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1. Introduction

For analyzing a random graph model for explaining a hierarchical clique struc-
ture of large scale Web networks, some statistical properties of random regular
trees have been used in [SUW10]. In this note, we give a detailed analysis of
these properties.

We consider random k-regular trees for any integer k ≥ 2 that will be fixed
throughout this paper. We consider a branching process that has been known
as Galton-Watson process. For a given parameter µ0, 0 < µ0 < 1, the process,
starting from an initial node, generates a tree in the following way:

(1) For each open node v,
(a) with probability pk = µ0/k, create k new open nodes, add them to v

as its child nodes, and change the status of v to closed,
(b) otherwise (i.e., with probability 1 − pk), change the status of v to

closed without adding any child nodes.
(2) Repeat the above until all nodes are closed.

Let T denote a tree generated by this process. The initial node is called a root

node and a node with no children is called a leaf node. For each node v of T , we
define its height h(v) and level l(v) inductively as follows.

h(v) =











0, if v is a root node, and

h(v′) + 1, otherwise

(where v′ is the parent node of v);

l(v) =











0, if v is a leaf node, and

max{l(v1), . . . , l(vk)} + 1, otherwise

(where v1, . . . , vk are child nodes of v).

The height of a tree is the maximum height of nodes in T . Note that the height
of a tree equals the level of the root node of the tree.

The height of T as well as the number of nodes with a given height h have been
studied in depth in the literature (see, e.g., [Agr74]). On the other hand, less is
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known about the number of nodes of given level l. The purpose of this note is
to show reasonable upper and lower bounds for the expected number of nodes of
given level l.

2. Analysis

Let T denote a random k-regular tree generated by the above process. In the
following, we assume that T is finite; thus, precisely speaking, probabilities and
expectations discussed below are all conditional on the fact that T is finite. Recall
that we assume that kpk = k(µ0/k) = µ0 < 1; on the other hand, it has been
known (see, e.g., [Fel68]) that T is finite with probability 1 in this case.

Fix any l ≥ 0. Let M(l) denote the expected number of nodes with level l in
T . Our goal is to give good upper and lower bounds for M(l). For this, we use
P (l), the probability that the root has level l, i.e. the depth of T is l.

We analyze M(l) by estimating all possible contributions to it. First, consider
the case that the root has level l. If the root has level l, other nodes cannot
have level l, so there is only one level l node in T . The root has level l with
probability P (l); hence, this contributes P (l) · 1 to M(l). Then consider the
other case. Since M(l) would be 0 for l ≥ 1 if the root were not expanded,
consider the situation that the root is expanded (which occurs with probability
pk). Let v1, . . . , vk denote the child nodes of the root and let T1, . . . , Tk denote the
trees rooted by these nodes. Then the contributions from T1, . . . , Tk are pk times
the expected number of level l nodes of those trees. Each Ti follows the same
probability distribution as T ; thus, we may use M(l) for the expected number of
level l nodes of Ti. Since these are all contributions, we have

M(l) = P (l) + pk · k · M(l),

and, since we assumed that the number of nodes on the tree T is finite, this
implies that

(1) M(l) =
P (l)

1 − pkk
=

P (l)

1 − µ0

.

Now our task is to estimate P (l), and we will discuss it in the rest of this
note. Let g(z) denote the probability generating function (p.g.f.) of the number
of children of a node in our process; that is, g(z) = 1 − pk + pkz

k. Note that
g′(1) = µ0 is the expected number of children of one node and that we assumed
µ0 < 1. The p.g.f. of the number of nodes with height i, denoted by Zi, is gi(z)
where g1(z) = g(z) and gj(z) = g(gj−1(z)) for j > 1 [Fel68]. However, it is hard
to obtain the closed-form of gi(z).
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Let q(l) denote the probability that the root has level at least l. We here note
some basic equations of P (l) and q(l).

P (l) = q(l) − q(l + 1) (for l ≥ 0)(2)

q(l) = pk

{

1 − (1 − q(l − 1))k
}

(for l ≥ 1)(3)

q(l) < µ0q(l − 1). (for l ≥ 1)(4)

Bound (4) is derived from (3) as follows:

q(l) = pk

{

1 − (1 − q(l − 1))k
}

< pk {1 − (1 − kq(l − 1))} = µ0q(l − 1).

For an upper bound of P (l), we have the following Lemma.

Lemma 1. We have P (0) = 1 − pk and P (1) = pk(1 − pk)
k = µ0

k
(1 − µ0

k
)k. For

any l > 1, we have

P (l) <
µl

0

k

(

1 −
µ0

k

)k

.

Proof. By definition, P (0) and P (1) are the probability that the root node has
level 0 and 1 respectively, so we immediately have P (0) = 1 − pk and P (1) =
pk(1 − pk)

k. For any 0 < x < y < 1, it is easy to show that

(1 − x)k − (1 − kx) < (1 − y)k − (1 − ky).

