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1. INTRODUCTION

For analyzing a random graph model for explaining a hierarchical clique struc-
ture of large scale Web networks, some statistical properties of random regular
trees have been used in [SUW10]. In this note, we give a detailed analysis of
these properties.

We consider random k-regular trees for any integer k& > 2 that will be fixed
throughout this paper. We consider a branching process that has been known
as Galton-Watson process. For a given parameter pg, 0 < po < 1, the process,
starting from an initial node, generates a tree in the following way:

(1) For each open node v,
(a) with probability py = po/k, create k new open nodes, add them to v
as its child nodes, and change the status of v to closed,
(b) otherwise (i.e., with probability 1 — p), change the status of v to
closed without adding any child nodes.
(2) Repeat the above until all nodes are closed.

Let T' denote a tree generated by this process. The initial node is called a root
node and a node with no children is called a leaf node. For each node v of T, we
define its height h(v) and level [(v) inductively as follows.

( . .
0, if v is a root node, and

h(v) = ¢ h(v')+1, otherwise

\ (where v’ is the parent node of v);

e

0, if v is a leaf node, and
l(v) = {max{l(v1),...,l(vx)} +1, otherwise
\ (where vy, ..., v are child nodes of v).

The height of a tree is the maximum height of nodes in 7. Note that the height
of a tree equals the level of the root node of the tree.

The height of T" as well as the number of nodes with a given height h have been
studied in depth in the literature (see, e.g., [Agr74]). On the other hand, less is
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known about the number of nodes of given level [. The purpose of this note is
to show reasonable upper and lower bounds for the expected number of nodes of
given level .

2. ANALYSIS

Let T denote a random k-regular tree generated by the above process. In the
following, we assume that 7' is finite; thus, precisely speaking, probabilities and
expectations discussed below are all conditional on the fact that 7" is finite. Recall
that we assume that kp, = k(po/k) = po < 1; on the other hand, it has been
known (see, e.g., [Fel68]) that T is finite with probability 1 in this case.

Fix any [ > 0. Let M(l) denote the expected number of nodes with level [ in
T. Our goal is to give good upper and lower bounds for M((). For this, we use
P(1), the probability that the root has level [, i.e. the depth of T is .

We analyze M(I) by estimating all possible contributions to it. First, consider
the case that the root has level [. If the root has level [, other nodes cannot
have level [, so there is only one level [ node in T'. The root has level [ with
probability P(l); hence, this contributes P(l) - 1 to M(l). Then consider the
other case. Since M(l) would be 0 for [ > 1 if the root were not expanded,
consider the situation that the root is expanded (which occurs with probability
pr). Let vy,. .., v denote the child nodes of the root and let 773, . . ., T} denote the
trees rooted by these nodes. Then the contributions from 71, . .., T} are p; times
the expected number of level | nodes of those trees. Each T; follows the same
probability distribution as T'; thus, we may use M (l) for the expected number of
level [ nodes of Tj. Since these are all contributions, we have

M(l) = P(l) +pr - k- M(1),

and, since we assumed that the number of nodes on the tree T is finite, this
implies that

. MO =

Now our task is to estimate P(l), and we will discuss it in the rest of this
note. Let ¢g(z) denote the probability generating function (p.g.f.) of the number
of children of a node in our process; that is, g(z) = 1 — p + pp2*. Note that
g'(1) = po is the expected number of children of one node and that we assumed
to < 1. The p.g.f. of the number of nodes with height ¢, denoted by Z;, is g;(2)
where ¢1(2) = g(2) and g;(z) = g(g;—1(2)) for j > 1 [Fel68]. However, it is hard
to obtain the closed-form of g;(z).
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Let q(1) denote the probability that the root has level at least [. We here note
some basic equations of P () and ¢(l).

(2) P(l) = q(l) —q(l+1) (for 1 =>0)
(3) o) = pk{l—(l—q(l—l))k} (for | > 1)
(1) al) < pogl—1). (fori>1)

Bound (4) is derived from (3) as follows:

a() = pe {1 = (1= g = 1))} < {1 = (1 = kq(l = 1)} = puog(l — 1)
For an upper bound of P(l), we have the following Lemma.

Lemma 1. We have P(0) = 1 — p; and P(1) = pi(1 — p)¥ = 52(1 — £2)*. For

any | > 1, we have
l k
Mo( Ho
Ply<=—(1—=) .
=% ©)

Proof. By definition, P(0) and P(1) are the probability that the root node has
level 0 and 1 respectively, so we immediately have P(0) = 1 — p, and P(1) =
pe(1 —pp)*. For any 0 < o < y < 1, it is easy to show that

(1= ) = (1= k) < (1 - ) — (1 - ky).

