = 0, we see that

Hm(Zq(X,n, ∗)0) = 0, n > 0,

and hence

E1
n,m =

{
0 if n > 0,
CHq(X,m) if n = 0. �

It follows from the lemma that the product on the higher arithmetic Chow
groups is also represented by the following diagram of complexes
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Hp(X,n)0 ⊗Hq(Y,m)0

×

��

D2p−n
A (X, p)0 ⊗D2q−m

A (Y, q)0

•A

��

Zp(X,n)0 ⊗ Zq(Y,m)0

×

��

γ1

==zzzzzzzzz
D2p−n

A,Zp (X, p)0 ⊗D2q−m
A,Zq (Y, q)0

γ′
1

∼

ddJJJJJJJJJJ

ρ
88qqqqqqqqqqq

•p,q

��

ZD2p
log(X, p)n ⊗ ZD2q

log(X, q)m

i

ffMMMMMMMMMMM

∧

��

Hp+qA×A(X × Y, n+m)0 D2(p+q)−n−m
A×A (X × Y, p+ q)0

Zp+qA×A(X × Y, n+m)0

γ1

=={{{{{{{{
s(ip,qX,Y )2p+2q−n−m

0

γ′
1

ddIIIIIIIIII

ρ
88qqqqqqqqqqq

ZD
2(p+q)
log (X × Y, p+ q)n+m

i

ffMMMMMMMMMMM

Hp+qA×A(X × Y, n+m)00

i∼

OO

D2(p+q)−n−m
A×A (X × Y, p+ q)00

i∼

OO

Zp+qA×A(X × Y, n+m)00

i∼

OO

γ1

>>|||||||||
D2(p+q)−n−m

A×A,Zp,q
X,Y

(X × Y, p+ q)00

γ′
1

ddHHHHHHHHH

ρ

99rrrrrrrrrr

η

��

i∼

OO

ZD
2(p+q)
log (X × Y, p+ q)n+m

i

ffLLLLLLLLLLL

Hp+qA×A(X × Y, n+m)00

κ

��

D2(p+q)−n−m
A×A (X × Y, p+ q)00

κ

��

Zp+qA×A(X × Y, n+m)00

κ

��

γ1

==|||||||||
D2(p+q)−n−m

A×A,Zp+q (X × Y, p+ q)00

γ′
1

∼

ddIIIIIIIII

ρ
88rrrrrrrrrrr

κ

��

ZD
2(p+q)
log (X × Y, p+ q)n+m

i

ffMMMMMMMMMMM

Hp+q(X × Y, n+m)0 D2(p+q)−n−m
A (X × Y, p+ q)0

Zp+q(X × Y, n+m)0

γ1

=={{{{{{{{{
D2(p+q)−n−m

A,Zp+q (X × Y, p+ q)0

γ′
1

∼

ddIIIIIIIIII

ρ
88qqqqqqqqqq

ZD
2(p+q)
log (X × Y, p+ q)n+m

i

ffMMMMMMMMMMM

In the first set of vertical arrows of this diagram is where the product is defined.
In the second set of vertical rows we invert the quasi-isomorphisms that relate
the normalized complex and the refined normalized complex. Moreover, we also
invert the quasi-isomorphism analogous to (5.12). In the third set of vertical
arrows we just consider the change of supports Zp,qX,Y ⊂ Zp+q. We will denote the
map induced by this change of support by η. Finally in the last set of vertical
arrows we apply the morphisms κ induced by the identification �n×�m = �n+m.

Let Ẑp+q
A×A(X × Y, ∗)00 denote the simple of the diagram of the fourth row.

Hence, in the derived category of complexes, this product is described by the
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composition

s(Ẑp(X, ∗)0 ⊗ Ẑq(Y, ∗)0)
∪ // Ẑp,q

A×A(X × Y, ∗)0

Ẑp,q
A×A(X × Y, ∗)00

i

OO�
�
�

η // Ẑp+q
A×A(X × Y, ∗)00

κ

��

Ẑp+q(X × Y, ∗)0.

