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Abstract. A mathematical model is developed to analyse the combined flow
and solidification of a liquid in a small pipe or two-dimensional channel. In
either case the problem reduces to solving a single equation for the position
of the solidification front. Results show that for a large range of flow rates
the closure time is approximately constant, and the value depends primarily
on the wall temperature and channel width. However, the ice shape at closure
will be very different for low and high fluxes. As the flow rate increases the
closure time starts to depend on the flow rate until the closure time increases
dramatically, subsequently the pipe will never close.

1. Introduction

Microfluidic valves are often miniature versions of their larger counterparts.
However, due to obvious constraints, such as manufacturing difficulties on a small-
scale or lack of space in the microfluidic device, there are also a number of valves
that exploit technology not appropriate on a larger scale [5]. In the present paper
we discuss one such device, namely the phase change valve.

The phase change valve can work by either displacing a membrane to block the
channel or to freeze the fluid within the channel [5, 7, 10, 17]. They suffer from an
obvious drawback of slow response times, on the order of seconds as opposed to
milliseconds for standard valves. However, they do provide a versatile alternative
to conventional microvalves when rapid closure is not critical, such as in micro
PCR chips [19]. They may also be adapted to a variety of lab on a chip devices
[8, 15]. In high flow rate situations, conventional valves must be robust and
consequently are larger and so they generate considerable flow resistance. This
is particularly problematic when rows of valves are required. Another issue with
standard microvalves is that, in general, they require continuous consumption
of energy to remain in an open or closed state [17]. On the other hand, phase
change valves are virtually leakproof without utilising much space [8, 19]. Valves
that rely on freezing the fluid in the channel have the added advantage that they
contain no moving parts [8]. The phase change microvalve developed by Yang
and Lin only requires energy during switching of flow status [17].
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There exist numerous experimental studies into phase change valves. Bevan &
Mutton [2, 3] developed a ‘freeze-thaw’ valve to refine electrophoresis and liquid
chromatography processes. He et al [10] developed a phase change valve for a
PCR system. This technique was further developed by Chen et al [5] and Gui
& Liu [8]. Chen et al also developed freeze-thaw valves for aqueous and paraffin
wax based solutions [5]. The activation time for these devices ranged from 0.5 to
20 seconds.

To date theoretical studies of freezing flow in microchannels have been very
limited and in order to make the analysis tractable involve highly restrictive
assumptions. For example, Gui & Liu [8] developed a basic model that assumed
plug flow in the liquid, a constant temperature across the pipe, no phase change
and a known outlet temperature. Under these assumptions the solution for the
fluid temperature is given in the classic text of Carslaw & Jaeger [4]. However, the
result indicated a closing time tcl ∝ 1/U2, where U is the average velocity. That is,
the faster the fluid moves the more rapid the freezing (a result which the authors
recognise as unrealistic). In fact their constant temperature model is consistent
with previous models for turbulent flow, where the temperature and velocity
are averaged over the cross-section and the boundary condition at the wall then
enters as a source term in the governing equation, see [14] for example. In fact,
in [14] non-dimensionalisation shows that diffusion along the pipe is negligible
in comparison to the advection (by a factor of order 10−9!) which considerably
simplifies the analysis. The problem with the closure time may then be traced
back to incorrectly balancing diffusion with advection. Chen et al [5] study the
flow numerically using the FEMLAB package. They also neglect freezing and
assume closure occurs instantaneously when the water temperature reaches the
value -17◦C. In different parameter regimes freezing of liquid in pipes is a classical
problem, particularly the so-called ‘freeze-shut’ problem (see the review of [16]
for example). Lister & Dellar [11] study a similar problem in the context of lava
solidification. Indeed, our governing equations may be retrieved as a particular
limit of theirs.

In the following work we will analyse the flow in a two-dimensional straight
sided channel and a circular cross-section pipe subject to a specified wall temper-
ature. A model will be developed for the combined flow and solidification which
can then be used to determine the dominant forces driving the freezing and so
provide guidelines for the design and operation of a phase change microvalve. In
the course of our analysis we find that the freezing time varies with the tem-
perature difference Tf − Tw, where Tf and Tw are the solidification and wall
temperatures respectively. In the numerical calculations we use parameter values
for a water-ice system with Tf = 273.15K (and so neglect supercooling). A num-
ber of researchers quote the maximum supercooling as Tf ≈ 256.15K and use this
value in their calculations. However, the actual phase change temperature will
depend on the availability of nucleation sites [18] and therefore the smoothness
of the channel. Since this will clearly vary widely with the experimental set-up,
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we retain the standard value for water solidification, but stress that the theory is
valid for any choice of Tf . It is also worth pointing out that in the final stages of
freezing the phase change temperature will decrease due to the Gibbs-Thompson
effect (for example for a water-ice system the melting temperature is reduced by
approximately 12K when R = 10nm). In common with other studies on freezing
in microchannels we will assume this effect to be small and so neglect it.