Using this with (2) and (3), we have

Pl) = o) —q+1) =pi [{1- (1= g = 1))} = {1- (1= q@)"}]
< pel{1 = (1= kgl = 1)} = {1 = (1 = kg(1))}]
= pik (gl —1) = q() = poP (L — 1)

Hence we obtained P(I) < p'P(1) = i—é(l — )k D

For analyzing a lower bound of P(l), we need both upper and lower bounds of
q(1). Anupper bound is derived inductively from (4). Noting that ¢(1) = p, = 52,
we have

5) o) <o

For showing a lower bound of ¢(I), we make use of facts that have been shown
in the literature. Note first that (1) satisfies the following relationships with the

p.gf gi(2):
1 —q(l) = Pr[the level of the root node <[]
Pr[the number of nodes with height [ is 0]
= Pr[Z,=0] = g(0).
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However, as mentioned before, the closed-form of ¢;(z) is hard to obtain. In
[Agr74], Agresti used a fractional linear generating function (f.l.g.f.) to obtain
good upper/lower bounds of ¢;(z). We follow their analysis and obtain the fol-
lowing lower bound.

Lemma 2. For any l > 1, we have

olt) > 11— ).

Proof. For any p.g.f. g(2), let U(z) be any p.g.f. satisfying ¢g(z) < U(z) for
0 < z < 1. We first recall the following fact shown by Seneta (Lemma A of
[Sen67]).

Fact 1. For anyl > 1, and for any 0 < z <1, we have

91(z) < Ui(2),
where Uy is defined inductively by Uj(z) = U(Uj_1(2)) and Uy (z) = U(2).

Proof. Since U)(z) is a p.g.f., it is an increasing function; also since g(z) is a
p.g.f., it satisfies 0 < g(z) < 1 for any 0 < z < 1. Thus we have

a(z) = gi-1(9(2))
< U;—1(g(2)) (by induction)
< U1(U(2)) (U1(z) is increasing)

Ui(2). O(Fact 1)

Thus, by using some appropriate U(z), we can give the following lower bound
of q(1):

1 —q(l) = Pr[the level of the root <[]
= Pr[the number of nodes with height [ is 0]

(6) = qi(0) < U,(0).

For U(z), we use the following fractional linear generating function (f.l.g.f.)
introduced by Agresti ([Agr74], Lemma 3 (i)).
Fact 2. Define U(z) by

Prz

k—(k—1)z
Then, U(z) satisfies g(z) < U(z) for any 0 < z < 1.

Proof. By definition of ¢g(z) and U(z), it suffices to show
Diz

—1- Pl —
9(2) e L Sy

for all z, 0 < z < 1. This holds if and only if
t(z)=1—k '+ (k—1)"=1-2"—k(1-2)21>0
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for all z, 0 < z < 1. Note that #(1) = 0 and that

t(2) = —k2"'—k(k—1)2"2(1 — 2) + k2!
= —k(k-1)2"21-2)<0
for all z, 0 < z < 1. Hence, t(z) >0 for 0 < z < 1. O (Fact 2)

Since U(z) is a fl.g.f., we can obtain the closed form of U;(z), the [th iterate
of U(z), which is stated as follows (see Appendix for its derivation):
po(1— po) (2 — 1)
(k—1) (b — 1) 2+ (k = po — (k — 1)pp)
Thus from (6) it follows

Ul(Z) =1+

g1 = pao)
k — o — (k — 1)pug
f1o(1 — po)
k: )

1—q(l) < U0) =1

< 1-—

and hence
!
Ho
l)>—
o) > =
By (5) and Lemma 2, ¢(I) can be represented as

(1 — po)- O(Lemma 2)

I
q(l) = =2(1 = po) + &,

k
where 0 < ¢ < “é}:l. Now by (4), we have
I+1 l
B0 o)+ s =gl + 1) < gD = i (4200 ) )

Hence we have €1 < poe < €, from which it follows ¢, — ¢; > 0. Thus, we
have

I pp
a—éer1=ql)—ql+1)— {?0(1 — fig) — 07(1 - Mo)} > 0.

