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ABSTRACT. Let {X1(t)}0≤t≤1 and {X2(t)}0≤t≤1 be two independent continuous
centered Gaussian processes with covariance functions R1 and R2. This paper shows
that if the covariance functions are of finite p-variation and q-variation respectively
and such that p−1 + q−1 > 1, then the Lévy area can be defined as a double Wiener–
Itò integral with respect to an isonormal Gaussian process induced by X1 and X2.
Moreover, some properties of the characteristic function of that generalised Lévy area
are studied.

1. INTRODUCTION

Let {W1(t) | 0 ≤ t ≤ 1} and {W2(t) | 0 ≤ t ≤ 1} be two independent stan-
dard Wiener processes defined in a probability space (Ω,F , P ), and let A be the area
included by the curve

x = W1(t) , y = W2(t) 0 ≤ t ≤ 1

and its chord. This random variable was first introduced by Lévy in [8], where it is
described by means of stochastic integrals as

A =

∫ 1

0

W1(t)dW2(t)−
∫ 1

0

W2(t)dW1(t) .

Lévy [8] also computed its characteristic function, which is

(1) ϕ(t) := E[eitA] =
1

cosh(t)
, t ∈ R .

It is easy to show that A has the law of an element of the homogeneous second
Wiener chaos generated by a Brownian motion. This can be proved directly due to the
fact that the elements of the homogeneous second Wiener chaos have a very particular
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characteristic function (see Janson [7, ch. 6]), and one can realize that (1) has this form
thanks to the factorisation

(2) cosh(z) =
∏
n≥0

(
1 +

4z2

π2(2n+ 1)2

)
=
∏
n∈Z

′
(1− 2izαn)1/2 eizαn ,

where αn = (π(2n + 1))−1 and
∏′

means that each factor is repeated twice. Alter-
natively, also from (2), the law of A can be given as the law of a double Wiener–Itô
integral

IB2 (f) :=

∫∫
[0,1]2

f(s, t)dB(s)dB(t)

for an arbitrary Brownian motion B = {Bt | t ≥ 0}, where the kernel f is obtained in
the following way: consider an orthonormal basis of L2([0, 1]), which for convenience
we write as {φn, ψn | n ∈ Z}, and define

f(s, t) =
∑
n∈Z

αnφn(s)φn(t) +
∑
n∈Z

αnψn(s)ψn(t) .

Then

IB2 (f) =
∑
n∈Z

2αnH2(IB1 (φn)) +
∑
n∈Z

2αnH2(IB1 (ψn)) ,

where IB1 (φ) =
∫ 1

0
φ(s)dB(s) and H2(x) = (x2 − 1)/2 is the Hermite polynomial of

order two. Observe that 2H2(IB1 (φn)) and 2H2(IB1 (ψn)) are all independent centered
χ2(1) random variables and thus A law

= IB2 (f).
However, it is more difficult to get a strong representation of A as a double Wiener–

Itô integral with respect to the original Brownian motions W1 and W2. To this end, it
is necessary to rely on the construction of multiple Itô–Wiener integrals for a general
white noise, see for instance Nualart [10, pages 8 and 14]. There, both Brownian
motions W1 and W2 are embedded in a Gaussian noise W on [0, 1] × {1, 2}. For
h ∈ L2([0, 1]×{1, 2}, dt⊗Card) ∼= L2([0, 1],R2), where Card is the counting measure,
we have ∫

[0,1]×{1,2}
hdW =

∫ 1

0

h(s, 1)dW1(s) +

∫ 1

0

h(s, 2)dW2(s) .

Moreover, for f ∈ L2(([0, 1]× {1, 2})2) symmetric,

I2(f) =
2∑

i,j=1

∫∫
[0,1]2

f((s, i), (t, j))dWi(s)dWj(t)(3)

= 2
2∑

i,j=1

∫ 1

0

∫ t

0

f((s, i), (t, j))dWi(s)dWj(t) ,
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see Nualart [10, p. 23]. For the sake of simplicity, we will indistinctly use fij(s, t) for
f((s, i), (t, j)) from now on. Define

(4) fLij(s, t) =


0, if i = j
1
2
(1T1(s, t)− 1T2(s, t)), if i = 1, j = 2

1
2
(1T2(s, t)− 1T1(s, t)), if i = 2, j = 1,

where 1C is the indicator function of the set C and

T1 := {(s, t) ∈ [0, 1]2 | s < t} , T2 := {(s, t) ∈ [0, 1]2 | s > t} .

Note that fL is symmetric, and from (3) and (1) it follows that A a.s.
= I2(fL). We will

refer to (4) as the Lévy kernel.
The aim of this paper is to extend the above strong construction in order to de-

fine the Lévy area for general Gaussian processes under minimal conditions of their
covariance functions, and to study its characteristic function. We will consider two in-
dependent continuous centered Gaussian processes {X1(t) | 0 ≤ t ≤ 1} and {X2(t) |
0 ≤ t ≤ 1} with (continuous) covariance functions R1 and R2 and we prove that if the
covariance functions are of finite p-variation and q-variation respectively and such that
p−1 + q−1 > 1, then the Lévy area can be defined as an element of the second Wiener
chaos generated by X1 and X2. Such a kind of results have been obtained (for the non-
antisymmetrized Lévy area

∫ 1

0
X1(t) dX2(t)) in the context of rough path analysis by

Fritz and Victoir, [5, 4], but, as far as we know, in such generality they are new for
classical Gaussian processes. Our results applied to two fractional Brownian motions
of Hurst parameterH andH ′ states that the Lévy area can be defined ifH+H ′ > 1/2.
In particular, if H = H ′, then the condition is H ∈ (1/4, 1) which is a known result
(see Neuenkirch et al. [9] and the references therein) but we present an alternative
point of view based in the Huang and Cambanis [6] approach to stochastic integra-
tion for Gaussian processes. Our results also extends the ones given by Bardina and
Tudor [1] where the integral

∫ 1

0
XH
t dXH′

t is defined using Malliavin calculus tech-
niques for H ∈ (0, 1) and H ′ > 1/2.