2. Mathematical modelling

2.1. Cartesian freezing. We begin by analysing the two-dimensional Carte-
sian problem. The configuration is shown in Fig. 1. Fluid flows in the positive
x-direction due to the action of a pressure gradient. The walls are cooled so that
the fluid solidifies. The pipe is assumed to be sufficiently small such that gravity
may be neglected.

z=h(x,t)

z

x

Figure 1. Problem configuration.

In the liquid the flow is governed by the Navier-Stokes equations (1) and the
heat equation (2) which includes the advection term. In the solid the heat equa-
tion with no advection holds in (3). Finally, the interface between the solid and
liquid layers is specified by a Stefan condition (4).

ρ
du

dt
= −∇p + µ∇2u(1)

∂T

∂t
+ u · ∇T = αl∇2T − h(x, t) < z < h(x, t)(2)

∂θ

∂t
= αs∇2θ h(x, t) < |z| < 1(3)

ρsLf
dh

dt
= ks

∂θ

∂z

∣

∣

∣

∣

z=h

− kl
∂T

∂z

∣

∣

∣

∣

z=h

.(4)

In these equations u is the fluid velocity vector, T, θ are the temperatures in the
solid and liquid layers (and subscripts s, l denote solid and liquid respectively).
The constants ρ, µ, α, Lf and k represent density, viscosity, thermal diffusivity,
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latent heat and thermal conductivity, and α = k/(ρc) where c is the heat capacity.
Typical values for ice and water are quoted in Table 1.

Ice/water

kl 0.57 Wm−1 K−1 ks 2.18 Wm−1 K−1

cl 4181 J kg−1 K−1 cs 2050 J kg−1 K−1

ρl 1000 kgm−3 ρs 917 kgm−3

κl 1.35 ×10−7 m2 s−1 κs 1.16 ×10−6 m2 s−1

Lf 3.34 × 105 J kg−1 µ 0.001 N sm−2

Tf 273.15 K T0 283 K

Tw 263 K

Table 1. Typical parameter values for ice and water [13].

In order to sensibly simplify the problem we first non-dimensionalise so that

x̄ =
x

L
z̄ =

z

R
ū =

u

U
w̄ =

w

W
p̄ =

p

P
(5)

t̄ =
t

τ
T̄ =

T − Tf

To − Tf

θ̄ =
θ − Tf

Tf − Tw

(6)

where, noting that the geometry is long and thin, the standard lubrication scalings
hold and so W = RU/L, P = µUL/R2. Immediately dropping the overbar
notation, this leads to the usual lubrication equations

∂2u

∂z2
=

∂p

∂x
+ O(ǫ2, ǫ2Re)

∂p

∂z
= O(ǫ2, ǫ4Re)

∂u

∂x
+

∂w

∂z
= 0 .(7)

Since freezing is the quantity of primary interest, the time-scale τ =
ρiLfR

2/(ks(Tf −Tw)) is taken from the Stefan condition, where we assume freez-
ing is driven through the contact with the wall

∂h

∂t
=

(

∂θ

∂z
− k

∂T

∂z

)
∣

∣

∣

∣

z=h

(8)

where k = kl(To − Tf)/(ks(Tf − Tw)) is assumed to be O(1). The heat equation
in the solid is

1

S

∂θ

∂t
=

∂2θ

∂z2
+ O(ǫ2)(9)

where the Stefan number S = Lf/(cl(Tf − Tw)). In the liquid we find

α

S

∂T

∂t
+ Pe

(

u
∂T

∂x
+ w

∂T

∂z

)

=
∂2T

∂z2
+ O(ǫ2)(10)

where α = αs(To − Tf)/(αl(Tf − Tw)) and the Péclet number Pe = UR2/(αlL).
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The flow equations must be solved subject to no-slip at the solid-liquid bound-
ary, symmetry along the centre-line and a mass balance at the solid boundary:

u(x,±h(x, t), t) = 0 w(x, 0, t) = 0 w(x, h(x, t), t) =

(

1 − ρs

ρl

)

L

Uτ

∂h

∂t
.(11)

As a first approximation we impose a known, constant temperature at the wall
(which is equivalent to specifying a high heat transfer coefficient there). At
the phase change boundary the temperature in either phase is the solidification
temperature and again there is symmetry at the mid-point:

θ(x, 1, t) = −1 θ(x, h, t) = T (x, h, t) = 0
∂T

∂z

∣

∣

∣

∣

z=0

= 0 .(12)

At the inlet the liquid temperature is constant:

T (0, z, t) = 1 .(13)

Note that the dimensional solid temperature is simply denoted Tf (and the non-
dimensional value is -1). Although in the results section we set Tf = 273.15 the
analysis does not preclude different values for Tf to account for supercooling.

Neglecting the obviously small terms, the flow equations may be solved to give

u =
px

2
(z2 − h2)(14)

w = − ∂

∂x

∫ z

0

u(x, ξ, t) dξ = − ∂

∂x

[px

6

(

z3 − 3h2z
)

]

.(15)

An important quantity is the fluid flux

Q = 2

∫ h

0

udz = −2

3
h3px .(16)

Equating the boundary condition for w(x, h, t) in (11) and the value predicted
by Eq. (15) gives the mass balance

L

Uτ

(

1 − ρs

ρl

)

∂h

∂t
=

∂

∂x

[

pxh
3

3

]

.(17)

This basically states that the liquid layer changes height due to local changes in
the flow rate.

