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Abstract. In this paper we present a new, accurate form of the heat bal-
ance integral method, termed the Combined Integral Method (or CIM). The
application of this method to Stefan problems is discussed. For simple test
cases the results are compared with exact and asymptotic limits. In particu-
lar, it is shown that the CIM is more accurate than the second order, large
Stefan number, perturbation solution for a wide range of Stefan numbers. In
the initial examples it is shown that the CIM reduces the standard problem,
consisting of a PDE defined over a domain specified by an ODE, to the solution
of one or two algebraic equations. The latter examples, where the boundary
temperature varies with time, reduce to a set of three first order ODEs.

1. Introduction

The heat balance integral method (HBIM) is a well-known method for find-
ing approximate solutions to thermal problems [6]. It has proved particularly
valuable in the solution of Stefan problems, where few analytical solutions exist.
However, it has also been applied to problems such as thermal explosions, the
Korteweg-de-Vries equation, microwave heating of grain and re-wetting of sur-
faces [2, 19, 24, 25]. Given that it is really an application of Karman-Pohlhausen
integral method [20] for analysing boundary layers in fluid flow, it is also suitable
for certain problems in viscous flow, see [18, 23].

The popularity of the HBIM is due primarily to its simplicity. However, the
method has various well-known drawbacks [14, 16, 17]. For example, the choice
of approximating function is arbitrary and this is key to the method’s accuracy.
To compound the ambiguity there are often different ways to formulate even the
most basic problem, see [14], and this also affects the accuracy. Furthermore,
there is no agreed method for measuring the accuracy and so many authors limit
their studies to test problems with either exact or numerical solutions. Indeed,
they often motivate the approximating function through an exact or numerical
solution, which is then typically used to check the accuracy of the approximate
method. One of the objections raised in [16, 17] is that the existence of an exact
or numerical solution makes the approximate solution redundant.
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Recently Myers [16] has addressed the issue of the choice of approximating
function as well as measuring the accuracy. The new method can be illuminated
through the simple one-dimensional thermal problem specified by ut = uxx and
subject to u(0, t) = 1, u(∞, t) = u(x, 0) = 0. The standard HBIM proceeds by
defining a polynomial approximating function

u =
(

1 − x

δ

)n

.(1)

The heat penetration depth, δ(t), indicates the point where the temperature rise
above the initial value is negligible and the standard approach of Goodman uses
n = 2, although there are examples with n = 3, 4, 7 in the literature [2, 14, 13].
The feature that distinguishes the method of [16] from previous authors is that n
is not specified a priori or chosen by comparison with exact solutions or boundary
conditions. Instead it is left arbitrary and another equation is then required to
close the system. The extra equation comes from minimising a least-squares error

En =

∫ δ

0

(ut − uxx)
2 dx =

∫ δ

0

f(x, t)2 dx .(2)

If u is an exact solution of the heat equation then En = 0, otherwise En > 0 [11].
The value of En also provides a measure of the relative accuracy of the method,
without the need for an exact solution. We emphasise the word relative since this
criteria is usually time-dependent and for small times may indicate high errors
even when the approximation appears accurate. However, it will demonstrate
whether one approximation is more accurate than another. Minimising En to
determine n means that n is found through a global constraint, i.e. the choice
is based on providing an accurate solution over the whole domain, as opposed to
matching the solution at a single point. Note, one could equally well deal with an

error En =
∫ δ

0
|f(x, t)| dx. This reduces the algebra associated with squaring the

expression for f , but then one has to determine where f is positive and negative
and split up the integration accordingly.

For the thermal problem discussed above, this method leads to n ≈ 2.2 and
the improvement from Goodmans standard form with n = 2 is slight (where
the improvement is based on the values of En for n = 2 and 2.2). However,
when the condition u(0, t) = 1 is replaced by a constant flux boundary condition,
ux(0, t) = −1, En is minimised when n ≈ 3.6 and the error is reduced by a factor
of 30 from that obtained with n = 2. The method of [16] was extended to Stefan
problems in [17]. For melting with a constant temperature boundary condition
the error in the growth rate compared to taking n = 2 was reduced by a factor
of 130 (when compared with the exact solution).

In general the method introduced in [16, 17] will lead to the value of n which
produces the lowest error according to the criteria of equation (2). In those papers
the appropriate value of n for different scenarios was given. Hence the solution is
as simple as that of Goodman’s to apply. For example, in the problem discussed
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above the only change is to set n = 2.2 in equation (1), while for constant flux
and Newton cooling thermal problems setting n = 3.6 will significantly improve
results. Similarly, for Stefan problems the appropriate values of n and approx-
imating function are summarised in [17]. However, in these papers it was also
pointed out that there exist difficulties when the optimal choice of n depends on
time. These typically occur with time-dependent boundary conditions. Theo-
retically the method can deal with n = n(t) but the algebra becomes extremely
cumbersome (and so removes the basic appeal of the HBIM). To overcome this
drawback Mitchell & Myers [14] recently developed an alternative approach that
deals more easily with n(t).

An extension to the HBIM, known as the Refined Integral Method (RIM), was
presented by Sadoun & Si-Ahmed [21]. It simply involves integrating the heat
equation twice. In fact, this method has appeared at least twice before these
authors published their results. Whilst analysing an oxygen diffusion problem
Gupta & Banik [7, 8, 9] developed a semi-analytical method, denoted the con-

strained integral method. They employed a polynomial of even degree with four
unknown functions. After the application of boundary conditions these reduced
to two unknowns which were then found from applying what they termed the
zeroth and first moments: these are precisely the HBIM and RIM formulations
respectively. Hill’s book [10] terms the RIM the integral formulation by integra-

tion. He also extends the method to provide an iterative scheme. For a Stefan
problem with a constant temperature boundary he demonstrates that the growth
rate is more accurately captured by the iterative method than by HBIM or RIM
solutions. The most accurate HBIM or RIM formulation depends on the value of
the Stefan number (in agreement with the conclusions of [14]).