Using this with (2) and (3), we have

P (l) = q(l) − q(l + 1) = pk

[{

1 − (1 − q(l − 1))k
}

−
{

1 − (1 − q(l))k
}]

< pk [{1 − (1 − kq(l − 1))} − {1 − (1 − kq(l))}]

= pkk (q(l − 1) − q(l)) = µ0P (l − 1).

Hence we obtained P (l) < µl−1

0 P (1) =
µl

0

k
(1 − µ0

k
)k. �

For analyzing a lower bound of P (l), we need both upper and lower bounds of
q(l). An upper bound is derived inductively from (4). Noting that q(1) = pk = µ0

k
,

we have

(5) q(l) <
µl

0

k
.

For showing a lower bound of q(l), we make use of facts that have been shown
in the literature. Note first that q(l) satisfies the following relationships with the
p.g.f. gl(z):

1 − q(l) = Pr[ the level of the root node < l ]

= Pr[ the number of nodes with height l is 0 ]

= Pr[ Zl = 0 ] = gl(0).
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However, as mentioned before, the closed-form of gl(z) is hard to obtain. In
[Agr74], Agresti used a fractional linear generating function (f.l.g.f.) to obtain
good upper/lower bounds of gl(z). We follow their analysis and obtain the fol-
lowing lower bound.

Lemma 2. For any l ≥ 1, we have

q(l) >
µl

0

k
(1 − µ0).

Proof. For any p.g.f. g(z), let U(z) be any p.g.f. satisfying g(z) ≤ U(z) for
0 ≤ z ≤ 1. We first recall the following fact shown by Seneta (Lemma A of
[Sen67]).

Fact 1. For any l ≥ 1, and for any 0 ≤ z ≤ 1, we have

gl(z) ≤ Ul(z),

where Ul is defined inductively by Ul(z) = U(Ul−1(z)) and U1(z) = U(z).

Proof. Since Ul(z) is a p.g.f., it is an increasing function; also since g(z) is a
p.g.f., it satisfies 0 ≤ g(z) ≤ 1 for any 0 ≤ z ≤ 1. Thus we have

gl(z) = gl−1(g(z))

≤ Ul−1(g(z)) (by induction)

≤ Ul−1(U(z)) (Ul−1(z) is increasing)

= Ul(z). �(Fact 1)

Thus, by using some appropriate U(z), we can give the following lower bound
of q(l):

1 − q(l) = Pr[ the level of the root < l ]

= Pr[ the number of nodes with height l is 0 ]

= gl(0) ≤ Ul(0).(6)

For U(z), we use the following fractional linear generating function (f.l.g.f.)
introduced by Agresti ([Agr74], Lemma 3 (i)).

Fact 2. Define U(z) by

U(z) = 1 − pk +
pkz

k − (k − 1)z
.

Then, U(z) satisfies g(z) ≤ U(z) for any 0 ≤ z ≤ 1.

Proof. By definition of g(z) and U(z), it suffices to show

g(z) = 1 − pk + pkz
k ≤ 1 − pk +

pkz

k − (k − 1)z

for all z, 0 ≤ z ≤ 1. This holds if and only if

t(z) = 1 − kzk−1 + (k − 1)zk = 1 − zk − k(1 − z)zk−1 ≥ 0
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for all z, 0 ≤ z ≤ 1. Note that t(1) = 0 and that

t′(z) = −kzk−1 − k(k − 1)zk−2(1 − z) + kzk−1

= −k(k − 1)zk−2(1 − z) ≤ 0

for all z, 0 ≤ z ≤ 1. Hence, t(z) ≥ 0 for 0 ≤ z ≤ 1. � (Fact 2)

Since U(z) is a f.l.g.f., we can obtain the closed form of Ul(z), the lth iterate
of U(z), which is stated as follows (see Appendix for its derivation):

Ul(z) = 1 +
µl

0(1 − µ0)(z − 1)

(k − 1)
(

µl
0 − 1

)

z +
(

k − µ0 − (k − 1)µl
0

) .

Thus from (6) it follows

1 − q(l) ≤ Ul(0) = 1 −
µl

0(1 − µ0)

k − µ0 − (k − 1)µl
0

< 1 −
µl

0(1 − µ0)

k
,

and hence

q(l) >
µl

0

k
(1 − µ0). �(Lemma 2)

By (5) and Lemma 2, q(l) can be represented as

q(l) =
µl

0

k
(1 − µ0) + ǫl,

where 0 < ǫl <
µl+1

0

k
. Now by (4), we have

µl+1

0

k
(1 − µ0) + ǫl+1 = q(l + 1) < µ0q(l) = µ0

(

µl
0

k
(1 − µ0) + ǫl

)

.