Even after the simplifications already made the set of equations is complex,
so we now seek further reductions. In the majority of analyses of phase change
ρs is set equal to ρl which then shows h3px = −3Q/2 is independent of x. In
the present situation this may not be the case, however, provided the product
L/(Uτ)(1 − ρs/ρl) is small then we may neglect the left hand side of Eq. (17)
and thus determine that Q ≈ Q(t). Given that L/(Uτ) is the ratio of the flow
time-scale to the freezing time-scale it is clear that, except for extremely slow
flows (which are of little interest), this ratio is indeed small. If necessary this
statement could be verified a priori once the problem has been solved. If we
now consider a water-ice system then S = Lf/(cl(Tf − Tw)) ≈ 80/(Tf − Tw).
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So, for a sensible temperature difference between the wall and the phase change
temperature, S ≫ 1 and the time derivatives are negligible in the heat equations
(hence we have what is termed the pseudo-steady approximation, where time
drops out of the governing equations but remains present through the influence
of the moving boundary). Finally we will work in a co-ordinate system where
the flow domain is rectangular ẑ ∈ [−1, 1] by using the Landau transformation
ẑ = z/h(x, t), see [6, p187]. Then

u =
pxh

2

2
(ẑ2 − 1) = −3Q

4h
(ẑ2 − 1)(18)

w(x, ẑ, t) = − ∂

∂x

[

pxh
3

6

(

ẑ3 − 3ẑ
)

]

=
∂

∂x

[

Q

4

(

ẑ3 − 3ẑ
)

]

.(19)

Noting that ẑx = −ẑhx/h we may express the velocity w as

w(x, ẑ, t) = −3Q

4h
ẑhx

(

ẑ2 − 1
)

= ẑhxu .(20)

The heat flow is described by

Pe

[

u

(

∂T

∂x
− ẑhx

h

∂T

∂ẑ

)

+
w

h

∂T

∂ẑ

]

=
1

h2

∂2T

∂ẑ2
(21)

where we have used ẑt = −ẑht/h. Noting the relation between u and w and
substituting for u via Eq. (18) this reduces to

−3QPe

4
(ẑ2 − 1)

∂T

∂x
=

1

h

∂2T

∂ẑ2
.(22)

This simplification is achieved since in the new co-ordinate system the solid
boundaries are described by ẑ = ±1 and so there is no ‘vertical’ flow. The
vertical velocity w therefore has no influence in this formulation. An important
feature of Eq. (22), given that h = h(x, t), is that it is separable and so may be
solved analytically. The thermal boundary conditions are: at ẑ = 1/h, θ = −1; at
ẑ = 1, θ = T = 0; at x = 0, T = 1; at ẑ = 0, Tz = 0. By setting T = X(x)Z(ẑ),
Eq. (16) then becomes

−h(x, t)

β(t)

X ′

X
=

1

(ẑ2 − 1)

Z ′′

Z
= λ2(23)

where β(t) = 4/[3Q(t)Pe]. This leads to

T =
∞

∑

n=1

Ane−λ2
nβH(x,t)Zn(ẑ)(24)

where H =
∫ x

0
1/h(ξ, t) dξ. The eigenfunctions are

Zn =
Wm(λn/4, 1/4, λnẑ

2)√
ẑ

+ C
Ww(λn/4, 1/4, λnẑ

2)√
ẑ

(25)
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where the constant

C =
Γ((1 − λn)/4)

2
√

π
= −

(

3 + λn

8
√

π

)

Γ

(

−3 + λn

4

)

(26)

and Wm, Ww are the Whittaker M and W functions respectively (see [1] for
example). The coefficients An come through orthogonality:

An =

∫ 1

0
(1 − ẑ2)Zn dẑ

∫ 1

0
(1 − ẑ2)Z2

n dẑ
.(27)

The eigenvalues, λn, satisfy the transcendental equation

Wm(λn/4, 1/4, λn) + CWw(λn/4, 1/4, λn) = 0 .(28)

The temperature in the solid may now be written as

∂2θ

∂ẑ2
= 0(29)

hence

θ = −h(ẑ − 1)

1 − h
.(30)

Equations (24) and (30) provide explicit expressions for the temperatures in
the liquid and solid phases. Substituting for the temperature gradients into the
Stefan condition

h
∂h

∂t
=

(

∂θ

∂ẑ
− k

∂T

∂ẑ

)
∣

∣

∣

∣

ẑ=1

(31)

results in a single first order integro-differential equation to solve for the position
of the freezing front, h(x, t)

h
∂h

∂t
= − h

1 − h
− k

∞
∑

n=1

Ane−λ2
nβ(t)H(x,t) ∂Zn

∂ẑ

∣

∣

∣

∣

ẑ=1

(32)

with initial condition h(x, 0) = 1. Once h is determined, the pressure, tempera-
ture and velocity fields may be determined from the appropriate equations.