For certain situations the RIM can improve on the HBIM, but there is no set
rule on when it will be the best method. The relative merits of each method are
discussed in [14]. The approach adopted by Mitchell & Myers [12] was to use the
HBIM with an unknown exponent, as in [16, 17], and then use RIM to give the
extra equation to determine n. Again this is a global constraint rather than one
based on matching at a point. In general it results in a similar level of accuracy
as that of [16, 17] but the algebra to determine n is simpler. Whilst there is
no check on the error, as occurs when the analysis is based on minimising En,
this new method will always be as accurate as the better of the HBIM and RIM
solutions and will usually be better than both. For the examples investigated in
[12] the error was of a similar magnitude to that obtained in [16, 17]. As will
be seen later it also removes some of the ambiguity in the formulation. This is
a similar approach to the constrained integral method considered by [7, 8, 9]. In
their case they employed the extra RIM equation to permit an extra term (and
hence unknown coefficient) in the temperature expression. In our case we use it
to determine the unknown exponent.

In [12] only thermal problems were investigated; in the following work we will
extend this new integral method, hereafter referred to as the Combined Integral
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Method (CIM), to deal with Stefan problems. We will also investigate the errors
by comparison with exact, limiting and numerical solutions. In particular we will
show that, for the cases examined, the CIM is more accurate than a second order
perturbation solution for a wide range of Stefan numbers.

For the Stefan problems considered in the following sections there are two basic
types of approximating profile. In a semi-infinite subcooled solid where s denotes
the position of the moving front and s < x, u → −1 as x → ∞ the temperature
is specified by

u = −1 +

(

δ − x

δ − s

)n

.(3)

This satisfies u(s, t) = 0 and u(δ, t) = −1, where s, δ are unknown functions of
time, and n may be a function of time depending on the problem. In a melt
region a typical approximation is

u = a
(

1 − x

s

)

+ (1 − a)
(

1 − x

s

)m

,(4)

where in this case u(0, t) = 1 and u(s, t) = 0. The linear term is required
otherwise ux(s, t) = 0 for m > 1 and, at least for a material initially at the
melting temperature, without this term the front would remain stationary for all
time. For certain problems the values of a and m may vary with time. However,
to simplify the analysis we will always first assume that they are constant, and
only if this assumption turns out to be inconsistent with the solutions obtained
will we look for varying values.

2. One phase semi-infinite material at melting temperature

Consider a semi-infinite material which is everywhere at the melting tempera-
ture. At the boundary x = 0 a heat source is applied which results in melting.
The position of the melt front is denoted x = s(t). The basic one-dimensional
problem is specified by

∂u

∂t
=

∂2u

∂x2
, 0 < x < s(t)(5)

u(0, t) = 1 , u(s, t) = 0 , β
ds

dt
= − ∂u

∂x

∣

∣

∣

∣

x=s

, s(0) = 0 .(6)

This is scaled in such a way that the only remaining parameter is the Stefan
number β = Lm/(cp ∆u), where Lm is the latent heat of melting, cp the specific
heat capacity and ∆u the temperature variation.

The system (5, 6) has the exact solution

u(x, t) = 1 − erf
[

x/(2
√

t)
]

erf(α)
, s(t) = 2α

√
t ,(7)
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where u is the temperature in the melt and α satisfies the transcendental equation
√

πβα erf(α)eα2

= 1 .(8)

To apply the integral methods we approximate the temperature with the form
(4). For the HBIM the heat equation is integrated over x ∈ [0, s] to give

d

dt

∫ s

0

u dx =
∂u

∂x

∣

∣

∣

∣

x=s

− ∂u

∂x

∣

∣

∣

∣

x=0

.(9)

Further details may be found in [14, 17]. As discussed in the introduction it is
assumed that a, m are constant and so substituting for u from (4) gives

a(m + 1) + 2(1 − a)

2(m + 1)

ds

dt
=

m(1 − a)

s
.(10)

The Stefan condition (6b) becomes

β
ds

dt
=

a

s
,(11)

hence s =
√

2at/β. Obviously, since t, β ≥ 0, and to ensure that the front
velocity is positive, we require a > 0.

With the RIM there is a choice between taking the first integral over x ∈ [0, ξ]
or [ξ, s] and then taking the second for ξ ∈ [0, s]. The first choice leads to

s
d

dt

∫ s

0

u(x, t) dx − d

dt

∫ s

0

xu(x, t) dx = −1 − s
∂u

∂x

∣

∣

∣

∣

x=0

,(12)

while the second gives

d

dt

∫ s

0

xu(x, t) dx = 1 + s
∂u

∂x

∣

∣

∣

∣

x=s

.(13)

This demonstrates a typical ambiguity with the standard method. There are now
two possible formulations which will exhibit different levels of accuracy, as exam-
ined in [14]. However, with the current method the HBIM and RIM formulations
are combined and equation (13) can be obtained from (12) by substituting for
ux(0, t) via equation (9). Hence solving equations (9) and (12) or (9) and (13)
is equivalent and this particular ambiguity is removed. From now on we will
deal with equation (13) which involves less integration. It is also directly what is
termed the first moment [7, 8, 9], as discussed in the introduction: multiplying
both sides of the heat equation (5) by x and integrating over x ∈ (0, s) gives
precisely (13).