Hence we have ǫl+1 < µ0ǫl < ǫl, from which it follows ǫl − ǫl+1 > 0. Thus, we
have

ǫl − ǫl+1 = q(l) − q(l + 1) −

{

µl
0

k
(1 − µ0) −

µl+1

0

k
(1 − µ0)

}

> 0.

From this bound, we obtain the following lower bound of P (l):

P (l) = q(l) − q(l + 1) >

{

µl
0

k
(1 − µ0) −

µl+1

0

k
(1 − µ0)

}

=
µl

0

k
(1 − µ0)

2.

Then from this bound and Lemma 1, we obtain the following upper and lower
bound of P (l):

µl
0

k
(1 − µ0)

2 < P (l) <
µl

0

k

(

1 −
µ0

k

)k

.
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We now obtained both upper and lower bounds of P (l), using them we have

µl
0

k
(1 − µ0) < M(l) <

µl
0

k

(

1 −
µ0

k

)k 1

1 − µ0

<
µl

0

k

1

1 − µ0

.

From this, the following Theorem is derived.

Theorem 3. Let C1 = 1 − µ0 and C2 = 1

1−µ0
. Then for any l ≥ 0, we have

C1µ
l
0

1

k
< M(l) < C2µ

l
0

1

k
.

3. Concluding remarks

In this note, we discuss a branching process and give detail analysis for the
expected number of nodes with level l. We focus on the special p.g.f. g(z) =
1 − pk + pkz

k. Many detailed analysis of P (l) and q(l) of other p.g.f. were given
in the literature, e.g., [Fel68, AN72, Har63], so we can apply these analysis to
Equation 1, and obtain the expected number of nodes with level l.
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Appendix

We here derive the lth iteration of U(z). Let us recall our definition of U(z),
that is,

U(z) = 1 − pk +
pkz

k − (k − 1)z
=

(k − 1 − µ0)z − (k − µ0)

(k − 1)z − k
.

Also recall that its lth iteration Ul(z) is defined inductivey by Ul(z) = U(Ul−1(z))
for l > 1 and U1(z) = U(z).

To derive Ul(z), we use a linear function L(z)=az+b and f(z)=L−1 (U(L(z))).
Due to the following lemma, for evaluating Ul(z), it suffices to get good a and b
such that fl(z) is easily calculated.
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Lemma 4.

Ul(z) = L(fl(L
−1(z))).

Proof. By f(z) = L−1 (U(L(z))), we have U(z) = L(f(L−1(z))). Then we prove
the lemma by induction. We already have it for l = 1. Let us assume that
Ul(z) = L(fl(L

−1(z))). Then we have

Ul+1(z) = U(Ul(z)) = L(f(L−1(Ul(z))))

= L(f(L−1(L(fl(L
−1(z)))))) = L(f(fl(L

−1(z))))

= L(fl+1(L
−1(z))). �

Let a = 1−µ0

k−1
and b = 1; then we have

f(z) = L−1 (U(L(z))) =
1

a
(U(az + 1) − 1)

=
a(k − 1 − µ0)z + (k − 1 − µ0) − (k − µ0) − {a(k − 1)z + (k − 1) − k}

a {a(k − 1)z + (k − 1) − k}

=
a(k − 1 − µ0)z − 1 − a(k − 1)z + 1

a {a(k − 1)z − 1}

=
−µ0z

a(k − 1)z − 1
=

−µ0z

(1 − µ0)z − 1
(by a = 1−µ0

k−1
)

=
z

(

1 − 1

µ0

)

z + 1

µ0

.

Lemma 5. Let K = 1

µ0
. Then we have

fl(z) =
z

K l + (1 − K l) z
.

Proof. For l = 1, we have

f1(z) =
z

1

µ0
+

(

1 − 1

µ0

)

z
=

z

K + (1 − K) z
,

and the lemma holds. For l ≥ 1, we prove by induction as follows:

fl+1(z) =
fl(z)

K + (1 − K) fl(z)
=

z

Kl+(1−Kl)z

K + (1 − K) z

Kl+(1−Kl)z

=
z

K l+1 + (1 − K l)Kz + (1 − K)z
=

z

K l+1 + (1 − K l+1) z
. �

We now have the closed form of fl(z). That is,

fl(z) =
z

K l + (1 − K l) z
=

z
(

1

µ0

)l

+

(

1 −
(

1

µ0

)l
)

z

=
µl

0
(

1−z
z

)

+ µl
0

.
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By using Lemma 4, we obtain the closed form of Ul(z) as follows:

Ul(z) = L(fl(L
−1(z))) = a

(

fl

(

z − 1

a

))

+ 1

= a
µl

0
(

a+1−z
z−1

)

+ µl
0

+ 1

= 1 +
aµl

0z − aµl
0

(

µl
0 − 1

)

z +
(

a + 1 − µl
0

)

= 1 +
µl

0(1 − µ0)(z − 1)

(k − 1)
(

µl
0 − 1

)

z +
(

k − µ0 − (k − 1)µl
0

) .
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