The paper is organized as follows. We first introduce the general framework of the
isonormal Gaussian processes, and following the scheme of Huang and Cambanis [6],
we associate an isonormal Gaussian process to a pair of independent Gaussian pro-
cesses. We also give here a definition of a generalised Lévy area. In the next section
we derive the conditions on the covariance functions so that fL generates a Lévy area.
As an example we explore what happens with two fractional Brownian motion (fBm)
with the same covariance function, and the case with two different covariance func-
tion. This later case allows us to let one of the processes be as irregular as desired,
that is no low bounds for its Hurst parameter is assumed, provided that the other one is
regular enough. Finally, we discuss about the representation of the characteristic func-
tion of a double Wiener-Itô integral in terms of a Carleman–Fredholm determinant,
that we apply to compute the characteristic function of A. Under a further condition of
symmetry over the stochastic processes we will show that the characteristic function
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of a generalised Lévy area has a Carleman-Fredholm determinant with symmetric
poles and even multiplicity.

2. ISONORMAL GAUSSIAN PROCESSES

The framework where (Gaussian) multiple integrals are defined is the one of isonor-
mal Gaussian processes. Main reference are Nualart [10], and Peccati and Taqqu [11].
The more general abstract context of Gaussian Hilbert spaces developed by Janson [7]
is also very useful and interesting.

Let H be a separable Hilbert space with inner product 〈·, ·〉H . An isonormal Gauss-
ian process {X(f) | f ∈ H} is a centered Gaussian family of random variables such
that E[X(f)X(g)] = 〈f, g〉H . It is well known that the construction of the multiple
Wiener–Itô integrals with respect to a Brownian motion can be transferred to isonor-
mal Gaussian processes; see Nualart [10, pages 7 and 8], or Peccati and Taqqu [11, ch.
8.4]. In that general setup, H⊗n (resp. H�n) denotes the nth (Hilbert) tensor power
of H (resp. the nth symmetric tensor power), and In(f) for f ∈ H�n its nth multiple
integral. For detailed constructions of that Hilbert spaces see Janson [7].

2.1. The isonormal Gaussian process associated with two Gaussian processes. In
this section we describe how two ordinary Gaussian process can be imbedded into an
isonormal Gaussian process. We extend Huang and Cambanis [6] approach, where
that construction was done for one Gaussian process. Let X1 = {X1(t) | t ∈ [0, 1]}
and X2 = {X2(t) | t ∈ [0, 1]} be two independent continuous centered Gaussian
processes , both starting at zero, with (continuous) covariance function R1(s, t) and
R2(s, t) respectively. Following Huang and Cambanis [6], let E denote the set of step
functions on [0, 1]

φ(t) =
n∑
i=1

ai1(ti,ti+1](t) ai ∈ R .

Associated with Ri, for i = 1, 2, we can construct the Hilbert space Hi which is the
completion of E under the inner product (with the convenient identifications):

〈φ1, φ2〉Hi :=

∫∫
[0,1]2

φ1(s)φ2(t)dRi(s, t) .

The above integral is defined so that

(5)
∫∫

(0,u]×(0,v]

dRi(s, t) = Ri(u, v) .

Remark 2.1. Due to the continuity of the covariance functions the limits of integration
in (5) might or might not be included in the integral without changing the result. For
instance ∫∫

[0,u]×[0,v]

dRi(s, t) =

∫∫
(0,u]×(0,v]

dRi(s, t) .
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In order to define an isonormal Gaussian process associated to both X1 and X2,
the set of appropriate elementary functions, E2, are the ones that can be written as
f(t, i) = δ1iφ1(t) + δ2iφ2(t) for φ1, φ2 ∈ E , where δij is th Kronecker’s delta. It is
clear that on E2 we can consider the inner product (with the convenient identifications):

〈f, g〉E2 = 〈f(·, 1), g(·, 1)〉H1 + 〈f(·, 2), g(·, 2)〉H2

=

∫∫
[0,1]2

f(s, 1)g(t, 1)dR1(s, t) +

∫∫
[0,1]2

f(s, 2)g(t, 2)dR2(s, t) .

Let us call H the Hilbert space which is the completion of E2 with the above inner
product. Next lemma characterises H; its proof is straightforward.

Lemma 2.2. Under the above notation H ∼= H1 ⊕H2, where H1 ⊕H2 is the Hilber-
tian direct sum of H1 and H2, that is the Hilbert space which consists in all ordered
pairs (x1, x2) ∈ H1 ×H2 equipped with the inner product 〈(x1, x2), (y1, y2)〉H1⊕H2 =
〈x1, y1〉H1 + 〈x2, y2〉H2 .