Substituting for u from equation (4) the RIM formulation leads to

a(m + 1)(m + 2) + 6(1 − a)

3(m + 1)(m + 2)
s
ds

dt
= 1 − a .(14)
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Figure 1. Variation of m with β.

The key to the CIM is equating the RIM and HBIM formulations, therefore we
equate (10) and (14) to remove sst and determine a relation between a and m

a =
6(2 − m)

(m − 1)(2m2 + 5m − 6)
.(15)

The Stefan condition (11) may be used to eliminate sst in either of (10) or (14)
and then combining with (15) results in a nonlinear equation for m which may
be written in the form

2m(m + 1)
[

β(2m − 3)(2 + m)(1 + m)(2m2 + 5m − 6) + 12(m− 2)
]

= 0 .(16)

Hence the problem of solving the PDE (5) over a moving domain specified by
(6b) is reduced to solving an algebraic equation for m, with the Stefan number
as the only parameter. Once m is known the value of a is given by equation (15)

and then the position of the front through s =
√

2at/β.
To simplify the calculations we may neglect the physically unrealistic solutions

of equation (16) where m = −1, 0. The approximate value for m is then found
from the numerical solution of the quintic equation in square brackets in (16).
As previously stated, we expect m > 1, in fact from equation (15) we can see
that the requirement a > 0 restricts m ∈ (1, 2). Finally, noting that β > 0 the
quintic term of (16) then fixes m ∈ [1.5, 2). The solution of the quintic equation
is plotted in Figure 1. It is worth pointing out that when β > 1 the best value
of m predicted by this method is close to 1.5. Most standard analyses using the
HBIM assume m = 2, see [14] for example. From Figure 1 it is clear that only
when β ≪ 1 is this a good choice. Note, for water and paraffin wax β ∈ [1, 10] ,
for metals β ∈ [0.1, 1] and it is even smaller for silicates [1, 10, 17].

A popular route to determine the approximate solution to Stefan problems,
when β ≫ 1, is to use a perturbation method. We now examine this and compare
the accuracy of the CIM to that of the perturbation solution. In the limit β → ∞



APPLICATION OF THE COMBINED INTEGRAL METHOD TO STEFAN PROBLEMS 7

it is simple to show that the temperature profile becomes linear, u → 1 − x/s

and then the Stefan condition gives s →
√

2t/β. This is the leading order of
the perturbation solution. Higher order corrections may be found by expanding
in terms of the small parameter 1/β, see [1, 10] for example. To determine the
perturbation solution we must first re-scale time t = βτ so that

1

β

∂u

∂τ
=

∂2u

∂x2
,

ds

dτ
= − ∂u

∂x

∣

∣

∣

∣

x=s

.(17)

To determine a correction to the leading order linear form a straightforward
expansion on (17), namely u = u0 + ǫu1 + ǫ2u2 · · · , where ǫ = 1/β, leads to a
second order term involving sττ . Since there is only one initial condition the
problem of finding a second initial condition may be avoided by first setting
y = x− s(τ). Then, since s is monotonic in τ , it is possible to work in terms of s
as the time variable, i.e. τ = τ(s). Denoting u(x, τ) = U(y, s) the heat equation
becomes

∂2U

∂y2
= ǫ

ds

dτ

(

∂U

∂s
− ∂U

∂y

)

= −ǫ
∂U

∂y

∣

∣

∣

∣

y=0

(

∂U

∂s
− ∂U

∂y

)

.(18)

Now we take an expansion

U = U0(y, s) + ǫU1(y, s) + ǫ2U2(y, s) + · · · ,(19)

subject to U0(−s, s) = 1, U0(0, s) = 0 and U1 = U2 = 0 at y = −s, 0. This leads
to

U0 = −y

s
, U1 =

(

y3

6s3
+

y2

2s2
+

y

3s

)

(20)

U2 = − y5

40s5
− y4

8s4
− 5y3

18s3
− y2

3s2
− 7y

45s
.(21)

The Stefan condition becomes

ds

dτ
= − ∂U

∂y

∣

∣

∣

∣

y=0

=
1

s
− ǫ

3s
+

7ǫ2

45s
.(22)

Hence

s =

√

2τ

(

1 − ǫ

3
+

7ǫ2

45
+ · · ·

)

=

√

2t

β

(

1 − 1

6β
+

23

360β2
+ · · ·

)

.(23)

Of course the perturbation solution must coincide with the expansion of the
exact solution. We may see this by first noting that in the limit β → ∞ the two
sides of the transcendental equation, (8), balance provided α → 0 [5]. The small
α expansion of (8) is

β

[

2 α2 +
4

3
α4 +

8

15
α6 + O

(

α8
)

]

= 1 .(24)
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The leading order solution is α0 = 1/
√

2β which motivates the expansion

α = α∗ =
1√
2β

(

1 +
α1

β
+

α2

β2
+ · · ·

)

,(25)

where α∗ denotes an approximation to α. Substituting this back into (24) leads
to α1 = −1/6, α2 = 23/360 and then using the expression for s(t), equation (7b),
reproduces (23).

