ON OPTIMAL PROBABILISTIC ALGORITHMS FOR SAT

YIJIA CHEN, JÖRG FLUM, AND MORITZ MÜLLER

1. Introduction. A major aim in the development of algorithms for hard problems is to decrease the running time. In particular one asks for algorithms that are optimal: A deterministic algorithm \mathbb{A} deciding a language $L \subseteq \Sigma^*$ is optimal (or (polynomially) optimal or p-optimal) if for any other algorithm \mathbb{B} deciding L there is a polynomial p such that

$$(1) t_{\mathbb{A}}(x) \le p(t_{\mathbb{B}}(x) + |x|)$$

for all $x \in \Sigma^*$. Here $t_{\mathbb{A}}(x)$ denotes the running time of \mathbb{A} on input x. If (1) is only required for all $x \in L$, then \mathbb{A} is said to be an almost optimal algorithm for L (or to be optimal on positive instances of L).

Various recent papers address the question whether such optimal algorithms exist for NP-complete or coNP-complete problems (cf. [1]), even though the problem has already been considered in the seventies when Levin [4] observed that there exists an optimal algorithm that finds a witness for every satisfiable propositional formula. Furthermore the relationship between the existence of almost optimal algorithms for a language L and the existence of "optimal" proof systems for L has been studied [3, 5].

Here we present a result (see Theorem 2.1) that can be interpreted as stating that (under the assumption of the existence of one-way functions) there is no optimal

probabilistic algorithm for SAT.

2. Probabilistic speed-up. For a propositional formula α we denote by $\|\alpha\|$ the number of literals in it, counting repetitions. Hence, the actual length of any reasonable encoding of α is polynomially related to $\|\alpha\|$.

Theorem 2.1. Assume one-way functions exist. Then for every probabilistic algorithm \mathbb{A} deciding SAT there exists a probabilistic algorithm \mathbb{B} deciding SAT such that for all $d \in \mathbb{N}$ and sufficiently large $n \in \mathbb{N}$

Pr
$$\Big[\text{there is a satisfiable } \alpha \text{ with } \|\alpha\| = n \text{ such that} \\ \mathbb{A} \text{ does not accept } \alpha \text{ in at most } (t_{\mathbb{B}}(\alpha) + \|\alpha\|)^d \text{ steps} \Big] \geq \frac{1}{5}.$$

Note that $t_{\mathbb{A}}(\alpha)$ and $t_{\mathbb{B}}(\alpha)$ are random variables, and the probability is taken over the coin tosses of \mathbb{A} and \mathbb{B} on α .

Here we say that a probabilistic algorithm A decides SAT if it decides SAT as a nondeterministic algorithm, that is

$$\alpha \in SAT \Longrightarrow \Pr[\mathbb{A} \text{ accepts } \alpha] > 0,$$

 $\alpha \notin SAT \Longrightarrow \Pr[\mathbb{A} \text{ accepts } \alpha] = 0.$

In particular, A can only err on 'yes'-instances.

Note that in the first condition the error probability is not demanded to be bounded away from 0, say by a constant $\varepsilon > 0$. As a more usual notion of probabilistic decision, say \mathbb{A} decides SAT with one-sided error ε if

$$\alpha \in \text{SAT} \Longrightarrow \Pr[\mathbb{A} \text{ accepts } \alpha] > 1 - \varepsilon,$$

 $\alpha \notin \text{SAT} \Longrightarrow \Pr[\mathbb{A} \text{ accepts } \alpha] = 0.$

For this concept we get

Corollary 2.2. Assume one-way functions exist and let $\varepsilon > 0$. Then for every probabilistic algorithm \mathbb{A} deciding SAT with one-sided error ε there exists a probabilistic algorithm \mathbb{B} deciding SAT with one-sided error ε such that for all $d \in \mathbb{N}$ and sufficiently large $n \in \mathbb{N}$

Pr
$$\left[\text{there is a satisfiable } \alpha \text{ with } \|\alpha\| = n \text{ such that} \right]$$

 $\mathbb{A} \text{ does not accept } \alpha \text{ in at most } (t_{\mathbb{B}}(\alpha) + \|\alpha\|)^d \text{ steps} \ge \frac{1}{5}.$

This follows from the fact that in the proof of Theorem 2.1 we choose the algorithm \mathbb{B} in such way that on any input α the error probability of \mathbb{B} on α is not worse than the error probability of \mathbb{A} on α .