Now we are ready to construct the isonormal Gaussian process indexed by H which
will represent the 2-dimensional process {(X1(t), X2(t)) | t ∈ [0, 1]}. From the
independence of X1 and X2, it turns out that X : E2 → L2(Ω,F , P ) defined by
X(f) := X1(f(·, 1)) + X2(f(·, 2)) is an isometry which can be extended to H . Thus
X = {X(f) | f ∈ H} is an isonormal Gaussian process.

2.2. Generalised Lévy area. In the previous context, the generalised Lévy area will
be an element of the second Wiener chaos with respect to the process X . Therefore
we need to identify the elements of H⊗2. Note that

(6) H⊗2 ∼= H⊗2
1 ⊕ (H1 ⊗H2)⊕ (H2 ⊗H1)⊕H⊗2

2 ,

which gives a very appropriate interpretation of the elements f ∈ H⊗2 as 2 by 2
matrices with entries fij ∈ Hi ⊗ Hj for i, j = 1, 2. The above isometry also induces
the decomposition

〈f, g〉H⊗2 =
2∑

i,j=1

〈fij, gij〉Hi⊗Hj .

The double Itô–Wiener integral, I2(·), is an isometry between H�2 and the second
Wiener chaos. Therefore, the desirable definition of a generalised Lévy area would
be I2(fL) whenever fL ∈ H�2, where fL was defined in (4). Unfortunately this is
very difficult, if possible at all, to prove. We will circumvent this problem by finding
an element in H�2 which is indistinguishable from fL and to which we will apply the
isometry I2(·). In other words, we will say that a function f ∈ L2(([0, 1] × {1, 2})2)

(symmetric) belongs to H�2 as long as there is an element f̂ ∈ H�2 such that

〈f̂ , g〉H⊗2 =
2∑

i,j=1

∫∫∫∫
[0,1]4

fij(s, t)gij(u, v)dRi(s, u)dRj(t, v) ∀g ∈ E2 ,
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where the above integral is an iterated Riemann–Stieltjes integral, see Corollary 2.5
below. Note that we are not enlarging the space H�2 but renaming the element f̂ by
f , since under the inner product in H�2 they are indistinguishable. Thus the map I2

is well defined for f̂ and we put I2(f) := I2(f̂). This is a common procedure to ease
the identification of the elements of Hilbert spaces which have been constructed by
completion, see Huang and Cambanis [6]. Therefore we will define the generalised
Lévy area in the following way:

Definition 2.3 (Generalised Lévy area). We will say that I2(fL) is a generalised Lévy
area if there exists f̂L ∈ H�2 such that

(7) 〈f̂L, g〉H⊗2 =
2∑

i,j=1

∫∫∫∫
[0,1]4

fLij(s, u)gij(t, v)dRi(s, t)dRj(u, v) ,

for all step functions g ∈ E⊗2
2 . Then I2(fL) := I2(f̂L).

Another problem we have to face in order to make this definition tractable is that
we do not know how to compute the inner product 〈f̂L, g〉H⊗2 . We were very careful
to only write the integral form of the inner product in H⊗2 for step functions, indeed
we only know how to calculate the inner product for step functions since the rest of
the space was constructed by completion. Hence we will need to approximate f̂L by
step functions and check equation (7) as a limit equality. Before that, let us explicit
the inner product in H⊗2 for step functions as integrals with respect to the covariance
functions R1 and R2.

Lemma 2.4. Let f, g ∈ E⊗2, then

〈f, g〉Hi⊗Hj =

∫∫∫∫
[0,1]4

f(s, t)g(u, v)dRi(s, u)dRj(t, v) .

Proof. Let f = f1 ⊗ f2 and g = g1 ⊗ g2, then

〈f, g〉Hi⊗Hj = 〈f1, g1〉Hi〈f2, g2〉Hj

=

∫∫
[0,1]2

f1(s)g1(t)dR1(s, t)

∫∫
[0,1]2

f2(u)g2(v)dR2(u, v)

=

∫∫∫∫
[0,1]4

f1(s)g1(t)f2(u)g2(v)dRi(s, t)dRj(u, v) ,

and we get the result since a realization of the tensor product for functions is just the
plain product. �



LÉVY AREA FOR GAUSSIAN PROCESSES 7

Corollary 2.5. Let f, g ∈ H⊗2, such that fij, gij ∈ E⊗2. Then

〈f, g〉H⊗2 =
2∑

i,j=1

∫∫∫∫
[0,1]4

fij(s, u)gij(t, v)dRi(s, t)dRi(u, v)

=
2∑

i,j=1

∫∫
[0,1]2

(∫∫
[0,1]2

fij(s, u)gij(t, v)dRi(s, t)

)
dRi(u, v) .

3. EXISTENCE OF A GENERALISED LÉVY AREA

This section will give the sufficient conditions on the processes {X1(t) |
0 ≤ t ≤ 1} and {X2(t) | 0 ≤ t ≤ 1} so a generalised Lévy area exists (see Defi-
nition 2.3). In fact the conditions on the processes will be constrains on their covari-
ance functions, indeed this is what the previous sections suggest as the Hilbert space
of the domain of I2(·) is characterised by the covariance function of X1 and X2. Friz
and Victoir [4] claim the p-variation of the covariance function of a Gaussian process
to be a fundamental quantity related to the process. Therefore, we first recall some
definitions on the p-variation of a function.

3.1. Functions of finite p-variation and Young’s inequality. For the sake of com-
pleteness and to introduce notation, we here give some definitions on the p-variation
of a function, what is meant by a control map and state Young’s inequality. For further
reading see Dudley and Norvaiša [2] and Friz and Victoir [4, 5].