We may compare this with the large β expansion of the CIM. Allowing β ≫ 1
in equation (16) leads to m = 3/2 + 6/(105β) − 1898/(128625β2). This may be
used to determine a from equation (15) and then the CIM gives

s ≈
√

2t

β

(

1 − 1

6β
+

149

2520β2
· · ·

)

.(26)

The CIM therefore agrees with the expansion of the exact solution up to first
order, with a 7% error at second order.

A small β expansion of the exact solution may also be obtained (although
beyond leading order the terms are more difficult to obtain)

2α2 = 2(α∗)2 = 2 ln

[

√

2

π

(

1 +
1

β

)

]

− ln

{

2 ln

[

√

2

π

(

1 +
1

β

)

]}

,(27)

further details may be found in [5, 10].
Since the exact and the combined integral methods both lead to solutions of

the form s ∼
√

t the error in s is independent of time and depends only on a
constant factor. If we write the solution to the Stefan condition, equation (11)

in the form of equation (7a), s = 2µ
√

t where µ =
√

a/(2β), then the difference
between the exact and CIM solutions is reflected in the difference between α
and µ: the former depends solely on β and the latter on β and m. A similar
expression for the large β perturbation solution may be obtained from equation
(23) and from (27) for small β. The percentage difference from the exact solution
for the CIM and large and small β expansions (100(α − µ)/α or 100(α − α∗)/α)
is displayed in Figure 2. For β > 7 the second order perturbation is the most
accurate, however, the errors for either method are negligible (below 0.009%).
For lower β values the perturbation solution quickly loses accuracy. For example,
when β = 1 the perturbation error is 2.3% while the CIM error is 0.25%. Of
the three solutions shown, the CIM remains the most accurate down to β = 0.07
where the small β solution applies. In practical terms, it is clear that the CIM is
sufficiently accurate for most realistic applications.

In comparison to the most accurate HBIM formulation with m = 2 (as deter-
mined in the review of [14]) in general the CIM is also significantly more accurate.
For example, when β = 5, the percentage error for the CIM is 0.0163% whilst
for the HBIM it is 0.75%, i.e. an improvement of a factor 46. For β = 1 the
accuracy is improved by a factor 10, whilst for β = 0.1 where we find m ∼ 2
the errors are similar (although the CIM is still the most accurate).
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Figure 2. Percentage difference between exact and CIM and large

and small β expansions for varying β.

3. Two phase semi-infinite, subcooled material

The basic two-phase problem considered in the following section is defined as

∂2u

∂x2
=

∂u

∂t
, 0 < x < s

∂2v

∂x2
=

∂v

∂t
, x > s(28)

u = v = 0 β
ds

dt
=

∂v

∂x
− ∂u

∂x
, at x = s(29)

u(0, t) = 1 v(x, 0) = −1 , v = −1 as x → ∞ ,(30)

where we assume that the thermal properties remain constant through the phase
change. This assumption is easily modified, see [14]. This set of equations de-
scribes the melting of a subcooled material, where the melting is driven by the
temperature specified at x = 0. Since u(0, t) > u(s, t) > v(∞, t) the melt front
moves with a positive velocity, st > 0. This system has the exact solution

u = 1 −
erf

(

x
2
√

t

)

erf α
, 0 < x < s , v = −1 +

erfc
(

x
2
√

t

)

erfc α
, s < x < ∞ ,(31)

where the moving front satisfies s(t) = 2α
√

t and α is determined using the Stefan
condition (29b)

βα
√

π =
e−α2

erfα
− e−α2

erfc α
,(32)

see [4].



10 T.G. MYERS AND S.L. MITCHELL

In the melt region the problem is similar to that of §2, with the exception
of the vx term in the Stefan condition. Hence, for the HBIM the appropriate
governing equation in the melt is equation (9). With the RIM, depending on the
initial interval of integration, the governing equation is either (12) or (13); the
two formulations are equivalent once coupled with (9). In the solid appropriate
HBIM and RIM formulations are

d

dt

∫ δ

s

v dx +
dδ

dt
= −∂v

∂x

∣

∣

∣

∣

x=s

(33)

d

dt

∫ δ

s

xv(x, t)dx − s
d

dt

∫ δ

s

vdx + (δ − s)
dδ

dt
= 1 .(34)

The polynomial approximations in the two phases are given by equation (4) in
the melt and (3) in the solid. With these profiles the Stefan condition may be
written

β
ds

dt
=

a

s
− n

δ − s
.(35)

Since this melting problem has st > 0 and δ > s we require a > 0. Equation (35)
obviously admits solutions of the form s = 2µ

√
t, δ = 2λ

√
t and this leads to

(2βµ2 − a)(λ − µ) = −nµ .(36)

Substituting for u from equation (4) the HBIM and RIM equations (9, 12) reduce
to

µ2 =
m(m + 1)(1 − a)

a(m − 1) + 2
, µ2 =

3(1 − a)(2 + m)(1 + m)

2 [a(m + 4)(m − 1) + 6]
.(37)

Using the temperature profile (3) in the solid the HBIM and RIM equations (33,
34) are

nµ + λ =
n(n + 1)

2(λ − µ)
, nµ + 2λ =

(n + 1)(n + 2)

2(λ − µ)
.(38)

Of course, the analysis could stop here. The system of PDEs specified by equa-
tions (28) subject to the Stefan condition (29b) has now been reduced to solving
a set of five algebraic equations, (36–38). However, root finding techniques are
more reliable with fewer equations, consequently we rearrange equations (37) to
find

a =
6(2 − m)

(m − 1)(2m2 + 5m − 6)
, µ =

√

(m + 1)(m + 2)(2m − 3)