To solve Eq. (32) we must first consider the driving force. Mathematically the
simplest situation is to specify a constant flux Q (and so β is constant) and then
allow the pressure to adjust accordingly. However, in reality it is more likely the
pressure drop across the channel, pin − pout, that is specified. Further, fixing Q
would prevent us from analysing channel closure, where Q → 0. In which case
we integrate Eq. (16) to determine the time-dependent flux:

Q(t) =
2

3
(pin − pout)

[
∫ 1

0

1

h(x, t)3
dx

]−1

.(33)

This specifies Q(t) for a given ∆p = pin − pout and hence β(t) which appears in
Eq. (32).



8 T.G. MYERS AND J. LOW

2.2. Freezing in a circular pipe. We now follow a similar analysis for flow
through a circular pipe, where x is measured along the pipe axis and r is per-
pendicular to this. To the same level of approximation as in the previous section
the governing equations are

1

r

∂

∂r

(

r
∂u

∂r

)

=
∂p

∂x

∂p

∂r
= 0

∂u

∂x
+

1

r

∂

∂r
(rw) = 0 ,(34)

where terms of order ǫ2 and ǫ4Re are neglected. The Stefan condition is un-
changed from Eq. (8), with the exception that it is now applied at r = h(x, t).
The leading order heat equation in the solid is

1

r

∂

∂r

(

r
∂θ

∂r

)

= 0 .(35)

In the liquid it is

Pe

(

u
∂T

∂x
+ w

∂T

∂r

)

=
1

r

∂

∂r

(

r
∂T

∂r

)

.(36)

The flow equations are subject to

u(x, h(x, t), t) = 0 ur(x, 0, t) = 0 w(x, 0, t) = 0(37)

w(x, h(x, t), t) =

(

1 − ρs

ρl

)

L

Uτ

∂h

∂t
(38)

and the flux is specified by

Q = 2π

∫ h

0

ru dr .(39)

This leads to

u =
px

4
(r2 − h2) Q = −π

8
h4px(40)

w = −1

r

∂

∂x

∫ r

0

ξu(x, ξ, t) dξ = −1

r

∂

∂x

[px

16
r2

(

r2 − 2h2
)

]

.(41)

Equating the boundary condition for w(x, h, t) and the value predicted by
w(x, z, t) gives the mass balance

L

Uτ

(

1 − ρs

ρl

)

∂h

∂t
=

1

16h

∂

∂x

[

pxh
4
]

.(42)

So, provided the left hand side is small, we have that h4px ≈ −8Q/π is a function
of time and the pressure-flux relation is

pout − pin = −8Q(t)

π

∫ 1

0

1

h(x, t)4
dx .(43)

Setting r̂ = r/h(x, t) we obtain

u =
2Q

πh2
(1 − r̂2)(44)
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Q

2πr̂h

∂

∂x

(

r̂4 − 2r̂2
)

= − 2Q

πh2
r̂hx(r̂

2 − 1) = r̂hxu .(45)

In the Cartesian problem the heat flow in the liquid involves h(x, t). In the ax-
isymmetric problem it does not appear and so the reduction is somewhat simpler:

2Pe Q(t)

π
(1 − r̂2)

∂T

∂x
=

1

r̂

∂

∂r̂

(

r̂
∂T

∂r̂

)

.(46)

If we set T = X(x)R(r̂) then

X ′

γX
=

1

r̂(1 − r̂2)R

∂

∂r̂

(

r̂
∂R

∂r̂

)

= −λ2(47)

where γ(t) = π/[2Pe Q(t)]. The eigenfunctions are

Rn =
Wm(λn/4, 0, λnr̂

2)

r̂
(48)

where the transcendental equation to determine the eigenvalues is

Wm(λn/4, 0, λn) = 0 .(49)

Hence

T =

∞
∑

n=1

Ane−λ2
nγ(t)xRn(r̂) .(50)

The weight function in the Sturm-Liouville problem, defined by Eq. (47), is
r̂(1 − r̂2) and so orthogonality requires

∫ 1

0

r̂(1 − r̂2)RnRm dr̂ = 0(51)

for n 6= m. The series coefficients are then determined, after imposing the condi-
tion X(0) = 0, as

An =

∫ 1

0
r̂(1 − r̂2)Rn dr̂

∫ 1

0
r̂(1 − r̂2)R2

n dr̂
.(52)

In the solid the temperature is defined by

θ =
ln r̂

ln h
(53)

which satisfies θ = −1 at r̂ = 1/h and θ = 0 at r̂ = 1. The Stefan condition is
identical to Eq. (31) except it is applied at r̂ = 1. This leads to the governing
equation for the interface position

h
∂h

∂t
=

1

ln h
− k

∞
∑

n=1

Ane−λ2
nγ(t)x dRn

dr̂

∣

∣

∣

∣

r̂=1

.(54)