For a given interval of the real line [s, t] such that s ≤ t, we will denote the set of
all partitions of [s, t] by

P([s, t]) := {{t0, . . . , tn} | s = t0 < t1 < . . . < tn = t, n ∈ N } .

If D ∈ P([s, t]), then write |D| := maxti∈D{|ti − ti−1|}.

Definition 3.1. Let f : [s, t] → R be a function and p ≥ 1. We say that f has finite
p-variation if V 1

p (f, [s, t]) <∞, where

V 1
p (f, [s, t]) := sup

D∈P([s,t])

(∑
ti∈D

|f(ti+1)− f(ti)|p
)1/p

.

The superscript on V 1
p is to emphasise that f is 1-dimensional in contrast to the

p-variation of a 2-dimensional function, which it is defined below.

Definition 3.2. Let f : [s, t] × [u, v] → R be a function and p ≥ 1. We say that f has
finite p-variation if V 2

p (f, [s, t]× [u, v]) <∞, where

V 2
p (f, [s, t]× [u, v]) := sup

D∈P([s,t])
D′∈P([u,v])

( ∑
(ti,t′j)∈D×D′

∣∣∣∣f ( ti
ti+1

,
t′j
t′j+1

)∣∣∣∣p
)1/p
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and

f

(
ti
ti+1

,
t′j
t′j+1

)
:= f(ti+1, t

′
j+1)− f(ti+1, t

′
j)− f(ti, t

′
j+1) + f(ti, t

′
j) .

Another important concept related to the p-variation is the control map (see Friz and
Victoir [5, ch. 5.1, 5.3]).

Definition 3.3. A 2-dimensional control is a map ω from [s, t]× [u, v] to [0,∞) where
0 ≤ s ≤ t ≤ 1, 0 ≤ u ≤ v ≤ 1 and such that for all r ≤ s ≤ t, u ≤ v,

ω([r, s]× [u, v]) + ω([s, t]× [u, v]) ≤ ω([r, t]× [u, v])

ω([u, v]× [r, s]) + ω([u, v]× [s, t]) ≤ ω([u, v]× [r, t]) ,

and lims→t ω([s, t]× [u, v]) = lims→t ω([u, v]× [s, t]) = 0.

It is just for convenience that we set the variables to be in [0, 1]. The relationship
between the control and the p-variation is given by the following lemma (Friz and
Victoir [5, p. 106]):

Lemma 3.4. Let f be a continuous function of finite p-variation – V 2
p (f, [s, t] ×

[u, v]) <∞ –, then there is a 2–dimensional control map, ω, such that

V 2
p (f, [s, t]× [u, v]) ≤ ω1/p([s, t]× [u, v]) .

We will need the following technical result about the product of control maps; see
Fritz and Victoir [4]; its proof is a consequence of a discrete Hölder type inequality
proved by Young [13, p. 252].

Lemma 3.5. Let ω1 and ω2 be 2-dimensional control maps over the same rectangle
and p, q > 0 such that p−1 + q−1 ≥ 1, then ω1/p

1 ω
1/q
2 is also a 2-dimensional control

map.

Finally, we recall the statement of Young’s inequality for a 2-dimensional function
(see Towghi [12]):

Theorem 3.6. Let f and g be functions such that

i) V 2
p (f, [0, 1]× [0, 1]) <∞,

ii) V 1
p (f(0, ·), [0, 1]) <∞,

iii) V 1
p (f(·, 0), [0, 1]) <∞,

iv) |f(0, 0)| <∞,

v) V 2
p (g, [0, 1]× [0, 1]) <∞

and p−1 + q−1 > 1, and define

||f ||W 2
p ([0,1]2) := V 2

p (f, [0, 1]×[0, 1])+V 1
p (f(0, ·), [0, 1])+V 1

p (f(·, 0), [0, 1])+|f(0, 0)| .
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If f and g do not have any common jump points then the Young–Stieltjes integral of f
with respect to g exists, and∣∣∣∣∫ 1

0

∫ 1

0

f(x, y)dg(x, y)

∣∣∣∣ ≤ c(p, q)||f ||W 2
p ([0,1]2)V

2
p (g, [0, 1]× [0, 1]) ,

where c(p, q) is a constant independent of f and g.

In our setting, the functions to which we are going to apply Young’s inequality are
continuous and thus do not have jump points.

Remark 3.7. The definition of finite p–variation could be stated for p > 0 both in
the 1–dimensional and in the 2–dimensional case, but we restrict ourselves to p ≥ 1.
This is because a 1–dimensional continuous function of finite p–variation for p < 1 is
constant (see Friz and Victoir [4, p. 78]). This is not true for the 2–dimensional case,
for example the function f(x, y) = x+y has finite p–variation for all p > 0. However,
for continuous covariance functions coming from processes that start at a point rather
than from a distribution it is true (see next result). We will see in the next section that
the hypotheses related with the finite variation are always with respect to continuous
covariance functions. Therefore, without lost of generality, we consider p–variations
for p ≥ 1.

Lemma 3.8. A continuous function f on [0, 1]2 such that f(0, 0) = f(s, 0) = f(0, t)
for all t, s ∈ [0, 1] and of finite p–variation with p < 1 is constant.