Note that the difference between the complexes Ẑp,q
A×A(X × Y, ∗)00 and

Ẑp+q
A×A(X × Y, ∗)00 lies on the change of supports Zp,qX,Y ⊂ Zp+q. This is indi-

cated by either two codimension superindices p, q in the first one or a unique
codimension superindex p+ q in the second.

We next use this description of the product in the higher arithmetic Chow
groups in order to prove its commutativity.

Recall that the map σn,m is defined by

�n+m = �m ×�n σn,m−−−→ �n ×�m = �n+m

(y1, . . . , ym, x1, . . . , xn) 7→ (x1, . . . , xn, y1, . . . , ym).

Let

σX,Y,n,m : Y ×X ×�m ×�n → X × Y ×�n ×�m

be the map σX,Y × σn,m.
We define a morphism of diagrams

Ẑp,qA×A(X × Y, ∗)0

σ∗
X,Y,�−−−−→ Ẑq,pA×A(Y ×X, ∗)0

as follows:

• Let σ∗X,Y,� : Zp+q
A×A(X × Y, ∗)0 → Zp+q

A×A(Y ×X, ∗)0 be the map sending

Z ∈ Zp+q(X × Y, n,m)0 to (−1)nmσ∗X,Y,n,m(Z) ∈ Zp+q(Y ×X,m, n)0.

The morphism σ∗X,Y,� : Hp+q
A×A(X × Y, ∗)0 → Hp+q

A×A(Y × X, ∗)0 is defined
analogously.
• Let σ∗X,Y,� : D∗A×A(X×Y, p+ q)0 → D∗A×A(Y ×X, p+ q)0 be the map that,

at the (∗,−n,−m) component, is

(−1)nmσ∗X,Y,n,m : τD∗log(X × Y ×�n×�m, p+ q)0 → τD∗log(Y ×X ×�m×�n, p+ q)0.

Observe that it is a cochain morphism.
• We define analogously the morphism σ∗X,Y,� : s(ip,qX,Y )∗0 → s(iq,pY,X)∗0.
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These morphisms commute with the morphisms γ1, γ
′
1 and ρ. Hence, they induce

a morphism of diagrams and therefore a morphism on the associated simple
complexes:

Ẑp,q
A×A(X × Y, ∗)0

σ∗
X,Y,�−−−−→ Ẑq,p

A×A(Y ×X, ∗)0.

Note that the morphism σ∗X,Y,� restricts to Ẑp,q
A×A(X × Y, ∗)00 and to

Ẑp+q
A×A(X × Y, ∗)00.

Lemma 5.26. The following diagram is commutative:

Ẑp,q
A×A(X × Y, ∗)0

σ∗
X,Y,�

��

Ẑp,q
A×A(X × Y, ∗)00

ioo η //

σ∗
X,Y,�

��

Ẑp+q
A×A(X × Y, ∗)00

σ∗
X,Y,�

��

Ẑq,p
A×A(Y ×X, ∗)0 Ẑq,p

A×A(Y ×X, ∗)00
ioo η // Ẑp+q

A×A(Y ×X, ∗)00.

Proof. The statement follows from the definitions. �

Lemma 5.27. The following diagram is commutative

s(Ẑp(X, ∗)0 ⊗ Ẑq(Y, ∗)0)

σ

��

∪ // Ẑp,q
A×A(X × Y, ∗)0

σ∗
X,Y,�

��

s(Ẑq(Y, ∗)0 ⊗ Ẑp(X, ∗)0)
∪ // Ẑq,p

A×A(Y ×X, ∗)0.

Proof. It follows from the definition that the morphism σ∗X,Y,� commutes with
the product × in Z∗(X, ∗)0 and in H∗(X, ∗)0. The fact that it commutes with •A
and •p,q is an easy computation. �

By Lemmas 5.26 and 5.27, we are left to see that the diagram

(5.28) Ẑp+q
A×A(X × Y, ∗)00

σ∗
X,Y,�

��

κ // Ẑp+q(X × Y, ∗)0

σ∗X,Y
��

Ẑp+q
A×A(Y ×X, ∗)00

κ // Ẑp+q(Y ×X, ∗)0

is commutative up to homotopy. We follow the ideas used by Levine, in [19],
§4, in order to prove the commutativity of the product on the higher algebraic
Chow groups. We will end up with an explicit homotopy for the commutativity
of diagram 5.28.