4(m − 1)
,(39)

where the positive square root is taken since µ > 0 (to allow the melt front to
move in the positive x direction). While equations (38) may be rearranged to
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Figure 3. Variation of m with β.

give

µ = (n − 2)

√

(n + 1)

2n(n + 2)
, λ =

√

2n(n + 1)

(n + 2)
.(40)

Equating the expressions for µ, (39b, 40a), gives a relation solely between m, n

2(n − 2)2(n + 1)(m − 1) = n(n + 2)(m + 1)(m + 2)(2m − 3) .(41)

Substituting for µ, λ, a in equation (36) provides a second relation between m, n
(and also shows the dependency on β). Hence the problem is now reduced to
solving two simultaneous algebraic equations

2(n − 2)2(n + 1)(m − 1) = n(n + 2)(m + 1)(m + 2)(2m − 3)(42)

[

β(m + 1)(m + 2)(2m − 3)

2
− 6(2 − m)

2m2 + 5m − 6

]

(n + 2) = n(2 − n)(m − 1) .

(43)

As initial guesses for m, n we note that since m, n > 1 then from equation (39a)
the requirement a > 0 determines m < 2, from (39b) µ > 0 requires m > 3/2
while (40a) requires n > 2. Consequently the governing equations are solved with
initial guesses (m, n) = (1.75, 3).

The variation of m, n with β is shown in Figures 3, 4. From Figure 3 it is clear
that m varies only slightly with β and in general m ∈ [1.5, 1.527] (note, for the
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one-phase problem m ∈ [1.5, 2)). Figure 4 shows that n has a greater variation
n ∈ [2, 3.37], and it also has a slower decay towards the large β limit.
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Figure 5. Percentage difference between exact and CIM and large

and small β expansion for varying β.

As in §2 we now consider the behaviour as β → ∞. To save time we do
not show the perturbation method but merely write out the large β (small α)
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expansion of (32) to second order,

α =

√

1

2β

(

1 − 1√
2πβ

− (9 + 2π)

12πβ
+ · · ·

)

.(44)

As β → ∞ obviously α → 0, that is the boundary velocity tends to zero. We
therefore expect the equivalent CIM term, µ, to also tend to zero. Equations
(39b,40a) therefore motivate expansions with leading order terms m = 3/2 and
n = 2. At higher order we find

m =
3

2
+

2

35β
+ O(β−3/2) , n = 2 + 2

√

2

3β
− 1

9β
+ O(β−3/2) .(45)

Note that, unlike the n expansion, the expression for m has no term involving
β−1/2. This is in keeping with the numerical results shown in Figures 3, 4 where
m decays much more rapidly as β → ∞ than n. Substituting the expressions for
m, n into the expressions for µ, λ then gives

µ =
1√
2β

(

1 − 1√
6β

+ O(β−1)

)

, λ =
√

3 + 7

√
2

12β
+ O(β−3/2) .(46)

The expression for µ differs from that of α at first order (
√

6 as compared
to

√
2π or a 2.3% difference), so we would expect reasonably accurate results

(but not as accurate as the one-phase problem where the difference occurred at
second order). The leading order expression for λ is independent of β, reflecting
the fact that even when the melting occurs very slowly the heat is still transmitted
through the solid. Again we can also examine a small β limit. In this case, if
we let α → ∞ in the transcendental equation (32) we find the dominant balance
is incorrect (the erfc term tends to minus infinity and cannot balance with the
positive left hand side) and we are forced to balance the two error function terms.
This must be solved numerically to give α ≈ 0.4769. In Figure 5 we compare the
accuracy of the CIM and large and small β solutions against the exact solution
for α. As in the previous example the CIM is the most accurate over a wide
range of β. In this case, only when β > 51.5 does the large β expansion improve
on the CIM accuracy and by then the error is below 0.1%. In contrast to the
example of §2 the CIM retains excellent accuracy even for small β. The solution
for β → 0 is most accurate for β < 0.012. Below this value the CIM error remains
approximately constant at around 0.44%.

To demonstrate more clearly the accuracy of the CIM in Figure 6 we present
temperature profiles corresponding to β = 1 respectively, at times t = 0.1, 1, 5.
Obviously the agreement between the exact solution (solid line) and CIM solution
(dashed line) is excellent at all times.
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Figure 6. Temperature at t = 0.1, 1, 5 when β = 0.1.

4. One phase semi-infinite material with a constant flux

boundary condition

In §2 we studied the one-phase problem with a constant temperature boundary
condition. In the following analysis we deal with a similar problem, the difference
being that the boundary condition is modified to one of constant flux, that is, we
replace u(0, t) = 1 with

∂u

∂x
= −1 , at x = 0 .(47)

The cases examined in the previous two sections led to approximating polynomials
with constant exponent m. However, in [16, 17] a number of examples were shown
where m = m(t). This made the analysis too complicated for practical use, so the
author worked with the constant value m(0). In the following we will demonstrate
that the CIM deals more easily with such cases. As well as being an example with
varying m, this case also has no exact analytical solution and so is well suited to
approximate techniques such as the CIM.