From this bound, we obtain the following lower bound of P(I):

l +1 l
PO =)~ gt + 1) > {20 )~ 1= ) | = 21— o

Then from this bound and Lemma 1, we obtain the following upper and lower

bound of P(l):

l l k
Ho . 2 Ho N Ho
" (1—pp)* < P(l) < ", <1 ” ) :
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We now obtained both upper and lower bounds of P(l), using them we have

l l k 1 l 1
Ho Ho < NO) Ho
—=(1 - M —=(1-= = )

From this, the following Theorem is derived.

Theorem 3. Let Cy =1 — pg and Cy = ﬁ Then for any | > 0, we have
1

1
CluéE < M(l) < Cg/léE

3. CONCLUDING REMARKS

In this note, we discuss a branching process and give detail analysis for the
expected number of nodes with level I. We focus on the special p.g.f. g(z) =
1 — pr + prz®. Many detailed analysis of P(I) and ¢(I) of other p.g.f. were given
in the literature, e.g., [Fel68, ANT2, Har63], so we can apply these analysis to
Equation 1, and obtain the expected number of nodes with level [.

REFERENCES

[Agr74] Alan Agresti, Bounds on the extinction time distribution of a branching process,
Advances in Applied Probability, 6(2):322-335, 1974.

[AN72] Krishna B. Athreya and Peter E. Ney, Branching Processes, Springer-Verlag, Berlin,
Heidelberg, 1972.

[Fel68]  William Feller, An Introduction to Probability Theory and Its Applications, Wiley, 3
edition, January 1968.

[Har63] Theodore E. Harris, The Theory of Branching Processes, Springer-Verlag, Berlin,
Heidelberg, 1963.

[Sen67] E Seneta, On the transient behavior of a Poisson branching process, Journal of the
Australian Mathematical Society, 7:465-480, 1967.

[SUW10] Takeya Shigezumi, Yushi Uno, and Osamu Watanabe, A new model for a scale-free
hierarchical structure of isolated cliques, in Proc. of Workshop on Algorithms and
Computation (WALCOM’10), LNCS, 2010, to appear.

APPENDIX

We here derive the [th iteration of U(z). Let us recall our definition of U(z),
that is,

PrZ _ (k=1—po)z — (k — o)
E—(k—1)z (k—1)z—k '

Also recall that its Ith iteration U;(z) is defined inductivey by U;(2) = U(U;_1(2))
for i > 1 and Uy(z) = U(2).

To derive Uj(z), we use a linear function L(z)=az+b and f(z)=L"' (U(L(z2))).
Due to the following lemma, for evaluating U,(z), it suffices to get good a and b
such that f;(z) is easily calculated.

Ulz)=1—pp+
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Lemma 4.
Un(z) = LIA(L™(2)))-
Proof. By f(z) = L' (U(L(z))), we have U(z) = L(f(L"*(2))). Then we prove
the lemma by induction. We already have it for [ = 1. Let us assume that
Ui(z) = L(fi(L7%(2))). Then we have
Una(z) = U(UW(2)) = L(F(L 7 (Ui(2))))
= L(F(L7HLULTH(2)))) = LF(A(L7(2))))
= L(fir1(L7'(2))). 0

Let a = 1];"10 and b = 1; then we have

f(2) = L7 (U(L(E) =+ (Ulaz +1)~ 1)

alk —1—po)z + (k=1 —po) — (k — po) — {alk — 1)z + (k= 1) — k}
a{a(k —1)z+ (k—1) -k}
alk—1—po)z—1—alk—1)z+1
a{a(k —1)z —1}

— oz —Hoz 1—
= = by a = =to
alk—1z—-1 (1 —pg)z—1 (by a =)
z

1 1

Lemma 5. Let K = i Then we have

fl(z) = Kl—l-(l—Kl)Z.

Proof. For [ = 1, we have
z z
fi(z) = = ;
1+(1_L)Z K+(1-K)z

Ho Ko

and the lemma holds. For [ > 1, we prove by induction as follows:

fi(2) B Kl+(1Zle)z

K+(1—K)fl(z)_K+(1—K)m

z z
T K (1-K)Kz+(1-K)z: KA+ (1-KH)z

We now have the closed form of f;(z). That is,

frr(z) =

z Z Ho

TR L ),
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By using Lemma 4, we obtain the closed form of U;(z) as follows:

U(z) = LU () =a (fz ( - 1)) 1

a

!
Ho
= ar—— +1
()
! !

ajhz — app

— 1+
(h—1)z+ (a+1—ph)

— 14 Mlo(l—,uo)(Z—l)

(k—1) (uh—1) 24 (k — po — (k — D)ph)
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