Remark 5.29. For any scheme X, consider the morphism

Ẑp
A×A(X, ∗)00

σ∗�−→ Ẑp
A×A(X, ∗)00
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induced by (−1)nmσ∗n,m at each component. Then, σ∗X,Y,� = σ∗X,Y σ
∗
� and hence,

the commutativity of the diagram (5.28) will follow from the commutativity (up
to homotopy) of the diagram

Ẑp
A×A(X, ∗)00

σ∗�

��

κ

,,XXXXXXXXXXXX

Ẑp(X, ∗)0.

Ẑp
A×A(X, ∗)00

κ

22ffffffffffff

Let Wn be the closed subvariety of �n+1 × P1 defined by the equation

(5.30) t1(1− x1)(1− xn+1) = t1 − t0,
where (t0 : t1) are the coordinates in P1 and (x1, . . . , xn+1) are the coordinates
in �n+1. Recall that we have identified �1 with the subset t0 6= t1 of P1, with
coordinate x = t0/t1. Then, there is an isomorphism Wn

∼= �n×�1. The inverse
of this isomorphism is given by

�n+1 ϕn−→ Wn

(x1, . . . , xn+1) 7→ (x1, . . . , xn+1, x1 + xn+1 − x1xn+1).

Consider the projection

πn : Wn → �n, (x1, . . . , xn+1, t) 7→ (x2, . . . , xn, t).

Let τ be the permutation

�n
τ−→ �n, (x1, . . . , xn) 7→ (x2, . . . , xn, x1).

Remark 5.31. Let σn,m be the map defined in (5.17). Observe that it is decom-
posed as σn,m = τ◦ m. . . ◦τ. Therefore, σ∗n,m = τ ∗◦ m. . . ◦τ ∗.

It is easy to check that the following identities are satisfied:

πnϕnδ
i
0 =

 id if i = 1,
δi−1

0 πn−1ϕn−1 if i = 2, . . . , n,
τ if i = n+ 1.

(5.32)

πnϕnδ
i
1 =

 δn1σ
n if i = 1,

δi−1
1 πn−1ϕn−1 if i = 2, . . . , n,
δn1σ

nτ if i = n+ 1.

Let WX
n be the pull-back of Wn to X ×�n. Then, the maps

πn : WX
n → X ×�n, and ϕn : X ×�n+1 → WX

n

are defined accordingly.

Proposition 5.33. Let X be a quasi-projective regular scheme over a field k.

(i) The scheme Wn is a flat regular scheme over �n.
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(ii) There is a well-defined map

Zp(X,n)
hn−→ Zp(X,n+ 1), Y 7→ ϕ∗nπ

∗
n(Y ).

Proof. See [19], Lemma 4.1. �

For every n ≥ 1, we define the morphisms

Hp(X,n)
hn−→ Hp(X,n+ 1),

τD∗log(X ×�n, p) hn−→ τD∗log(X ×�n+1, p),

τD∗log,Zp(X ×�n, p)
hn−→ τD∗log,Zp(X ×�n+1, p),

by hn = ϕ∗nπ
∗
n. By Proposition 5.33, (ii), these morphisms are well defined.

Lemma 5.34. Let α be an element of Zq(X,n)0, Hp(X,n)0, τD∗log,Zp(X×�n, p)0

or τD∗log(X ×�n, p)0. Then, the following equality is satisfied

δhn(α) +
n−1∑
i=1

(−1)ihn−1δ
0
i (α) = −α + (−1)n+1τ ∗(α).

Proof. By hypothesis, δ1
i (α) = 0 for all i = 1, . . . , n. Then, by the pull-back of

the equalities (5.32), we see that δ1
iϕ
∗
nπ
∗
n(α) = 0. Therefore, using (5.32),

δhn(α) =
n+1∑
i=1

∑
j=0,1

(−1)i+jδjiϕ
∗
nπ
∗
n(α) =

n+1∑
i=1

(−1)iδ0
iϕ
∗
nπ
∗
n(α)

= −α +
n∑
i=2

(−1)iϕ∗nπ
∗
n−1δ

0
i−1(α) + (−1)n−1τ ∗(α)

= −α−
n−1∑
i=1

(−1)ihn−1δ
0
i (α) + (−1)n+1τ ∗(α),

as desired. �

Proposition 5.35. Let X be an arithmetic variety over a field. Then the follow-
ing diagram is commutative up to homotopy.