The approximating profile for u is similar to (4) and given by

u = a
(

1 − x

s

)

− a − s

m

(

1 − x

s

)m

,(48)

which satisfies u(s, t) = 0 and (47). After substituting into the HBIM and RIM
formulations we obtain

d

dt

[

as

2
− (a − s)s

m(m + 1)

]

=
s − a

s
(49)

d

dt

[

as2

6
− (a − s)s2

m(m + 1)(m + 2)

]

=
s − a

m
,(50)
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and these must be coupled to the Stefan condition (11).
The problem has now been reduced to solving three ODEs for a, s and m. In

the previous examples we assumed m to be constant and then a = a(m) was also
constant. Eliminating s from the equations led to an algebraic relation involving
only β, i.e. m = m(β). In the present case if we set a, m to be constant a similar
elimination process results in m = m(st) and it is therefore only independent of
time if s ∝ t. (As will be seen later, the small time solution has s ∝ t and then
m is constant at leading order). If we attempt a solution of the form s = Ct
then either of (49) or (50) leads to m = m(t) and so we are forced to treat a and
m as time-dependent. This requires further initial conditions. Since s(0) = 0 it
follows from (48) that a(0) = 0 to ensure u(x, 0) = 0.

We may determine the initial condition for m in a number of ways. A formal
expansion of the governing equations for small t may be found in Appendix 1.
However, we may also exploit our knowledge of the solution behaviour. For small
time, both a and s → 0, while m tends to a non-zero constant. So, for small t
we let m = m0, s = s0t

p. Equation (11) then shows a = βs2

0
pt2p−1 and equation

(49) becomes

d

dt

[

βs3

0
pt3p−1

2
+

s2

0
t2p − βs3

0
pt3p−1

m0(m0 + 1)

]

= 1 − βps0t
p−1 ,(51)

or

βs3

0
p(3p − 1)t3p−2

2
+

s2

0
2pt2p−1 − βs3

0
p(3p − 1)t3p−2

m0(m0 + 1)
= 1 − βps0t

p−1 .(52)

The only physically sensible balance is between the two terms on the right hand
side, giving p = 1 and s(0) → 0. There are other balances between terms, namely,
p = −1, 1/2, 1/3: the first gives s(0) → ∞ the other two lead to the final term on
the right hand side, tp−1, dominating and so must be discounted. Setting p = 1
and balancing the two terms on the right hand side requires s0 = 1/β, and hence
a = t/β. To find higher order terms the leading order solutions motivate the
expansion

s =
t

β
+ s1t

2 + s2t
3 , a =

t

β
+ 3s1t

2 + (2βs2

1
+ 4s2)t

3 ,(53)

m = m0 + m1t + m2t
2 .(54)

Substituting into (49) and (50) leads to

s =
t

β

(

1 − t

2β2
+

5t2

6β4
+ · · ·

)

(55)

a =
t

β

(

1 − 3t

2β2
+

23t2

6β4
+ · · ·

)

(56)

m = 2 +
t2

3β4
+ · · · .(57)
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Hence, as t → 0 our initial conditions are determined by s(0) = a(0) → t/β, m
→ 2. These values are in agreement with the more formal analysis of Appendix 1.

Since there is no exact solution to this problem we now consider the large β
perturbation, as in §2. We follow the analysis of §2 and first re-scale time t = βτ
and denote u(x, τ) = U(y, s) to obtain (18). With the expansion for U given by
(19) subject to the boundary conditions

∂U0

∂y
= −1 ,

∂U1

∂y
=

∂U2

∂y
= 0 ,(58)

at y = −s and U0 = U1 = U2 = 0 at y = 0 we find

U0 = −y , U1 =
1

2
y2 + sy , U2 = −sy2 − 2s2y .(59)

Substituting these into the Stefan condition gives

s = τ

(

1 − 1

2
ǫτ +

5

6
ǫ2τ 2 + · · ·

)

=
t

β

(

1 − t

2β2
+

5t2

6β4
+ · · ·

)

.(60)

Note, since t appears solely in the form t/β the large β expansion is equivalent
to the small t expansion and so the large β expansion of the CIM solution is
identical to equation (55).

Figure 7 shows plots of m and a against t for various values of β. We see that
m → 2 as t → 0 or β → ∞, while a → 0 as t → 0 and a ∝ t as β → ∞ which
confirms the asymptotic results in (55) and (56). In the left plot in Figure 8 we
show s against t for various β. The solid line is the CIM solution, whilst the
perturbation solution of (60) is the dotted line. For the two highest values of β
the agreement with the CIM solution is very close and the curves are virtually
indistinguishable. However, at β = 1 the perturbation solution clearly breaks
down after a very short time. The right plot in Figure 8 gives the error in s
against β at t = 1 between the asymptotic and CIM solutions when compared
to a numerical solution, similar to that described in Mitchell & Vynnycky [15].
In this case, only when β > 24 does the large β expansion improve on the CIM
accuracy and by then the error is below 0.001%. This again demonstrates that
CIM is more accurate over a wide range of β. Note we cut off the solutions for
β > 7 due to numerical difficulties.

5. Time-dependent boundary condition

Finally we highlight the application of the CIM to a problem with an explicit
time-dependence at the boundary x = 0. Consider the one-phase problem of §2
but with a time dependent boundary temperature u(0, t) = f(t). The approxi-
mating profile for u is now

u = a
(

1 − x

s

)

+ (f − a)
(

1 − x

s

)m

.(61)
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Figure 7. m(t) and a(t) for the constant flux boundary condition.
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flux boundary condition.