Proof. For a fixed a ∈ [0, 1], the function y → f(a, y) − f(0, y) is a 1–dimensional
continuous function of finite p–variation and hence constant. Indeed, it is zero since
f(a, 0) = f(0, 0), and the result follows. �

3.2. Main result. The main result of the paper is proved in this section. We construct
a sequence of step functions which converge almost sure to the Lévy kernel and show
that it is a Cauchy s equence in H⊗2, and finally, we also show that its limit satisfies
Definition 2.3.

We start by a technical lemma which will ease the proof of the main result, but, be-
fore that, let us introduce some notation which will be used extensively in this section.
According to definition (5) we have that∫ t

s

∫ v

u

dRi(x, y) = Ri

(
s
t
,
u
v

)
.

Let {tni = i2−n | i = 0, . . . , 2n − 1} be the dyadic partition of the interval [0, 1] for a
given n, and consider the dyadic partition of the triangles T1 and T2

T n1 :=
⋃
i<j

Ini × Inj T n2 :=
⋃
i>j

Ini × Inj ,
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Figure 1. Integration of the (??)-term over the single rectangle Jn,mk,l for a
fixed (u, v) ∈ Jn,mk,l .

where Ini := (tni , t
n
i+1]. Then a natural approximation of the Lévy kernel will be

fn((s, i), (t, j)) :=


0, if i = j

1
2
(1Tn1 (s, t)− 1Tn2 (s, t)), if i = 1, j = 2

1
2
(1Tn2 (s, t)− 1Tn1 (s, t)), if i = 2, j = 1

.

Lemma 3.9. Let R1 and R2 be two continuous covariance functions in [0, 1]2. Let R1

be of finite p-variation and R2 of finite q-variation and assume that p−1 + q−1 > 1,
then

lim
n→∞
m→∞

2∑
i,j=1

∫∫∫∫
[0,1]4

(fL − fn)ij(s, u) · (fL − fm)ij(t, v)dRi(s, t)dRj(u, v)︸ ︷︷ ︸
(?)

= 0 .

Proof. Write Jn,mk,l := Ink × Iml and note that

(fL − fn)ij(s, u) · (fL − fm)ij(t, v)

=
(1− δij)

4

2n−1∑
k=0

2m−1∑
l=0

1(Jn,mk,l )2(s, t, u, v)(1{(v−t)(u−s)>0} − 1{(v−t)(u−s)<0}) .

Therefore the quadruple integral of the (?)-term is split into a sum of quadruple in-
tegrals over (Jn,mk,l )2. These integrals are iterated integrals and they can be further
reduced, according to Figure 1, to

(?) =
1

4

2∑
i,j=1
i 6=j

2n−1∑
k=0

2m−1∑
l=0

∫∫
Jn,mk,l

F n,m,i
k,l (u, v)dRj(u, v)︸ ︷︷ ︸

(??)

,

where
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F n,m,i
k,l (u, v) :=

∫∫
A1

dRi(s, t)−
∫∫

A2

dRi(s, t)

−
∫∫

A3

dRi(s, t) +

∫∫
A4

dRi(s, t)

= Ri

(
u
tnk+1

,
v
tml+1

)
−Ri

(
tnk
u
,

v
tml+1

)
−Ri

(
u
tnk+1

,
tml
v

)
+Ri

(
tnk
u
,
tml
v

)
.

Note that in the above definition we have used Remark 2.1.
It is enough to prove that the (??)-term goes to zero as n,m → ∞ for i = 1 and

j = 2. The key point is to apply Young’s inequality to each summand of the (??)-term,
in that way we will prove the existence of the integrals and get a bound for them. In
order to do so note the following identities which relate the function F n,m,1

k,l with the
function R1

F n,m,1
k,l

(
u
u′
,
v
v′

)
= 4R1

(
u
u′
,
v
v′

)
,

F n,m,1
k,l (tnk , v)− F n,m,1

k,l (tnk , v
′) = 2R1

(
tnk
tnk+1

,
v
v′

)
,

F n,m,1
k,l (tnk , t

m
l ) = R1

(
tnk
tnk+1

,
tml
tml+1

)
,

F n,m,1
k,l (u, tml )− F n,m,1

k,l (u′, tml ) = 2R1

(
u
u′
,
tml
tml+1

)
.

Now, since p−1 + q−1 > 1, there exists r, p′ > 0 such that r + (p′)−1 = p−1 and
(p′)−1 + q−1 > 1. Thus, from p′ > p ≥ 1 we have that R1 is also of finite p′–variation
and use the above equalities to obtain

V 2
p′(F

n,m,1
k,l , Jn,mk,l ) = 4V 2

p′(R1, J
n,m
k,l ) ,

V 1
p′(F

n,m,1
k,l (tnk , ·), [tml , tml+1]) ≤ 2V 2

p′(R1, J
n,m
k,l ) ,∣∣F n,m,1

k,l (tnk , t
m
l )
∣∣ ≤ V 2

p′(R1, J
n,m
k,l ) ,

V 1
p′(F

n,m,1
k,l (·, tml ), [tnk , t

n
k+1]) ≤ 2V 2

p′(R1, J
n,m
k,l ) ,

where Jn,mk,l is the closure of Jn,mk,l . This consideration is a technicality required by the
definition of the finite variation. According to the notation of Theorem 3.6 the above
inequalities imply that ||F n,m,1

k,l ||
W 2
p′ (J

n,m
k,l )

≤ 9V 2
p′(R1, J

n,m
k,l ), and thus we can apply
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Young’s inequality to every integral of the (??)-term to get

|(??)| ≤ c(p′, q)
2n−1∑
k=0

2m−1∑
l=0

||F n,m,1
k,l ||

W 2
p′ (J

n,m
k,l )

V 2
q (R2, J

n,m
k,l )

≤ 9c(p′, q)
2n−1∑
k=0

2m−1∑
l=0

V 2
p′(R1, J

n,m
k,l )V 2

q (R2, J
n,m
k,l ) .

