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CHEBYSHEV-TYPE QUADRATURE FORMULAS FOR NEW

WEIGHT CLASSES

ARMEN VAGHARSHAKYAN

Abstract. We give Chebyshev-type quadrature formulas for certain new
weight classes. These formulas are of highest possible degree when the num-
ber of nodes is a power of 2. We also describe the nodes in a constructive
way, which is important for applications. One of our motivations to consider
these type of problems is the Faraday cage phenomenon for discrete charges as
discussed by J. Korevaar and his colleagues.

1. Introduction

Let us denote by Pol(m) the family of polynomials of degree ≤ m.

Definition 1.1. Let ρ(x) be a nonnegative function on [−1, 1]. Denote by:

Mn(ρ)

the biggest natural number for which there exists a choice of distinct points
{xk}n

k=1 ⊂ [−1, 1] so that the equality:

(1.2)

∫ 1

−1

P (x)ρ(x)dx =
1

n

n
∑

k=1

P (xk)

is valid for an arbitrary polynomial P ∈ Pol(Mn(ρ)).

Remark 1.3. A quadrature formula of the form (1.2) is called Chebyshev-type
quadrature formula, and the points {xk}n

k=1 ⊂ [−1, 1] are called the nodes of the
quadrature formula. One can consider quadrature formulas of a more general
form:

(1.4)

∫ 1

−1

P (x)ρ(x)dx =
1

n

n
∑

k=1

AkP (xk)

where Ak are certain nonnegative numbers. These are known as Gauss type
quadrature formulas.

It is well known (see [3], pp. 97) that a Gauss type quadrature formula with
n nodes cannot be valid for an arbitrary P ∈ Pol(2n). For completeness, we
provide the proof of that fact here:
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2 A. VAGHARSHAKYAN

Remark 1.5. Let ρ(x) ≥ 0 be a nontrivial function on −1 ≤ x ≤ 1 . Then there
are no points xk ∈ [−1, 1], k = 1, . . . , n and numbers Ak, k = 1, 2, . . . , n such
that the formula (1.4) is valid for an arbitrary P ∈ Pol(2n).

Proof. Assume the converse, for some points xk ∈ [−1, 1], k = 1, 2, . . . , n and
numbers Ak, k = 1, 2, . . . , n the formula (1.4) is true. Then for the polynomial:

P0(x) =
n
∏

k=1

(x − xk)
2

of degree 2n we must have:

0 <

∫ 1

−1

P0(x)ρ(x)dx =
1

n

n
∑

k=1

AkP (xk) = 0. �

Remark 1.6. Remark (1.5) implies that Mn(ρ) < 2n.

The first Chebyshev-type formula was first discovered by Mehler in 1864 (see
[11], pp. 185):

Theorem 1.7 (Mehler). The formula

1

π

∫ 1

−1

P (x)√
1 − x2

dx =
1

n

n
∑

k=1

P

(

cos
2k − 1

2n
π

)

is valid for an arbitrary polynomial P ∈ Pol(2n − 1).

On the other hand (see [11], pp. 186):

Theorem 1.8. [Posse, Sonin] If for a weight function

ρ(x), x ∈ [−1, 1],

we have that Mn(ρ) = 2n − 1 for all n ∈ N then:

(1.9) ρ(x) =
1

π
√

1 − x2
.

The first weight function different from (1.9) for which Mn(ρ) ≥ n was given
by Ullman (see [6]):

µ(x) =
2

π
√

1 − x2
· 1 + bx

1 + b2 + 2bx
, |b| <

1

2

where
Mn(µ) = n.

Later new examples of weights for whom Mn(ρ) = n were found (see the
survey article [7]). These examples of weight functions are mainly of
the following form:

ρ(x) =
w(x)√
1 − x2

,
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CHEBYSHEV-TYPE QUADRATURE FORMULAS FOR NEW WEIGHT CLASSES 3

where w(x) is a certain positive analytic function on [−1, 1].
Examples of unbounded weights have been found, too (see [5]).

The main result of this article - theorem (4.2) provides Chebyshev-type quadra-
ture formulas for certain new weight classes Wn. All these classes include not
only the weight:

(1.10) ρ(x) =
1

π
√

1 − x2

(see remark (3.18)) but also many others (see remark (3.13)). The Chebyshev-
type quadrature formulas for Wn are of highest possible degree when the number
of nodes is a power of 2 (see remark (4.3)). Thus, even though (1.10) is the only
weight for which the Chabyshev type quadrature formula is of the highest pos-
sible degree Mn(ρ) = 2n − 1 (see theorem (1.8)), yet we prove that for every
n which is a power of 2 there are many more weights for whom there exists a
Chebyshev-type quadrature formula of the highest possible degree.

Also note that the nodes in theorem (4.2) are described in a constructive way,
which is important for applications.