ẐpA×A(X,n)00 κ
,,YYYYYYYYYYYY

σ∗�
��

Ẑp(X,n)0.

ẐpA×A(X,n)00
κ

22eeeeeeeeeeee
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Proof. We start by defining maps

Zp(X,n,m)00
Hn,m−−−→ Zp(X,n+m+ 1)0,

Hp(X,n,m)00
Hn,m−−−→ Hp(X,n+m+ 1)0,

τD∗log(X ×�n ×�m, p)00
Hn,m−−−→ τD∗log(X ×�n+m+1, p)0,

τD∗log,Zp(X ×�n ×�m, p)00
Hn,m−−−→ τD∗log,Zp(X ×�n+m+1, p)0.

By construction, these maps will commute with γ1, γ
′
1 and ρ. This will allow us

to define the homotopy for the commutativity of the diagram in the statement.
All the maps Hn,m will be defined in the same way. Thus, let B(X,n,m)00 de-

note either Zp(X,n,m)00,Hp(X,n,m)00, τD∗log(X×�n×�m, p)00, or τD∗log,Zp(X×
�n × �m, p)00. For the last two cases, B(X,n,m)00 is a cochain complex, while
for the first two cases, it is a group. Analogously, denote by B(X,n+m+1)0 the
groups/complexes that are the target of Hn,m. The map Hn,m will be a cochain
complex for the last two cases.

Let α ∈ B(X,n,m)00. Then, let Hn,m(α) ∈ B(X,n+m+ 1)0 be defined by

(5.36) Hn,m(α) =

{ ∑n−1
i=0 (−1)(m+i)(n+m−1)hn+m+1((τ ∗)m+i(α)), n 6= 0,

0 n = 0.

From the definition it follows that:

B If B(X,n,m)00 is τD∗log(X×�n×�m, p)00, or τD∗log,Zp(X×�n×�m, p)00,
then

dDHn,m(α) = Hn,mdD(α),

i.e. Hn,m is a cochain morphism.
B γ1Hn,m = Hn,mγ1, γ′1Hn,m = Hn,mγ

′
1 and ρHn,m = Hn,mρ.

Recall that in all these complexes,

δ′(α) = −δ0
1(α) ∈ B(X,n− 1,m)00,

δ′′(α) = −δ0
n+1(α) ∈ B(X,n,m− 1)00.

Lemma 5.37. For every α ∈ B(X,n,m)00 we have

δHn,m(α)−Hn−1,mδ
0
1(α)− (−1)nHn,m−1δ

0
n+1(α) = α− (−1)nmσ∗n,m(α).

Proof. If n = 0, since α = σ0,m(α) and H0,m(α) = 0 the equality is satisfied. For
simplicity, for every i = 0, . . . , n− 1, we denote

H i
n,m(α) = (−1)(m+i)(n+m−1)hn+m+1((τ ∗)m+i(α)) ∈ B(X,n+m+ 1)0.

An easy computation shows that

δ0
j τ
∗(α) =

{
τ ∗δ0

j−1(α) if j 6= 1,
δ0
n(α) if j = 1,
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and hence,

δ0
j (τ
∗)i(α) =

 (τ ∗)iδ0
j−i(α) if j > i,

(τ ∗)i−1δ0
n(α) if j = i,

(τ ∗)i−1δ0
n−i+j(α) if j < i.

Therefore,

δH i
n,m(α) =

n+m+1∑
j=1

(−1)j+(m+i)(n+m−1)δ0
jhn+m+1((τ ∗)m+i(α))

= (−1)1+(m+i)(n+m−1)(τ ∗)m+i(α) + (−1)(m+i+1)(n+m−1)(τ ∗)m+i+1(α)

+
n+m∑
j=2

(−1)j+(m+i)(n+m−1)hn+m(δ0
j−1(τ ∗)m+i(α)).