Again, once this is solved all other quantities follow from the appropriate equa-
tions.
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2.3. Limiting behaviour. Equation (32) has an obvious singularity as t → 0
and so h → 1. This is a consequence of imposing a (non-dimensional) temperature
of -1 at the wall when the initial fluid temperature is 1. The jump in temperatures
leads to an initially infinite temperature gradient and so as t → 0 the dominant
balance in Eq. (32) is

h
∂h

∂t
= − h

1 − h
,(55)

which integrates immediately to give

h = 1 −
√

2t(56)

(after noting h = 1 at t = 0 and ht < 0). Since there is no x dependence in
the above equation, initially the problem is one-dimensional. This solution is
typical for one-dimensional Stefan problems with a fixed temperature boundary
condition where ht ∝ t−1/2 (see [12] for example). If Eq. (56) held for all time
the pipe would be totally blocked when t = 1/2. This gives us an indication of
the time-scale for calculating solutions with flow.

In general we expect the solution to resemble the small time solution, that is
the growth rate depends only on time, when the summation term in Eq. (32) is
small. This requires either small k or large βH (note H is an increasing function
of x and H = 0 at x = 0). Hence, the shape of the freezing front will be
approximately constant if

(1) k ≪ 1, that is the wall temperature is well below freezing, Tw ≫ Tf , and
so the wall temperature dominates or the incoming water temperature is
close to freezing, T0 ≈ Tf , and so has little effect on the process.

(2) βH ≫ 1: β large implies a small Péclet number or small flux, both of
which are attained with a narrow channel or slow moving fluid; H large
requires either h small or that we are sufficiently far down the pipe that
the water temperature is close to freezing.

On the other hand, when the summation term is large, i.e. large k or Pe or small
x then the water temperature has a strong effect and so we expect a noticeable x
variation in the solutions. However, since initially h ≈ 1, the growth must always
be independent of x at early times. Further, as the channel closes, Q → 0 and so
β increases also H =

∫ x

0
1/h dξ increases so in the final stages, the growth will be

independent of x. For example, in situations with large Pe we would expect the
solid growth to initially be flat, it will then show an x variation. As the channel
closes the growth will again depend on time and so finally the x dependent profile
will grow vertically.

In the pipe, in the limit t → 0 and h → 1, the freezing is driven by conduction
through the solid and then

h
∂h

∂t
≈ 1

ln h
(57)



SOLIDIFICATION IN A MICROCHANNEL 11

which leads to

h2(1 − 2 lnh) = 1 − 4t .(58)

This has the same small time approximation as the Cartesian problem h ≈
1 −

√
2t. Similar comments to the Cartesian case also hold with regards to

the behaviour for large and small k and Pe and x.

3. Numerical solution

In both Cartesian and cylindrical polar co-ordinates the problem reduces to
solving the differential equation for h, Eq. (32) or (54). We will first describe the
solution of the Cartesian case before briefly discussing the simpler radial case.

3.1. The Cartesian model. Equation (32) may be discretised as follows:

hi+1
j − hi

j

[δt]i
= − 1

1 − hi
j

− k

hi
j

N
∑

n=1

An exp(−λ2
nβiH i

j)
∂Zn

∂ẑ

∣

∣

∣

∣

ẑ=1

(59)

where

hi+1
j = h(xj , ti+1) βi =

4

3QiPe
H i

j =

∫ xj

0

1

h(ξ, ti)
dξ .(60)

The flux required to calculate βi is

Qi = 2
3
∆p/

∫ 1

0
1

h(ξ,ti)
dξ .(61)

Up to n = 11 the constants An and eigenvalues λn for odd n are

(An, λn) = (−0.8601, 1.6816), (0.2700, 5.6699), (−0.1646, 9.6682),

(0.1196, 13.6677), (−0.0945, 17.6674), (0.0783, 21.6672) .(62)

For even n the eigenfunctions Zn = 0. Hence we only include odd terms in the
summation.

Except in the vicinity of x = 0 (where H ∼ 0) the exponential term in Eq. (59)
decays rapidly with increasing n. The number of terms, N , taken in the sum-
mation was therefore decided by considering the steady-state value of h = h∗ at
x = 0. For example when k=1, we obtain h∗ = 0.8466 for N = 9 and h∗ = 0.8603
for N = 11. That is, we expect that taking N = 9 rather than N = 11 will lead
to errors of around 2%. Given the number of approximations already made this
seems a reasonable level of accuracy. Hence from now on we set N = 9 and so
use only the first 5 non-zero terms in the summation. Note, to verify this, we
also carried a limited number of numerical calculations with N = 11 but found
the results indistinguishable from those obtained with N = 9.

The algorithm then proceeds as follows:
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(1) Set up a mesh grid for x and t. To make the code more efficient we allow
δt to vary. The grid for the time points is obtained by solving Eq. (32) at
x = 0,

h
∂h

∂t
= − h

1 − h
− k

N
∑

n=1

An
∂Zn

∂ẑ

∣

∣

∣

∣

ẑ=1

(63)

using MATLAB’s ode45 solver. For the x domain, we use a regular mesh
spacing of ∆x = 0.01 with 101 grid points from x = 0 to x = 1.