2. The Case ρ ≡ 1/2

Let us consider the case ρ ≡ 1/2 separately. S. Bernstein (see [11], page 193)
proved that if n = 8 or n ≥ 10 then one cannot choose points xk,n, k = 1, 2, . . . , n
in the segment [−1, 1] so that the following formula:

1

2

∫ 1

−1

P (x)dx =
1

n

n
∑

k=1

P (xk,n)

is valid for all polynomials of degree n.
S. Bernstein (see [10]) proved the following inequality Mn(1/2):

Mn(1/2) < π
√

2n.

A. Kuijlaars [4] (using the methods of S. Bernstein [9] ) proved that:

Theorem 2.1. There exists an absolute constant c > 0 such that:

Mn(1/2) > c
√

n.

Today the interest into Chebyshev-type quadrature formulas is explained not
only by numerous nontrivial conjectures relating to the issue (see [1, 5] for a list
of open problems) but also a connection between the Faraday cage phenomenon
for discrete charges and Chebyshev-type quadrature formulas, as explained by
J. Korevaar and his colleagues (see [3]). For a more detailed explanation we refer
the reader to the article [3].

This problem is also related to the discrepancy theory (see [8]).
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4 A. VAGHARSHAKYAN

3. Auxiliary Constructions

Let us denote by x0 = −1 and

xn+1 =

√

1 + xn

2
, n = 0, 1, 2, . . .

This sequence is increasing and

lim
n→∞

xn = 1.

Definition 3.1. For an arbitrary natural n let us denote by Pn(x) the polynomial
of degree n, defined in the following way:
1. we put:

P0(x) = 1, P2(x) = 2x2 − 1,

2. for an odd number q let:
Pq(x) = xq,

3. for a natural number n = 2p let:

P2p(x) = P2 (P2p−1(x)) ,

4. for an arbitrary natural number n = 2pq, where q = 1(mod 2) and 3 ≤ q let:

Pn(x) = (P2p(x))q .

For n = 2pq, where q = 1(mod 2) denote:

|Pn| = p.

Example 3.2. We have:

P0(x) = 1, P1(x) = x, P2(x) = 2x2 − 1, P3(x) = x3,

P4(x) = 2
(

2x2 − 1
)2 − 1, P5(x) = x5, P6(x) =

(

2x2 − 1
)3

,

P7(x) = x7, P8(x) = 2
(

2
(

2x2 − 1
)2 − 1

)2

− 1

Theorem 3.3. For an arbitrary natural n we have:

max
0≤k≤n

|Pk| = [log2 n].

Proof. We present each number 1 ≤ k ≤ n n the form k = 2pkqk, where qk =
1(mod 2). Then:

max
0≤k≤n

|Pk| = max
0≤k≤n

|pk| = [log2 n]. �

Example 3.4. We have:

|P2k | = k, |P2k−1| = k − 1.

Theorem 3.5. For an arbitrary natural 1 ≤ p we have:

P2p(xp) = −1, P2p(xp+1) = 0, P2p(1) = 1.

On the interval [xp, 1] the polynomial P2p(x) is an increasing function.
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CHEBYSHEV-TYPE QUADRATURE FORMULAS FOR NEW WEIGHT CLASSES 5

Definition 3.6. Let

S0 : [x1, 1] → [x0, x1] ,

and for each x ∈ [x1, 1],

S0(x) = −x.

For a natural n let us denote by:

Sn : [xn+1, 1] → [xn, xn+1] .

the one-to-one mapping, such that:

P2n (x) = −P2n (Sn(x)) , xn+1 ≤ x ≤ 1.

We have:

Sn(xn+1) = xn+1, Sn(1) = xn, n = 1, 2, . . .

Figure 1. The mapping S2

Example 3.7. We have:

S1(y) = −y,
dS1(y)

dy
= −1, x2 < y < 1,

S2(y) =
√

1 − y2,
dS2(y)

dy
= − y

√

1 − y2
, x3 < y < 1,
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6 A. VAGHARSHAKYAN

S3(y) =
y +

√

1 − y2

√
2

,
dS3(y)

dy
= −y −

√

1 − y2

√

2(1 − y2)
, x4 < y < 1.

Definition 3.8. For an arbitrary integral number 0 ≤ n and a function f(x)
defined on the interval xn ≤ x ≤ 1, let us denote by Rn(f) the function defined
on the interval xn+1 < y < 1 by:

Rn(f)(y) =
f (Sn(y)) + f(y)

2
.

Remark 3.9. If the function f is constant on the interval [−1, 1] then for an
arbitrary 0 ≤ n we have:

Rn(f)(y) = f(y), on xn+1 < y < 1.

Remark 3.10. For any of the polynomials Pk(x), k = 0, 1, 2, . . . which we con-
structed, we have:

R0(Pk)(x) = Pk(x), k = 0 (mod 2),

and

R0(Pk)(x) = 0, k = 1 (mod 2).

Remark 3.11. For any of the polynomials P2pk(x), k, p = 1, 2, . . . , which we
constructed, we have:

Rp(P2pk)(x) = P2pk(x), k = 0 (mod 2),

and

Rp(P2pk)(x) = 0, k = 1 (mod 2).