Recall that the only non-zero faces of α are δ0
1 and δ0

n+1. Therefore, from the
equalities (5.32), we see that the only non-zero faces are the faces corresponding
to the indices j = m + i + 2 and j = i + 2. In these cases, they take the values
(τ ∗)m+iδ0

1 and (τ ∗)m+i−1δ0
n+1 respectively. Therefore, if i 6= n− 1, we obtain

δH i
n,m(α) = −(−1)(m+i)(n+m−1)(τ ∗)m+i(Z)

+ (−1)(m+i+1)(n+m−1)(τ ∗)m+i+1(α)

+ (−1)(m+i)(n+m−2)hn+m((τ ∗)m+iδ0
1(α))

+ (−1)i+(m+i)(n+m−1)hn+m((τ ∗)m−1+iδ0
n+1(α)).

Observe that (−1)i+(m+i)(n+m−1) = (−1)(m+i−1)(n+m)+n. Therefore, the last sum-
mand in the previous equality is exactly

H i
n−1,m(δ0

1(α)) + (−1)nH i
n,m−1(δ0

n+1(α)).

If i = n− 1, then δ0
j−1(τ ∗)m+i(α) = 0, for j = 2, . . . , n−m. Therefore,

δHn−1
n,m (α) = (−1)1+(m+n−1)(n+m−1)(τ ∗)m+n−1(α)

+ (−1)(m+n)(n+m−1)(τ ∗)m+n(α)

+ (−1)n−1+(m+n−1)(n+m−1)hn+m((τ ∗)m−1+iδ0
n+1(α))

= −(−1)(m+n−1)(n+m−1)(τ ∗)m+n−1(α) + α

+ (−1)n+(m+n−2)(n+m)hn+m((τ ∗)m−1+iδ0
n+1(α)).

Finally, we have seen that

δHn,m(α) = −(−1)m(n+m−1)(τ ∗)m(α) +
n−2∑
i=0

H i
n−1,m(δ0

1(α))

+
n−1∑
i=0

(−1)nH i
n,m−1(δ0

n+1(α)) + α,
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and since (−1)m(n+m−1) = (−1)nm, we obtain the equality

δHn,m(α)−Hn−1,m(δ0
1(α))− (−1)nHn,m−1(δ0

n+1(α)) = α− (−1)nmσ∗n,m(α). �

Let

Zp
A×A(X, ∗)00

H−→ Zp(X, ∗+ 1)0, Hp
A×A(X, ∗)00

H−→ Hp(X, ∗+ 1)0,

be the maps which are Hn,m on the (n,m)-component. Let

D2p−∗
A×A,Zp(X, p)00

H−→ D2p−∗−1
A,Zp (X, p)0,

be the maps which are (−1)rHn,m on the (r,−n,−m)-component. Observe that
now

dDH = −HdD.
Let

H : Ẑp
A×A(X,n)00 → Ẑp(X,n+ 1)0

be defined by

H(Z, α0, α1, α2, α3) = (H(Z), H(α0), α1,−H(α2),−H(α3)).

Let x = (Z, α0, α1, α2, α3) ∈ Ẑp
A×A(X,n)00. Then,

dH(x) = (δH(Z), dsH(α0), dD(α1), γ1H(Z)− γ′1H(α0) + δH(α2),

ρH(α0) + dsH(α3)− α1)

Hd(x) = (Hδ(Z), Hds(α0), dD(α1),−Hγ1(Z) +Hγ′1(α0) +Hδ(α2),

−Hρ(α0) +Hds(α3) +H(α1)).

Observe that for α0 ∈ τDrlog,Zp(X ×�n ×�m, p)00, we have

Hds(α0) = HdD(α0) + (−1)rHδ(α0) = −dDH(α0) + (−1)rHδ(α0),

dsH(α0) = dDH(α0) + (−1)rδH(α0).