(2) Calculate the coefficients for the summation An, ∂Zn

∂ẑ

∣

∣

ẑ=1
and λn. Since

they do not vary through the calculation or when changing the values of
Pe and k, they only need to be computed once and can then be stored for
future calculations. The eigenvalues λn are computed by finding the zeros
of equation (28) where each λn lies in the interval [5.1 + 4(n − 2), 6 +
4(n − 2)]. The Whittaker functions are represented in MATLAB via
the Maple software package. The coefficients An involve integrals of the
eigenfunctions, see Eq. (27). Near z = 0 this leads to numerical difficulties
due to the singular behaviour of the components of the eigenfunctions.
Consequently, as ẑ → 0 we set

Zn = −Γ

(

−3 + λn

4

)

3 + λn

8
√

π

4
√

λn

√
π

Γ(3/4 − λn/4)
.(64)

(3) Initial values are specified. Since the governing equation (32) is singular
at t = 0 (when h = 1) we begin calculations at t1 = 10−6, using the small
time solution as the initial condition h(x, t) = 1 −

√
2t.

(4) The value for the constant pressure drop across the channel is required
to calculate the flux Q(t) via Eq. (33). With the flow speed non-
dimensionalised, we use an initial value of u = 1 at the channel center
ẑ = 0 to obtain an initial flow rate

Q(t1) = Q1 =
4

3
hinit =

4

3
(1 −

√
2t1)(65)

Note, this choice of u determines the constant pressure drop

∆p = pin − pout =
3Q1

2

∫ 1

0

1

h(ξ, t1)
dξ = 2 .(66)

The initial value for β is

β1 =
4

3Q1Pe
=

1

Pe(1 −
√

2t1)
.(67)

(5) The calculation at the next time-step t2 is

h2
j = h1

j −
[δt]1

1 − h1
j

− k[δt]1
h1

j

N
∑

n=1

An exp(−λ2
nβ1H1

j )
∂Zn

∂ẑ

∣

∣

∣

∣

ẑ=1

(68)
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for all j. At each j node, the integral

H1
j =

∫ xj

0

1

h(ξ, t1)
dξ(69)

must be calculated using some quadrature routine. With h2 known the
new flux value is

Q(t2) = Q2 =
2

3
∆p

∫ 1

0

1

h(ξ, t2)
dξ(70)

hence

β(t2) = β2 =
4

3Q(t2)Pe
.(71)

The algorithm of steps (68) to (71) may then be repeated until the solution is
computed to t = tend. The other variables of interest such as the velocities u, w
and the pressure all depend on h(x, t) so they can be calculated once h is known.

For the circular pipe case the computation follows in a similar manner, although
it is slightly quicker since there is no need to calculate an integral of the form
of Eq. (69) at each node and time-step. The eigenvalues are computed from the
zeros of Eq. (50). The first four are λn = 2.70, 6.68, 10.7, 14.7 which then lead
to An = 0.8978, −0.3119, 0.1802,−0.1242. The constant pressure drop comes
from Eq. (43) from an initial flux Q(t1) using u = 1 at ẑ = 0 and we calculate
γ(t) instead of β(t). When calculating the coefficients An for the pipe, we note
that the numerator and denominator of Rn(r) in Eq. (48), are zero at r = 0. We
avoid the numerical difficulties by applying the formal limit as r → 0 to obtain
Rn →

√
λn.

4. Results

4.1. Evolution of the freezing front. The numerical solutions shown in the
following figures use the physical parameter values for water and ice quoted in
Table 1. Figure 2 shows the evolution of the ice front for Pe = k = 1 at
various non-dimensional times. For small times we see that, except in the vicinity
of x = 0, the front is approximately flat (as predicted by Eq. (55)). As time
progresses the ice shape for x > 0.2 retains the flat shape, whereas for smaller
x there is a transition region where the ice shape is curved. The channel is
completely blocked when t ≈ 0.5. Note, this is also the time predicted by the
small time solution of §2.3, by allowing h → 0. The correspondence is an obvious
consequence of the form of governing equation, Eq. (32). If we consider the
end point (where closure should first occur) then this is where the exponential
term in the summation decays most rapidly. Consequently, provided β is not
too small, at x ≈ 1 Eq. (32) is well approximated by the small time form (55).
Figures 3 and 4 show temperature profiles in the water corresponding to times
t = 0.0341, 0.2379 of Fig. 2. The thick solid line denotes the ice-water interface.
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Figure 2. Evolution of the ice front h(x, t) across a Cartesian
channel when Pe = 1 and k = 1.
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Figure 3. Temperature profiles along the channel corresponding
to the ice shapes of Fig. 2 at t = 0.0341. The ice front is shown as
a thick continuous line and the temperature across the channel as
a dashed line.
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Figure 4. Temperature profiles along the channel corresponding to the ice
shapes of Fig. 2 at t = 0.2379. The ice front is shown as a thick continuous
line and the temperature across the channel as a dashed line.