3. Witnessing failure. The proof of Theorem 2.1 is based on the following result.

Theorem 3.1. Assume that one-way functions exist. Then there is a probabilistic polynomial time algorithm \mathbb{C} satisfying the following conditions.

- (1) On input $n \in \mathbb{N}$ in unary the algorithm \mathbb{C} outputs with probability one a satisfiable formula β with $\|\beta\| = n$.
- (2) For every $d \in \mathbb{N}$ and every probabilistic algorithm \mathbb{A} deciding SAT and sufficiently large $n \in \mathbb{N}$

$$\Pr\left[\mathbb{A} \text{ does not accept } \mathbb{C}(n) \text{ in } n^d \text{ steps}\right] \geq \frac{1}{3}.$$

In the terminology of fixed-parameter tractability this theorem tells us that the parameterized construction problem associated with the following parameterized decision problem p-Counterexample-Sat is in a suitably defined class of randomized nonuniform fixed-parameter tractable problems.

Instance: An algorithm \mathbb{A} deciding SAT and $d, n \in \mathbb{N}$ in

unary.

Parameter: $\|A\| + d$.

Problem: Does there exist a satisfiable CNF-formula α with

 $\|\alpha\| = n$ such that A does not accept α in n^d many

steps?

Note that this problem is a promise problem. We can show:

Theorem 3.2. Assume that one-way functions exist. Then the problem p-CounterExample-Sat is nonuniformly fixed-parameter tractable.¹

This result is an immediate consequence of the following

Theorem 3.3. Assume that one-way functions exist. For every infinite set $I \subseteq \mathbb{N}$ the problem

 SAT_I

Instance: A CNF-formula α with $\|\alpha\| \in I$.

Problem: Is α satisfiable?

is not in PTIME.

We consider the construction problem associated with the decision problem *p*-CounterExample-Sat, that is:

Instance: An algorithm \mathbb{A} deciding SAT and $d, n \in \mathbb{N}$ in

unary.

Parameter: $\|A\| + d$.

Problem: Construct a satisfiable CNF-formula α with $\|\alpha\| =$

n such that A does not accept α in n^d many steps,

if one exists.

We do not know anything on its (deterministic) complexity; its nonuniform fixed-parameter tractability would rule out the existence of strongly almost optimal algorithms for Sat. By definition, an algorithm $\mathbb A$ deciding Sat is a *strongly almost optimal algorithm for* Sat if there is a polynomial p such that for any other algorithm $\mathbb B$ deciding Sat

$$t_{\mathbb{A}}(\alpha) \leq p(t_{\mathbb{B}}(\alpha) + |\alpha|)$$

for all $\alpha \in SAT$. Then the precise statement of the result just mentioned reads as follows:

¹This means, there is a $c \in \mathbb{N}$ such that for every algorithm \mathbb{A} deciding SAT and every $d \in \mathbb{N}$ there is an algorithm that decides for every $n \in \mathbb{N}$ whether (\mathbb{A}, d, n) is a positive instance of p-Counterexample-Sat in time $O(n^c)$; here the constant hidden in O() may depend on \mathbb{A} and d.

Proposition 3.4. Assume that $P \neq NP$. If the construction problem associated with p-CounterExample-Sat is nonuniformly fixed-parameter tractable, then there is no strongly almost optimal algorithms for Sat.

4. Some Proofs. We now show how to use an algorithm \mathbb{C} as in Theorem 3.1 to prove Theorem 2.1.

Proof of Theorem 2.1 from Theorem 3.1: Let \mathbb{A} be an algorithm deciding SAT. We choose $a \in \mathbb{N}$ such that for every $n \geq 2$ the running time of the algorithm \mathbb{C} (provided by Theorem 3.1) on input n is bounded by n^a . We define the algorithm \mathbb{B} as follows:

$$\mathbb{B}(\alpha) \qquad // \ \alpha \in \mathrm{CNF}$$
1. $\beta \leftarrow \mathbb{C}(\|\alpha\|)$.
2. **if** $\alpha = \beta$ **then** accept and halt.
3. **else** Simulate \mathbb{A} on α .