Recall Lemma 3.4 to associate the finite p–variation of R1 to a control map ω1,
and denote by ω2 the control map with respect to the q–variation of R2. Finally we use
Lemma 3.5 to deduce that ω̂ := ω

1/p′

1 ω
1/q
1 is a control map which bounds the (??)-term

as

|(??)| ≤ C
2n−1∑
k=0

2m−1∑
l=0

V 2
q (R2, J

n,m
k,l ) sup

D∈P(Ink )

D′∈P(Iml )

 ∑
(ti,t′j)∈D×D′

∣∣∣∣R1

(
ti
ti+1

,
t′j
t′j+1

)∣∣∣∣p′
1/p′

≤ C sup
|u−u′|≤2−n

|v−v′|≤2−m

∣∣∣∣R1

(
u
u′
,
v
v′

)∣∣∣∣ p
′−p
p′

2n−1∑
k=0

2m−1∑
l=0

V 2
q (R2, J

n,m
k,l )(V 2

p (R1, J
n,m
k,l ))p/p

′

≤ C sup
|u−u′|≤2−n

|v−v′|≤2−m

∣∣∣∣R1

(
u
u′
,
v
v′

)∣∣∣∣ p
′−p
p′

2n−1∑
k=0

2m−1∑
l=0

ω
1/q
2 (Jn,mk,l )ω

1/p′

1 (Jn,mk,l )

≤ C sup
|u−u′|≤2−n

|v−v′|≤2−m

∣∣∣∣R1

(
u
u′
,
v
v′

)∣∣∣∣ p
′−p
p′

2n−1∑
k=0

2m−1∑
l=0

ω̂(Jn,mk,l )

≤ Cω̂([0, 1]2) sup
|u−u′|≤2−n

|v−v′|≤2−m

∣∣∣∣R1

(
u
u′
,
v
v′

)∣∣∣∣ p
′−p
p′

,

where C is a constant which is renamed when necessary. Finally note that the last
supremum goes to zero as n,m → ∞ by the uniform continuity of R1 and the result
follows. �

Now we are ready to finalize the construction of the generalized Lévy area, we need
to prove that the sequence fn in Lemma 3.9 is a Cauchy sequence and its limit, f̂L,
satisfies Definition 2.3.

Theorem 3.10. Let {X1(t) | 0 ≤ t ≤ 1} and {X2(t) | 0 ≤ t ≤ 1} be two continuous
centered Gaussian processes, such that X1(0) = X2(0) = 0, independent, and with
covariance functions R1 and R2 respectively. Let R1 be of finite p-variation and R2 be
of finite q-variation and assume that p−1 + q−1 > 1, then the sequence {fn}n≥1 is a
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Cauchy sequence in H⊗2. We will denote its limit by f̂L. Moreover, we have that

(8) 〈f̂L, g〉H⊗2 =
2∑

i,j=1

∫∫∫∫
[0,1]4

fLij(s, u)gij(t, v)dRi(s, t)dRj(u, v)

for all step functions g ∈ H⊗2.

Proof. Note that fn − fm ∈ H⊗2 is a difference of two step functions and hence it is a
step function itself. Therefore by Lemma 2.5 we have that

||fn − fm||H⊗2 =
2∑

i,j=1
i 6=j

∫∫∫∫
[0,1]4

(fn − fm)ij(s, u)

(fn − fm)ij(t, v)dRi(s, t)dRi(u, v)

=
2∑

i,j=1
i 6=j

∫∫∫∫
[0,1]4

(fn − fL + fL − fm)ij(s, u)

(fn − fL + fL − fm)ij(t, v)dRi(s, t)dRi(u, v) .

Each term of the above product was denoted as a (?)-term in Lemma 3.9 and thus goes
to zero as n,m→∞.

For the second part of the proof it suffices to prove the equality for a function g such
that g12(s, t) = 1[a,b]×[c,d](s, t) where [a, b]× [c, d] ⊆ [0, 1]2 and gij(s, t) ≡ 0 for i 6= 1

or j 6= 2. Since f̂L is the limit of {fn}n≥1 in H⊗2 then

lim
n→∞
〈fn, g〉H⊗2 = 〈f̂L, g〉H⊗2 .