The same remark applies to α3 ∈ τDrlog(X × �n × �m, p)00. Moreover, since α1

equals zero in all degrees but 0 and H is the identity in degree zero, we have, by
Lemma 5.37,

dH(x) +Hd(x) = x− σ∗�(x). �

Corollary 5.38. The following diagram is commutative up to homotopy

Ẑp+q
A×A(X × Y, ∗)00

σ∗
X,Y,�

��

κ // Ẑp+q(X × Y, ∗)0

σ∗X,Y
��

Ẑp+q
A×A(Y ×X, ∗)00

κ // Ẑp+q(Y ×X, ∗)0

Proof. It follows from Proposition 5.35. �

Corollary 5.39. Let X, Y be arithmetic varieties.



56 J. I. BURGOS GIL AND E. FELIU

(i) Under the canonical isomorphism X × Y ∼= Y ×X, the pairing

ĈH
p
(X,n)⊗ ĈH

q
(Y,m)

∪−→ ĈH
p+q

(X × Y, n+m),

is graded commutative with respect to the degree n.
(ii) The internal pairing

ĈH
p
(X,n)⊗ ĈH

q
(X,m)

∪−→ ĈH
p+q

(X,n+m),

is graded commutative with respect to the degree n.

5.5. Associativity. We prove here that the product for the higher arithmetic
Chow groups is associative. First of all, observe that the product on Z∗(X, ∗)0

is strictly associative. Hence, all that remains is to study the associativity of the
product in the complexes with differential forms, except for ZD2p

log(X, p)∗, where
it is already associative. The key point will be Proposition 1.26.

Denote by h the homotopy for the associativity of the product in the Deligne
complex of differential forms of Proposition 1.26. Let X, Y, Z be complex alge-
braic manifolds. Then, the external product •A is associative, in the sense that
there is a commutative diagram up to homotopy:
(5.40)

DrA(X, p)0 ⊗DsA(Y, q)0 ⊗DtA(Z, l)0

•A⊗id

uujjjjjjjjjjjjjjj
id⊗•A

))TTTTTTTTTTTTTTT

Dr+sA (X × Y, p+ q)0 ⊗DtA(Z, l)0

•A ))SSSSSSSSSSSSSSS
DrA(X, p)0 ⊗Ds+tA (Y × Z, q + l)0

•Auukkkkkkkkkkkkkkk

Dr+s+tA (X × Y × Z, p+ q + l)0

This follows from the fact that the homotopy h is functorial (see [5]).

Proposition 5.41. Let X, Y, Z be complex algebraic manifolds. Then, there is a
commutative diagram, up to homotopy:

DrA,Zp(X, p)0 ⊗DsA,Zq(Y, q)0 ⊗DtA,Zl(Z, l)0

•A⊗id

vvmmmmmmmmmmmmm
id⊗•A

((RRRRRRRRRRRRR

Dr+sA,Zp+q(X × Y, p+ q)0 ⊗DtA,Zl(Z, l)0

•A ((QQQQQQQQQQQQQ
DrA,Zp(X, p)0 ⊗Ds+tA,Zq+l(Y × Z, q + l)0

•Avvmmmmmmmmmmmmm

Dr+s+tA,Zp+q+l(X × Y × Z, p+ q + l)0

Proof. In order to prove the proposition, we need to introduce some new com-
plexes, which are analogous to s(ip,qX,Y )∗, but with the three varieties X, Y, Z. Due
to the similarity, we will leave the details to the reader.
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We write �n,m,dX,Y,Z = X × Y × Z ×�n+m+d. Let

A∗ = D∗log(�n,m,dX,Y,Z \ Z
p
X,n, k)⊕D∗log(�n,m,dX,Y,Z \ Z

q
Y,m, k)⊕D∗log(�n,m,dX,Y,Z \ Z

l
Z,d, k),

and

B∗ = D∗log(�n,m,dX,Y,Z \Z
p,q
X,Y,n,m, k)⊕D∗log(�n,m,dX,Y,Z \Z

p,l
X,Z,n,d, k)⊕D∗log(�n,m,dX,Y,Z \Z

q,l
Y,Z,m,d, k),

and consider the sequence of morphisms of complexes

A∗
i−→ B∗

j−→ D∗log(�n,m,d \ Zp,q,lX,Y,Z , k).