Let $d \in \mathbb{N}$ be arbitrary. Set $e := d \cdot (a+2) + 1$ and fix a sufficiently large $n \in \mathbb{N}$. Let S_n denote the range of $\mathbb{C}(n)$. Furthermore, let $T_{n,\beta,e}$ denote the set of all strings $r \in \{0,1\}^{n^e}$ that do not determine a (complete) accepting run of \mathbb{A} on β that consists in at most n^e many steps. Observe that a (random) run of \mathbb{A} does not accept β in at most n^e steps if and only if \mathbb{A} on β uses $T_{n,\beta,e}$, that is, its first at most n^e many coin tosses on input β are described by some $r \in T_{n,\beta,e}$. Hence by (2) of Theorem 3.1 we conclude

(2)
$$\sum_{\beta \in S_n} \left(\Pr[\beta = \mathbb{C}(n)] \cdot \Pr_{r \in \{0,1\}^{n^e}} [r \in T_{n,\beta,e}] \right) \ge \frac{1}{3}.$$

Let $\alpha \in S_n$ and apply $\mathbb B$ to α . If the execution of $\beta \leftarrow \mathbb C(\|\alpha\|)$ in Line 1 yields $\beta = \alpha$, then the overall running time of the algorithm $\mathbb B$ is bounded by $O(n^2 + t_{\mathbb C}(n)) = O(n^{a+1}) \le n^{a+2}$ for n is sufficiently large. If in such a case a run of the algorithm $\mathbb A$ on input α uses an $r \in T_{n,\alpha,e}$, then it does not accept α in time $n^e = n^{(a+2)\cdot d+1}$ and hence not in time $(t_{\mathbb B}(\alpha) + \|\alpha\|)^d$. Therefore,

Pr [there is a satisfiable
$$\alpha$$
 with $\|\alpha\| = n$ such that
$$\mathbb{A} \text{ does not accept } \alpha \text{ in at most } (t_{\mathbb{B}}(\alpha) + \|\alpha\|)^d \text{ steps}]$$

$$\geq 1 - \Pr \left[\text{for every input } \alpha \in S_n \text{ the algorithm } \mathbb{B} \text{ does not generate } \alpha \right]$$
in Line 3, or \mathbb{A} does not use $T_{n,\alpha,e}$

$$= 1 - \prod_{\alpha \in S_n} \left((1 - \Pr[\alpha = \mathbb{C}(n)]) + \Pr[\alpha = \mathbb{C}(n)] \cdot \Pr_{r \in \{0,1\}^{n^e}} [r \notin T_{n,\alpha,e}] \right)$$

$$= 1 - \prod_{\alpha \in S_n} \left(1 - \Pr[\alpha = \mathbb{C}(n)] \cdot \Pr_{r \in \{0,1\}^{n^e}} [r \in T_{n,\alpha,e}] \right)$$

$$\geq 1 - \left(\frac{\sum_{\alpha \in S_n} \left(1 - \Pr[\alpha = \mathbb{C}(n)] \cdot \Pr_{r \in \{0,1\}^{n^e}}[r \in T_{n,\alpha,e}]\right)}{|S_n|}\right)^{|S_n|}$$

$$= 1 - \left(1 - \frac{\sum_{\alpha \in S_n} \Pr[\alpha = \mathbb{C}(n)] \cdot \Pr_{r \in \{0,1\}^{n^e}}[r \in T_{n,\alpha,e}]}{|S_n|}\right)^{|S_n|}$$

$$\geq 1 - \left(1 - \frac{1}{3 \cdot |S_n|}\right)^{|S_n|}$$

$$\geq \frac{1}{5}.$$

Theorem 3.1 immediately follows from the following lemma.

Lemma 4.1. Assume one-way functions exist. Then there is a randomized polynomial time algorithm \mathbb{H} satisfying the following conditions.