The HBIM and RIM formulations are given by equation (9) and

d

dt

∫ s

0

xu dx = f(t) + s
∂u

∂x

∣

∣

∣

∣

x=s

.(62)

Substituting the profile u from (61) into these leads to

d

dt

[

as

2
+

(f − a)s

(m + 1)

]

=
m(f − a)

s
(63)

d

dt

[

as2

6
+

(f − a)s2

(m + 1)(m + 2)

]

= f − a ,(64)
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or
[

(m − 1)a + 2f
]ds

dt
+ (m − 1)s

da

dt
+

2s(a − f)

m + 1

dm

dt

=
2m(m + 1)(f − a)

s
− 2s

df

dt
(65)

[

2(m2 + 3m − 4)a + 12f
]ds

dt
+ (m2 + 3m − 4)s

da

dt
+

6(2m + 3)s(a − f)

(m + 1)(m + 2)

dm

dt

=
6(m + 1)(m + 2)(f − a)

s
− 6s

df

dt
.(66)

For this problem the PDE formulation is reduced to the solution of three first
order ODEs (65, 66, 11), involving the unknowns a, s, m. To determine the initial
conditions for a and m we note that as t → 0 the boundary temperature also
tends to a constant f → f0. With the correct scaling we may set f0 = 1 and
so a(0), m(0) are determined from the constant boundary temperature problem
given by (15, 16).

The left plot in Figure 9 shows s against t for the case f(t) = 1+t and various β.
The dashed line denotes the CIM solution and the solid line denotes the numerical
solution [15]. As we found for the examples considered in the previous sections,
the CIM shows excellent agreement for large β but breaks down as β → 0: for the
worst case shown, the error in s at t = 5 when β = 0.1 is around 3%. In Figure
9b we compare temperature profiles in the melt for three values of β. Only in
the case β = 0.1 can the CIM and numerical curves be distinguished. For the
sake of brevity we do not show plots of a and m, but note that both increase
monotonically. For large β m varies between 1.5 and a value slightly above 2
while a varies approximately between 1 and 5. For β = 0.1 the variation in m is
greater, approximately between 1.75 and 3.25 while a remains close to 0.5.

This example shows that the CIM can be applied to certain problems with time
dependent boundary conditions. Here we used f(t) = 1 + t which is a monotoni-
cally increasing function of t. In Sadoun et al [22] the RIM (with m = 2) is applied
to boundary conditions of the form f(t) = 1 − 0.2t and f(t) = 1 − ǫ sin(ωt). We
deliberately avoid these boundary conditions since heat balance integral meth-
ods are not well suited to problems where the temperature tends to zero or has
oscillations. The plots of s(t) given in [22] show good agreement with numerical
solutions, although with the oscillating function s increases monotonically, fol-
lowing the peaks of the numerical solution. However, for a sufficiently long time
or sufficiently large ǫ, the temperature profile will generally diverge from the true
profile, and this is not discussed at all in [22].

For thermal problems this issue is discussed in detail in [12]. Their argument
may be summarised as follows. When f is a decreasing function of time the
temperature at x = 0 decreases with time. Since initially the temperature within
the medium is everywhere below the boundary value, for small times it decreases
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Figure 9. s(t) and u(x, 5) for the time dependent boundary con-

dition u(0, t) = 1 + t.

monotonically to the far field temperature. However, as the initial energy prop-
agates into the material there comes a time when the internal temperature is
greater than that at the boundary. This first occurs when ux(0, t) = 0 and sub-
sequently there is a maximum at some point x = p(t) where 0 < p < δ. The
standard polynomial profiles do not permit a turning point, ux 6= 0 (except when
x = δ), and consequently, the HBIM or RIM will fail when describing any pro-
file with a turning point. If, in some manner, the boundary temperature could
reach zero without the solution breaking down then with u(0, t) = u(δ, t) = 0
the HBIM and RIM will both predict u(x, t) = 0 everywhere. So, in the case
f = 1 − 0.2t the integral methods will predict u(x, t) = 0 at t = 5 even though
heat has propagated into the medium up until this time. Obviously an oscilla-
tory boundary temperature will lead to unreliable temperature predictions for
sufficiently large ǫ. In our case we find the CIM breaks down even quicker than
the other integral methods because our method has both a and m adjusting to
provide the best approximation to the temperature. The solutions for s of [22]
do not capture the oscillations correctly, whereas our method does for small time
and will consequently fail earlier. The problem is easily spotted in the exponent
m which decreases and, once it is below one, the temperature profile becomes
unrealistic. Methods with a fixed m do not suffer in this way. This is not to
say that integral methods should not be used on such boundary conditions, how-
ever both the temperature and position of the moving front should be monitored
closely.

6. Summary and discussion

The classical HBIM analysis involved specifying an approximating function,
usually a quadratic and then, after applying appropriate boundary conditions,
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integrating the heat equation and solving the resultant ordinary differential equa-
tion for the heat penetration depth δ. This approach has been extended by many
authors through different approximating functions, cubic, quartic, exponential
etc. Recently a new approach was investigated in [16, 17], where the exponent of
the highest order term in the polynomial was left unknown. An extra unknown
requires an extra equation and this was provided by the function En, equation
(2), which defines the least squares error of the approximate solution to the heat
equation. The process followed in [16, 17] then provided values for the exponent
that would minimise the error. For example, for a simple thermal problem with
a constant temperature applied at the boundary setting m = 2.233 will provide
the most accurate HBIM solution. For a fixed flux condition m = 3.584 is best.
However, for certain problems it turns out that m = m(t) and then the method of
[16, 17] becomes unwieldy. This motivated the current study, to find an accurate
and simple way to determine values for the unknown exponent.