The dashed lines denote the water temperature profile measured at the x-co-
ordinate where it meets the ice, i.e at x = 0.01, 0.2, 0.4, 0.6, 0.8, at which point
T = T (r̂ = ±1) = 0. The number associated with each temperature curve
is the maximum temperature. So in Fig. 3 we see that liquid entering with
temperature T = 1 rapidly cools at the edges but near the centre z ∈ [−0.3, 0.3]
the temperature is close to the initial value. At x = 0.2 it is significantly cooler
with a maximum value T ≈ 0.186. Moving through the channel the temperature
rapidly decreases and by the point x = 0.8 it is nowhere above 5 × 10−4. In
Fig.4 4 the ice front has moved in, acting to slow the flow, so now the water
takes longer to move through the channel and cools earlier. At x = 0.01 the
maximum is T = 0.277, all subsequent plotted temperatures are below 10−4 and
so the numerical value is not given. A consequence of this is that the temperature
gradient in the water is zero and the ice shape is modelled by Eq. (55).

Figure 5 shows the evolution of h when Pe = 10. This is equivalent to increas-
ing the flow rate by a factor 10. Except for at very small times the ice shape
is curved over the whole domain. However, again the closure time is t ≈ 0.5.
This may be interpreted through β = 4/(3QPe). The decrease in β means that
the exponential term of Eq. (32) plays an important role over a larger region
and so the ice front is no longer flat. However, near x = 1 it is still sufficiently
large that we may approximate the solution with Eq. (55). The value Pe = 10
may be considered a critical value, beyond it the summation term plays an ever
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Figure 5. Evolution of the ice front h(x, t) across a Cartesian channel when
Pe = 10 and k = 1.
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Figure 6. Temperature profiles along the channel corresponding
to the ice shapes of Fig. 5 at t = 0.0341. The ice front is shown as
a thick continuous line and the temperature across the channel as
a dashed line.
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Figure 7. Temperature profiles along the channel corresponding
to the ice shapes of Fig. 5 at t = 0.2379. The ice front is shown as
a thick continuous line and the temperature across the channel as
a dashed line.

more significant role and so the closure time starts to increase with Pe. The
behaviour shown in Fig. 5 is exactly as discussed in §2.3. Initially h ≈ h(t) then
for t > 0.034 we see h = h(x, t). For larger times, say t > 0.2379 the growth for
x close to 1 again depends solely on time and so the shape generated at smaller
times is retained and moves vertically down on the graph.

Figures 6 and 7 show the temperature in the channel corresponding to the
results of Fig. 5 at t = 0.0341, 0.2379. The oscillations on the first temperature
curve are a standard problem with Fourier series, known as the Gibbs phenom-
enon, and results from attempting to model a jump discontinuity (T = 0 at the
ice front but T = 1 everywhere else) with a combination of continuous functions.
This is only an issue in the immediate vicinity of x = 0 and the oscillations
quickly die down. The flux in this case is much greater than that of Figures 3,
4 and so the water can retain more energy as it moves down the channel. At
x = 0.8 the maximum value is T ≈ 0.63 as opposed to 5×10−4 on Fig. 3. The ice
shape is approximately flat in this figure since it follows the small time solution,
except near x = 0. However the temperature gradient is clearly non-zero and
subsequently the ice must become curved in response to the flow. In Fig. 7 the
flux has decreased due to the decrease in channel width and so the temperature
also decreases more rapidly with x.
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Figure 8. Cartesian channel closure time as a function of the Péclet number
for k = 1, 2, 3.

Figure 8 displays the closure time against Péclet number for 3 values of k. An
important feature of this figure is that for a large range of Péclet numbers the
closure time is approximately constant. For example, with k = 1 we see that
for Pe ≤ 10 the closure time is fixed at tcl = 0.5. Examination of Figs. 2 and
5 allows us to explain this result. For small Péclet numbers the ice shape is
approximately flat along most of the channel and so when closure occurs there
is ice almost everywhere. As Pe increases the ice shape becomes more curved.
When closure occurs, at x = 1 there may still be a large ice free region. However,
the closure shape is irrelevant to the time, once the channel closes the flow stops
and the trapped fluid must then also freeze. When k = 1 the value Pe = 10
may be seen as marking a transition. For Pe > 10 the water flow becomes more
important and the closure time slowly increases until near Pe = 40 where there
is a rapid increase to infinity. For a given fluid k effectively specifies the wall
temperature and so for a wall temperature that results in k = 1 we see that the
flow rate can be increased until around Pe = 40, beyond this the channel will
never close. Although we cannot compare directly with the results of Chen et al