- (H1) Given $n \in \mathbb{N}$ in unary the algorithm \mathbb{H} computes with probability one a satisfiable CNF α of size $\|\alpha\| = n$.
- (H2) For every probabilistic algorithm \mathbb{A} deciding SAT and every $d, p \in \mathbb{N}$ there exists an $n_{\mathbb{A},d,p} \in \mathbb{N}$ such that for all $n \geq n_{\mathbb{A},d,p}$

$$\Pr\left[\mathbb{A} \ accepts \ \mathbb{H}(n) \ in \ time \ n^d\right] \leq \frac{1}{2} + \frac{1}{n^p},$$

where the probability is taken uniformly over all possible outcomes of the internal coin tosses of the algorithms \mathbb{A} and \mathbb{H} .

(H3) The cardinality of the range of (the random variable) $\mathbb{H}(n)$ is superpolynomial in n

Sketch of proof: We present the construction of the algorithm \mathbb{H} . By the assumption that one-way functions exist, we know that there is a pseudorandom generator (e.g. see [2]), that is, there is an algorithm \mathbb{G} such that:

- (G1) For every $s \in \{0,1\}^*$ the algorithm \mathbb{G} computes a string $\mathbb{G}(s)$ with $|\mathbb{G}(s)| = |s| + 1$ in time polynomial in |s|.
- (G2) For every probabilistic polynomial time algorithm \mathbb{D} , every $p \in \mathbb{N}$, and all sufficiently large $\ell \in \mathbb{N}$ we have

$$\left| \Pr_{s \in \{0,1\}^{\ell}} \left[\mathbb{D}(\mathbb{G}(s)) = 1 \right] - \Pr_{r \in \{0,1\}^{\ell+1}} \left[\mathbb{D}(r) = 1 \right] \right| \le \frac{1}{\ell^p}$$

(In the above terms, the probability is also taken over the internal coin toss of \mathbb{D} .)

Let the language Q be the range of \mathbb{G} ,

$$Q := \{ \mathbb{G}(s) \mid s \in \{0, 1\}^* \}.$$

Q is in NP by (G1). Hence, there is a polynomial time reduction \mathbb{S} from Q to SAT, which we can assume to be injective. We choose a constant $c \in \mathbb{N}$ such that $\|\mathbb{S}(r)\| \leq |r|^c$ for every $r \in \{0,1\}^*$. For every propositional formula β and

every $n \in \mathbb{N}$ with $n \geq ||\beta||$ let $\beta(n)$ be an equivalent propositional formula with $||\beta(n)|| = n$. We may assume that $\beta(n)$ is computed in time polynomial in n.

One can check that the following algorithm H has the properties claimed in the lemma.

```
\mathbb{H}(n) // n \in \mathbb{N}
1. m \leftarrow \lfloor \sqrt[s]{n-1} \rfloor - 1
2. Choose an s \in \{0,1\}^m uniformly at random.
3. \beta \leftarrow \mathbb{S}(\mathbb{G}(s)).
4. Output \beta(n)
```

Acknowledgements. The authors thank the John Templeton Foundation for its support under Grant #13152, The Myriad Aspects of Infinity.

References

- [1] O. Beyersdorff and Z. Sadowski. Characterizing the existence of optimal proof systems and complete sets for promise classes. Electronic Colloquium on Computational Complexity, Report TR09-081, 2009.
- [2] O. Goldreich. Foundations of Cryptography, Volume 1 (Basic Tools). Cambridge University Press, 2001.
- [3] J. Krajicèk and P. Pudlák. Propositional proof systems, the consistency of first order theories and the complexity of computations. Jour. Symb. Logic, 54(3):1063–1079, 1989.
- [4] L. Levin. Universal search problems (in russian). Problemy Peredachi Informatsii 9(3):115-116, 1973.
- [5] J. Messner. On optimal algorithms and optimal proof systems. STACS'99, LNCS 1563:541–550 1999.

YIJIA CHEN

SHANGHAI JIAOTONG UNIVERSITY

CHINA.

E-mail address: yijia.chen@cs.sjtu.edu.cn

JÖRG FLUM

Albert-Ludwigs-Universität Freiburg

GERMANY.

E-mail address: joerg.flum@math.uni-freiburg.de

MORITZ MÜLLER

CENTRE DE RECERCA MATEMÀTICA (CRM)

Spain.

E-mail address: mmueller@crm.cat