In the present study we followed a similar route, in that there is an unde-
termined exponent. The extra governing equation is provided through the RIM
approach. This method proved to be highly accurate. For the one-phase Stefan
problem with a fixed boundary temperature the governing equations reduced to
solving a single algebraic equation to determine m = m(β). For the two phase
case the problem reduced to solving two algebraic equations for n, m. In both
cases we were able to show that the solutions were more accurate than the second
order perturbation for a wide range of Stefan numbers. Only for β > 7 for the one
phase and β > 51 for the two phase case does the perturbation solution become
more accurate and by this stage the error is below 0.1%.

Of course, when using the error defined by (2) the exponents obtained by the
method of [16, 17] will lead to even more accurate results than in the present
study. However, the present method generally exhibits a similar level of accuracy
and really comes to the fore when analysing more complex boundary conditions.
For example in [17] the problem of ablation, with a constant flux at the boundary,
is considered. This leads to a time-dependent exponent and the algebra involved
in minimising En becomes too complex to deal with. Consequently n is set to
n(0) (the error is greatest at t = 0). However, this does mean that for all t > 0
the error En(t) is no longer minimised. For the current approach the analysis
remains simple, and for a constant flux problem the governing equations reduce
to solving three first order ordinary differential equations. Comparison with a
full numerical solution demonstrated the accuracy of the method and also showed
that for β < 24 the CIM is more accurate than the second order perturbation
solution. Finally, we considered a boundary temperature that increased linearly
with time and again excellent agreement with a numerical solution was shown
for a wide range of β.

There are difficulties associated with the present method. For example, for
time-dependent parameter values the choice of initial condition can be difficult.
We found values through small time expansions. However, a pragmatic approach
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would be to simply specify a value, for example m = 3, and hope that the
numerical solution quickly converges to the correct value. As discussed in the final
section, when the boundary temperature approaches zero, or oscillates too much
integral methods will tend to break down. The CIM may break down quicker
than standard approaches which do not provide such an accurate approximation
for small times and hence avoid the difficulties for longer.
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Appendix A. Asymptotic behaviour for small time for the

constant flux condition

Since the melt region is initially of zero thickness, it is advantageous to work
in transformed coordinates. Hence we set

(A.1) ξ =
x

s(t)
, u = s(t)U(ξ, t) ,

so that the governing equations and boundary conditions become

∂2U

∂ξ2
= s

[

stU + s
∂U

∂t
− ξst

∂U

∂ξ

]

, 0 < ξ < 1(A.2)

U = 0 , βst = −∂U

∂ξ
, at ξ = 1(A.3)

∂U

∂ξ
= −1 , at ξ = 0(A.4)

U = 0 , s = 0 , at t = 0 .(A.5)

Following [3, 5], we seek a solution of (A.2)-(A.5) by expanding U and st in a
power series in s

U(ξ, s) = U0(ξ) + sU1(ξ) + s2U2(ξ) + . . . , st(s) = F0 + sF1 + s2F2 + . . . .

(A.6)

Substituting these expansions into (A.2-A.5) gives the leading order equations:

∂2U0

∂ξ2
= 0 , U0(1) = 0 , βF0 = −∂U0

∂ξ

∣

∣

∣

∣

ξ=1

,
∂U0

∂ξ

∣

∣

∣

∣

ξ=0

= −1 ,(A.7)
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which have solution

U0 = 1 − ξ , F0 =
1

β
.(A.8)

The O(s) equations are

∂2U1

∂ξ2
= F0U0 − ξF0

∂U0

∂ξ
, U1(1) = 0 ,(A.9)

βF1 = −∂U1

∂ξ

∣

∣

∣

∣

ξ=1

,
∂U1

∂ξ

∣

∣

∣

∣

ξ=0

= 0 ,(A.10)

and these can be solved to give

U1 =
1

2β
(ξ2 − 1) , F1 = − 1

β2
.(A.11)

If we look at the next order terms, from examining (A.2) it is clear that we need
to evaluate ∂U

∂t
. Now, since the expansion in (A.6) is for U ≡ U(ξ, s) we have

∂U

∂t
=

∂U

∂s
st = st

∂

∂s

(

U0 + sU1 + . . .
)

= stU1 .

Thus the O(s2) equations become

∂2U2

∂ξ2
= 2F0U1 + F1U0 − ξ

(

F0

∂U1

∂ξ
+ F1

∂U0

∂ξ

)

, U2(1) = 0 ,(A.12)

βF2 = −∂U2

∂ξ

∣

∣

∣

∣

ξ=1

,
∂U2

∂ξ

∣

∣

∣

∣

ξ=0

= 0 ,(A.13)

and these can be solved to give

U2 = − 1

β2
(ξ2 − 1) , F2 =

2

β3
.(A.14)

In fact, the next order terms give

U3 =
3ξ2

β3
− ξ4

12β3
− 35

12
, F2 = −17

β4
.(A.15)

Hence

st =
1

β
− 1

β2
s +

2

β3
s2 − 17

3β4
s3 .

If we substitute the expansion

s = s0t + s1t
2 + s2t

3 + s3t
4 ,(A.16)

and match terms then we find that

s(t) =
t

β
− 1

2β3
t2 +

5

6β5
t3 − 17

8β7
t4 .(A.17)
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We can also substitute (A.16) into the HBIM, RIM equations (49, 50) and Stefan
condition (11). Assuming a and m are of the form

a = a0t + a1t
2 + a2t

3 + a3t
3 , m = m0 + m1t + m2t

2 ,(A.18)

we find that s satisfies (A.17) and

a =
t

β
− 3

2β3
t2 +

23

6β5
t3 − 305

24β7
t4 , m = 2 +

43

2β4
t2 .(A.19)
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