Our objective is to prove that limn→∞〈fn, g〉H⊗2 equals the left hand side of equation
(8). From the definition of the Lévy kernel we have that

2∑
i,j=1

∫∫∫∫
[0,1]4

fLij(s, u)gij(t, v)dRi(s, t)dRj(u, v)

=
1

2

∫∫∫∫
[0,1]4

(1s>u(s, u)− 1s<u(s, u))1[a,b]×[c,d](t, v)dR1(s, t)dR2(u, v)

=
1

2

∫∫
[0,1]×[c,d]

dR2(u, v)

∫∫
[0,1]×[a,b]

(1s>u(s, u)− 1s<u(s, u))dR1(s, t)

=
1

2

∫∫
[0,1]×[c,d]

[
R1

(
u
1
,
a
b

)
−R1

(
0
u
,
a
b

)]
dR2(u, v) .(9)
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The above integral is a well defined Young–Stieltjes integral. Then, for D ∈ P([0, 1])
and D′ ∈ P([c, d]),

2∑
i,j=1

∫∫∫∫
[0,1]4

fLij(s, u)gij(t, v)dRi(s, t)dRj(u, v)

=
1

2
lim
|D|→0
|D′|→0

∑
ξi∈D
ζj∈D′

[
R1

(
νi
1
,
a
b

)
−R1

(
0
νi
,
a
b

)]
R2

(
ξi
ξi+1

,
ζj
ζj+1

)

=
1

2
lim
|D|→0

∑
ξi∈D

[
R1

(
νi
1
,
a
b

)
−R1

(
0
νi
,
a
b

)]
R2

(
ξi
ξi+1

,
c
d

)
,(10)

where νi ∈ [ξi, ξi+1]. On the other hand, from Lemma 2.5 we have that

〈fn, g〉H⊗2 =
1

2

2n−1∑
k,l=0
k>l

∫∫∫∫
Ink×[a,b]×Inl ×[c,d]

dR1(s, t)dR2(u, v)

− 1

2

2n−1∑
k,l=0
k<l

∫∫∫∫
Ink×[a,b]×Inl ×[c,d]

dR1(s, t)dR2(u, v)

=
1

2

2n−1∑
k,l=0
k>l

R1

(
tnk
tnk+1

,
a
b

)
R2

(
tnl
tnl+1

,
c
d

)

− 1

2

2n−1∑
k,l=0
k<l

R1

(
tnk
tnk+1

,
a
b

)
R2

(
tnl
tnl+1

,
c
d

)

=
1

2

2n−1∑
l=0

[
R1

(
tnl+1

1
,
a
b

)
−R1

(
0
tnl
,
a
b

)]
R2

(
tnl
tnl+1

,
c
d

)
.(11)

Note that in equation (10) we could replace the first νi by ν1
i and the second νi by

ν2
i , where ν1

i , ν
2
i ∈ [ξi, ξi+1]. This is because the integral (9) could be split into two.

Indeed you could choose ν1
i = ξi and ν2

i = ξi+1. If you do this, then equation (11)
becomes a particular election of the partition D in equation (10) and thus

lim
n→∞
〈fn, g〉H⊗2 =

∫∫∫∫
[0,1]4

fL12(s, u)g12(t, v)dR1(s, t)dR2(u, v)

from where the result follows. �

3.3. The case of the fractional Brownian motion. One case of special interest is
to explore what happens with the generalised Lévy area for a fractional Brownian
motion (fBm) with Hurst parameter H ∈ (0, 1). It is known that when fBm has Hurst
parameter H ≤ 1

2
then its covariance function is of finite 1

2H
-variation, and when
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H > 1
2

then its covariance function is of bounded variation. Then the Lévy area can
be defined for two fBm with the same Hurst parameter H as long as H > 1

4
. Moreover

we can let one of the processes be as irregular as desired provided that the other one
is regular enough. That is, we can let one of the fBm be of Hurst parameter H < 1

2
as

long as the other independent fBm has Hurst parameter H ′ > 1
2
−H .

4. CARLEMAN-FREDHOLM REPRESENTATION

Consider an isonormal Gaussian processX = {X(h) | h ∈ H}. IfH = L2(T,B, µ),
then H�2 is the space of symmetric square integrable functions L2

sym(T 2). To each el-
ement f ∈ H�2 corresponds a symmetric Hilbert–Schmidt operator F : H → H
defined by

(F (h))(t) =

∫
T

f(s, t)h(s)µ(ds) .

Denote by {αn | n ≥ 1} the eigenvalues of F repeated according to its multiplicity.
Then

E[ezI2(f)] =
1√∏∞

n=1(1− 2zαn)e2zαn
for 2|<(z)|σ(F ) < 1 ,

where σ(F ) = supn≥1{|αn|}. The infinite product of the above equality is called a
generalised determinant or a Carleman–Fredholm determinant of F (see Dunford and
Schwartz [3, p. 1036]). There are many works about the characteristic functions of
quadratic Wiener functionals. In our case we are interested in a particular functional
viewed in different Wiener spaces, therefore the aim of this section is to explicit the
procedure to compute the eigenvalues as much as possible. As an example, we will
compute the eigenvalues for the particular case where the stochastic processes X1 and
X2 are of the form

Xi =

∫ 1

0

f(s)dWi(s) f ∈ L2([0, 1]) ,

where W1 and W2 are two independent Brownian motion.
It is worthwile to state the relationship between elements of the second Wiener chaos

and Hilbert–Schmidt operators by working out a particular example and then extending
the results to the general case. To this end we study the case of the Lévy area for two
standard Wiener processes, as we commented in the introduction. For R1(s, t) =
R2(s, t) = s∧ t the Hilbert space H is isometric to L2([0, 1]×{1, 2}). Then the Lévy
kernel fL defines the Hilbert-Smith operator

F : L2([0, 1]× {1, 2})→ L2([0, 1]× {1, 2})

h 7→
∫

[0,1]×{1,2}
fLij(s, t)hi(s)ds⊗ Card ,
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which is reduced to the form
(12)

F (h)j(t) =
δ2j

2

(∫ t

0

h1(s)ds−
∫ 1

t

h1(s)ds

)
− δ1j

2

(∫ t

0

h2(s)ds−
∫ 1

t

h2(s)ds

)
.