[5] (their cooling device is outside a polycarbonate structure that encloses rect-
angular channels) the behaviour shown in Fig. 8 is the same as the experimental
and numerical results shown in Fig. 4 of their paper. They find that for flow
rates below 10 µl/min the closure time remains at approximately 6s. As the flow
rate increases above 40 µl/min the closure time increases rapidly. A different
form is shown in Gui et al [9] in that their closure time always increases with the
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flow rate. This may be because they work with intermediate flow rates or be a
result of their different setup that involves multiple channels and a pre-cooling
section. Increasing k is equivalent to increasing the wall temperature and so it
becomes more difficult to close the channel, hence the critical Péclet number de-
creases as k increases. For k = 2 we see that the channel will never close for
Pe slightly above 14. Note, that both k and the time-scale are proportional to
1/(Tf − Tw) so although the non-dimensional closure time tends to 0.5 for small
Pe the dimensional time will vary with k. If we allow Tw → Tf then it is clear
that the dimensional closure time increases rapidly. From these observations we
can provide a value for the dimensional closing time, td, for low Péclet numbers

tcl = τtcl = 0.5

[

ρsLfR
2

ks(Tf − Tw)

]

.(72)

Taking the parameter values of Table 1 we find that for a channel of height
2h = 160µm this leads to tcl ≈ 1.72/(Tf − Tw) s. When 2h = 400µm, tcl ≈
10.7/(Tf − Tw) s.

If we consider the evolution of ice in a circular pipe then the shapes are similar
to those shown for the Cartesian problem. Noting that for sufficiently small
Pe and large x then the governing equation is well approximated by Eq. (57),
setting h = 0 in Eq. (58) determines tcl = 0.25. In this case the dimensional
closure time is given by Eq. (72), but the factor 0.5 is replaced with 0.25. The
result is demonstrated clearly in Fig. 9 where we show the pipe closure time
against the Péclet number. The main difference between the pipe and Cartesian
cases is that the flow rate has to be much higher in the pipe before closure is
prevented. For example with k = 1 closure occurs up to Pe ≈ 236. Presumably
this occurs because the pipe is being cooled all around the sides and so feels
the wall temperature over a larger region, whereas the two-dimensional channel
only has cooling at the top and bottom. The effect on the evolution when Pe
changes from 236 to 237 is shown in Figs. 10 and 11. In Fig. 10 the ice front
slowly evolves until just after t = 10 closure occurs at the end point x = 1.
The governing equations for this problem are non-linear and often in non-linear
problems a small change in parameter values can have a large effect on the solution
behaviour. This is clear from Fig. 11 where simply increasing the Péclet number
to 237 stops the pipe from ever closing. In the figure we stop the calculation at
t = 40, when the minimum ice height is h ≈ 0.5. However, if we decrease the
value of k to 0.8 (make the wall cooler) and keep Pe = 237 then closure occurs
around t = 1.

We define the critical Péclet number, Pec, as the value above which closure
never occurs. In Fig. 12 we present results for the reciprocal critical Péclet number
against k for both Cartesian and pipe flow. The limit k → 0 represents either
a very cold wall or a liquid entering the pipe very close to the phase change
temperature. In either case it is very easy to solidify the liquid. To prevent
closure therefore requires a very high flow rate, Pecr → ∞. Obviously it would
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Figure 10. The evolution of the ice front h(x, t) when Pe = 236
and k = 1
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Figure 11. The evolution of the ice front h(x, t) when Pe = 237
and k = 1.

be difficult to obtain numerical results in these limits but the above argument
clearly indicates that the curves shown on the figure must tend to the origin. The
approximately straight line results shown on the graph indicate a simple relation
of the form

1

Pec
= Ak − B .(73)

Using a least-squares fit we find (A, B) = (0.0482, 0.022), (0.0126, 0.0078) for the
Cartesian and circular channels respectively. These are represented by the dashed
lines on Fig. 12. Given that these lines mark the transition from a closing to a
non-closing valve we note that the valve operation should always be such that for
a given k the flow satisfies Pe ≫ 1/(Ak −B), i.e. one should operate well above
the appropriate line on the figure.

5. Conclusion

We have developed a mathematical model for solidification in two-dimensional
Cartesian and radially symmetric channels subject to a fixed temperature bound-
ary condition. Unlike previous analyses of solidification in microchannels we fully
coupled the flow and freezing problems. Non-dimensionalisation then allowed us
to identify the dominant terms and reduce the problem to solving a single integro-
differential equation for the solid thickness.

The solutions demonstrated that for low flow rates the solid is approximately
flat along the channel and when closure occurs the channel is already almost
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Figure 12. Plot of the inverse critical Péclet numbers against k
for both Cartesian and circular channel cases. Solid line shows
numerical results, the dashed line is the linear approximation.

full of the solid. For higher flow rates the solid shape is more curved and when
closure occurs there is still a large liquid region. This observation explains the
fact that for a wide range of flow rates (or Péclet number) we found that the non-
dimensional closure time was approximately constant and thus may be accurately
predicted through a simple equation. Practically this equation tells us that tcl ∝
R2/(Tf − Tw), that is, provided the flow rate is not too high the closure time
depends primarily on the pipe radius (or height) and the difference between the
solidification and wall temperatures. However, beyond a certain value the closure
time increases with flow rate. Beyond a critical Pe the valve will no longer close.
The value of the critical Pe was shown to vary approximately with the reciprocal
of k, Pec ∝ 1/k and this observation then allowed us to define a simple operating
criteria.
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