By analogy with the definition of s(−jp,qX,Y (n,m))∗, denote by s(−jp,q,lX,Y,Z(n,m, d))∗ the
simple complex associated to this sequence of morphisms. Consider the morphism

D∗log(�n,m,dX,Y,Z , k)
ip,q,lX,Y,Z(n,m,d)
−−−−−−−−→ s(−jp,q,lX,Y,Z(n,m, d))∗

ω 7→ (ω, ω, ω, 0, 0, 0, 0).

Observe that for every n,m, d, the simple of this morphism is a cochain complex. More-
over, considering the normalized complex associated to the cubical structure at every
component of s(ip,q,lX,Y,Z(·, ·, ·))∗, we obtain the cochain complex s(ip,q,lX,Y,Z)∗0 (analogous to
the construction of s(ip,qX,Y )∗0 in Remark 5.7).

Let D∗
A×A×A,Zp,q,lX,Y,Z

(X×Y×Z, p+ q+ l)0 be the complex analogous to D∗A×A,Zp,qX,Y
(X×Y,

p+q)0, but with the cartesian product of 3 varieties. It is the simple complex associated
to the analogous 4-iterated complex (see Remark 5.7).

Observe that there is a quasi-isomorphism

D∗A×A×A,Zp,q,lX,Y,Z

(X × Y × Z, p+ q + l)0
∼−→ s(ip,q,lX,Y,Z)∗0.

We define a pairing

s(ip,qX,Y (n,m))r0 ⊗D
s,d
A,Zl(Z, l)0

•−→ s(ip,q,lX,Y,Z(n,m, d))r+s0

by

(a, (b, c), d) • (a′, b′) = (−1)(n+m)s(a • a′, (b • a′, c • a′, (−1)ra • b′),
(d • a′, (−1)r−1b • b′, (−1)r−1c • b′), (−1)r−2d • b′).

Define analogously a pairing

Dr,nA,Zp(X, p)0 ⊗ s(iq,lY,Z(m, d))s0
•−→ s(ip,q,lX,Y,Z(n,m, d))r+s0

by

(a, b) • (a′, (b′, c′), d′) = (−1)ns(a • a′, (b • a′, (−1)ra • b′, (−1)ra • c′),
((−1)r−1b • b′, (−1)r−1b • c′, a • d′), b • d′).

It is easy to check that these two morphisms are chain morphisms.
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Lemma 5.42. The diagram
(5.43)

DrA,Zp(X, p)0 ⊗DsA,Zq(Y, q)0 ⊗DtA,Zl(Z, l)0

•p,q⊗id

uujjjjjjjjjjjjjjj
id⊗•A

))TTTTTTTTTTTTTTT

s(ip,qX,Y )r+s0 ⊗DtA,Zl(Z, l)0

• ))TTTTTTTTTTTTTTT
DrA,Zp(X, p)0 ⊗ s(iq,lY,Z)s+t0

•uujjjjjjjjjjjjjjj

s(ip,q,lX,Y,Z)r+s+t0

is commutative up to homotopy.

Proof. Let (ω1, g1) ∈ τDrlog,Zp(X×�n, p)0, (ω2, g2) ∈ τDslog,Zq(Y ×�m, q)0, and (ω3, g3)
∈ τDt

log,Zl(Z ×�
d, l)0. Then, the composition of the morphisms on the left side of the

diagram is

(−1)(n+m)t+ns((ω1 • ω2) • ω3, ((g1 • ω2) • ω3, (−1)r(ω1 • g2) • ω3,

(−1)r+s(ω1 • ω2) • g3), ((−1)r−1(g1 • g2) • ω3, (−1)r+s−1(g1 • ω2) • g3,

(−1)s−1(ω1 • g2) • g3), (−1)s−1(g1 • g2) • g3).

The composition of the morphisms on the right side of the diagram is

(−1)(n+m)t+ns(ω1 • (ω2 • ω3), (g1 • (ω2 • ω3), (−1)rω1 • (g2 • ω3),

(−1)r+sω1 • (ω2 • g3)), ((−1)r−1g1 • (g2 • ω3), (−1)r+s−1g1 • (ω2 • g3),

(−1)s−1ω1 • (g2 • g3)), (−1)s−1g1 • (g2 • g3)).