If h is an eigenvector of eigenvalue α, F (h) = αh, then it is continuous because it is
defined by an integral, and applying again the same argument it is differentiable. Then
we differentiate the above expression and obtain the matrix representation

(13)

(
h′1(t)

h′2(t)

)
=

1

α

(
0 −1
1 0

)(
h1(t)

h2(t)

)
=

1

α
M

(
h1(t)

h2(t)

)
with solution given by h(t) = eM

t
αh(0). From (12) it is clear that h(1) +h(0) = 0 and

thus the eigenvalues satisfy the equation

eM
1
α =

(
cos(α−1) − sin(α−1)

sin(α−1) cos(α−1)

)
=

(
−1 0
0 −1

)
= −Id2 .

Therefore the eigenvalues, αn, are {±(π(2n+1))−1 | n ∈ N} with multiplicity 2 since
the space of solutions of the ordinary differential equation has dimension 2. Finally
we compute the Carleman-Fredholm determinant to obtain E[eitA] = cosh(t)−1.

Now we use the same sort of ideas into the abstract setting presented in Section 2.
Let f ∈ H⊗2 and define the operator F := Ψ ◦ Φf , such that

F : H
Φf−→ H∗

Ψ−→ H ,

where Ψ is the duality isomorphism and for g ∈ H we define Φf (g) : H → R as

Φf (g)(h) := 〈f, g ⊗ h〉H⊗2 , h ∈ H .

It can be proved that F is a Hilbert-Smith operator. Note that g ∈ H is an eigenvector
of the operator F with eigenvalue α if and only if 〈f, g ⊗ h〉H⊗2 = α〈g, h〉H for all
h ∈ H . From Lemma 2.2 we can identify g(t, i) = δ1ig1(t) + δ2ig2(t) where gi ∈ Hi

and the same sort of identification is valid for h, then g ∈ H is an eigenvector of
eigenvalue α if and only if

2∑
i,j=1

〈fij, gi ⊗ hj〉Hi⊗Hj = α
2∑
i=1

〈gi, hi〉Hi ∀h1 ∈ H1, ∀h2 ∈ H2 .

We will say that two covariance functions R1 and R2 are equivalent if the associated
Hilbert spaces H1 and H2 are the same. Under this symmetry of the processes we
recover the spectrum structure of the classical Lévy area.

Proposition 4.1. Under the notation of the previous sections, let {X1(t) | 0 ≤ t ≤ 1}
and {X2(t) | 0 ≤ t ≤ 1} be continuous centered independent Gaussian processes
with equivalent covariance functions R1 and R2 respectively. Then the corresponding
Hilbert–Schmidt operator has eigenvalues with even multiplicity and symmetric with
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respect to zero. As a consequence the characteristic function of the generalised Lévy
area is of the form

ϕ(t) =
∏
n≥1

1

(1 + 4α2
nt

2)mn
,

where mn ≥ 1.

Proof. ¿From the factorisation (6) it is clear that the symmetry of the approximation
of the Lévy kernel {fn}n≥1 is transferred to f̂L. Then, from equation

(14)
2∑

i,j=1
i 6=j

〈f̂Lij , gi ⊗ hj〉Hi⊗Hj = α
2∑
i=1

〈gi, hi〉Hi ∀h1, h2 ∈ H1 ≡ H2 ,

it is checked that if g(t, i) = δ1ig1(t) + δ2ig2(t) is an eigenvector with eigenvalue α,
then g̃(t, i) = δ1ig2(t) − δ2ig1(t) is an eigenvector with eigenvalue α and ĝ(t, i) =
δ1ig2(t) + δ2ig1(t) is an eigenvector with eigenvalue −α. If g = λg̃ for λ ∈ R \ {0}
then g1 = λg2 = −λ2g1 and hence g ≡ 0, thus g and g̃ are linear independent. On the
other hand, if {gk(t, i), g̃k(t, i) | k = 1, . . . , K} is a family set of linear independent
eigenvectors of eigenvalue α, and

h(t, i) =
K∑
k=1

λkgk(t, i) +
K∑
k=1

µkg̃k(t, i), λk, µk ∈ R,

then

h̃(t, i) =
K∑
k=1

λkg̃k(t, i)−
K∑
k=1

µkgk(t, i) .

Therefore α has even multiplicity. Note that this suffices to deduce the same prop-
erty for the eigenvalue −α and by construction the multiplicity of α and −α is the
same. Finally, we recover the same structure for the spectrum of the Hilbert–Schmidt
operator that we have in the classical Lévy area. �
Example. From the explicit calculations made for the classical Lévy area we can
easily work out a bit more general case. Let Xi(t) =

∫ t
0
f(s)dWi(s), for two in-

dependent Brownian motions W1 and W2. Then Ri(s, t) =
∫ s∧t

0
f 2(u)du, Hi =

L2([0, 1], f 2(u)du) and equation (13) can be written as(
h′1(t)

h′2(t)

)
=
f 2(t)

α

(
0 −1
1 0

)(
h1(t)
h2(t)

)
.

Therefore the general solution is

h(t) = exp

(∫ t

0

f 2(u)

α
du

(
0 −1
1 0

))
h(0) .

Finally the characteristic function of A in this setting is E[eitA] = sech
(
t||f ||2L2

)
.
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