Then, the homotopy for the commutativity of the diagram is given by

Hn,m,d = (−1)(n+m)t+ns((h(ω1 ⊗ ω2 ⊗ ω3), h(g1 ⊗ ω2 ⊗ ω3),

(−1)rh(ω1 ⊗ g2 ⊗ ω3), (−1)r+sh(ω1 ⊗ ω2 ⊗ g3)),

((−1)r−1h(g1 ⊗ g2 ⊗ ω3), (−1)r+s−1h(g1 ⊗ ω2 ⊗ g3),

(−1)s−1h(ω1 ⊗ g2 ⊗ g3)), (−1)s−1h(g1 ⊗ g2 ⊗ g3)).

Observe that it gives indeed a homotopy, since H and δ commute. �
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Finally, the claim of Proposition 5.41 follows from the commutative diagram (all
squares and triangles, apart from the one marked with # are strictly commutative),

DrA,Zp(X, p)0 ⊗DsA,Zq(Y, q)0 ⊗DtA,Zl(Z, l)0

•p,q⊗idttiiiiiiiii
id⊗•q,l**UUUUUUUUU

s(ip,qX,Y )r+s0 ⊗DtA,Zl(Z, l)0

• **UUUUUUUUU
# DrA,Zp(X, p)0 ⊗ s(iq,lY,Z)s+t0

•ttiiiiiiii

s(ip,q,lX,Y,Z)r+s+t0

Dr+sA×A,Zp,q(X × Y, p+ q)0 ⊗DtA,Zl(Z, l)0

∼

OO

��

DrA,Zp(X, p)0 ⊗Ds+lA×A,Zq,t(Y × Z, q + l)0

∼

OO

��

s(ip,q,lX,Y,Z)r+s+t0

**UUUUUUUU
ttiiiiiiii

s(ip+q,lX×Y,Z)r+s+t0 s(ip,q+lX,Y×Z)r+s+t0

Dr+s+tA×A×A,Zp,q,l(X × Y × Z, p+ q + l)0

44iiiiiiii
jjUUUUUUUU

∼

OO

κ

��

κ
**UUUUUUUUκ

ttiiiiiiii

Dr+s+tA×A,Zp+q,l(X × Y × Z, p+ q + l)0

κ
**UUUUUUUU

∼

OO

Dr+s+tA×A,Zp,q+l(X × Y × Z, p+ q + l)0

κttiiiiiiii

∼

OO

Dr+s+tA,Zp+q+l(X × Y × Z, p+ q + l)0. �

Remark 5.44. Observe that the homotopy constructed in the proof of Proposi-
tion 5.41 has no component in maximal degree, that is, in D2p+2q+2l

A,Zp+q+l (X×Y ×Z,
p+ q + l)0.

Corollary 5.45. Let X, Y, Z be arithmetic varieties.

(i) Under the canonical isomorphism (X×Y )×Z ∼= X× (Y ×Z), the external
pairing

ĈH
p
(∗, n)⊗ ĈH

q
(∗,m)⊗ ∪−→ ĈH

p+q
(∗ × ∗, n+m),

is associative.
(ii) The internal pairing

ĈH
p
(X,n)⊗ ĈH

q
(X,m)

∪−→ ĈH
p+q

(X,n+m),

is associative.

Proof. It follows from (5.40) and Proposition 5.41, together with Remark 5.44
and the compatibility of the homotopies in (5.40) and Proposition 5.41. For
n = m = l = 0, the associativity follows from equality (1.27). �

Finally, we have proved the following theorem.
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Theorem 5.46. Let X be an arithmetic variety over an arithmetic field K. Then,

ĈH
∗
(X, ∗) :=

⊕
p≥0,n≥0

ĈH
p
(X,n)

is a commutative and associative ring with unity (graded commutative with respect
to the degree n and commutative with respect to the degree p). Moreover, the

morphism ĈH
∗
(X, ∗) ζ−→ CH∗(X, ∗), of Proposition 4.4, is a ring morphism.
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[9] J. I. Burgos Gil, J. Kramer, and U. Kühn, Cohomological arithmetic Chow rings, J. Inst.
Math. Jussieu 6(1) (2007), 1–172.
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