Definition 3.12. For natural n we’ll denote by Wn the family of nonnegative
functions ρ(x), −1 < x < 1 satisfying the following conditions:

∫ 1

−1

ρ(x)dx = 1

and

ρ(y) = −ρ(Sk(y))
dSk(y)

dy
, xk < y ≤ 1,

for k = 0, 1, 2, . . . , n − 1.

Remark 3.13. Let us note that for an arbitrary weight function ρ(x) ∈ Wn we
have:

(3.14)

∫ 1

xn

ρ(y)dy = 2−n.

Moreover, an arbitrary nonnegative function defined on [xn, 1] satisfying the con-
dition (3.14), coincides with a weight function from Wn on [xn, 1].
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CHEBYSHEV-TYPE QUADRATURE FORMULAS FOR NEW WEIGHT CLASSES 7

Example 3.15. Note, that:

S0(y) = −y, x1 ≤ y ≤ 1,

therefore for the weight function ρ ∈ W1 we get the condition:

ρ(y) = ρ(−y), x0 < y ≤ 1.

Example 3.16. We have:

S1(y) =
√

1 − y2, x2 ≤ y ≤ 1,

therefore for the weight function ρ ∈ W2 we get the conditions:

ρ(y) = ρ(−y), x0 = −1 < y ≤ 1,

and

ρ(y) = ρ
(

√

1 − y2
) y
√

1 − y2
, x1 < y ≤ 1,

In particular, the function:

ρ(y) =
1

π
√

1 − y2

satisfies these conditions.

Example 3.17. We have:

S2(y) =
y +

√

1 − y2

√
2

, x3 ≤ y ≤ 1,

therefore for the weight function ρ ∈ W3 we get the conditions:

ρ(y) = ρ(−y), x0 < y ≤ 1,

and

ρ(y) = ρ
(

√

1 − y2
) y
√

1 − y2
, x1 < y ≤ 1,

and

ρ(y) = ρ

(

y +
√

1 − y2

√
2

)

y −
√

1 − y2

√

2(1 − y2)
, x2 < y < 1.

In particular, the following function:

ρ(y) =
1

π
√

1 − y2

satisfies all the three conditions.

Remark 3.18. By a reasoning similar to (3.16) and (3.17) one can prove that:

ρ(y) =
1

π
√

1 − y2
∈ Wn for n = 1, 2, . . . .
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8 A. VAGHARSHAKYAN

4. Main Results

Theorem 4.1. Let n ≥ 1 be a natural number. Let ρ(x) ∈ Wn. Then for an
arbitrary function f(x) we have:

∫ 1

−1

f(x)ρ(x)dx = 2n

∫ 1

xn

(Rn−1 ◦ · · · ◦ R0)(f)(x) · ρ(x)dx.

Proof. If ρ(x) ∈ W1 we have ρ(y) = ρ(−y) so,
∫ 1

−1

f(x)ρ(x)dx =

∫ 0

−1

f(x)ρ(x)dx +

∫ 1

0

f(x)ρ(x)dx =

=

∫ 1

0

f(x)ρ(x)dx −
∫ 1

0

f (S0(y)) ρ (S0(y))
dS0(y)

dy
dy =

=

∫ 1

0

(f(x) + f(−x))ρ(x)dx = 2

∫ 1

x1

R0(f)(y)ρ(y)dy.

If ρ(x) ∈ W2 then we have ρ(y) = ρ(−y) and

ρ(y) = −ρ (S1(y))
dS1(y)

dy
, x2 ≤ y ≤ 1.

Thus, for an arbitrary function f(x) we have:
∫ 1

−1

f(x)ρ(x)dx=2

∫ 1

x1

R0(f)(x)ρ(x)dx =

=2

∫ x2

x1

R0(f)(x)ρ(x)dx + 2

∫ 1

x2

R0(f)(x)ρ(x)dx =

=2

∫ 1

x2

R0(f)(x)ρ(x)dx−2

∫ 1

x2

R0(f) (S1(y))ρ (S1(y))
dS1(y)

dy
dy=

=2

∫ 1

x2

(R0(f) (S1(y)) + R0(f)(y))ρ(y)dy =

=22

∫ 1

x2

(R1 ◦ R0)(f)(y)ρ(y)dy.

We prove the theorem for ρ ∈ Wn, n = 1, 2, . . . in an analogous way. �

Theorem 4.2. Let ρ(x) ∈ Wn, n = 2, 3, . . . . Let X = {tj ; j = 1, 2, . . . , m},
where 1 ≤ m. Let the points:

−1 < t1 < t2 < · · · < tm < 1,

satisfy the conditions:

Sk (X ∩ [xk+1, 1]) = X ∩ [xk, xk+1] , k = 0, 1, 2, . . . , [log2 n] − 1.
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Then for an arbitrary polynomial P (x) ∈ Pol(n − 1) we have:

∫ 1

−1

P (x)ρ(x)dx =
1

m

m
∑

k=1

P (tk).

Remark 4.3. Theorem (4.2) implies that for any ρ ∈ W
n

we have:

m = |X| ≥ 2[log
2

n]−1.

If we choose n to be a power of 2: n = 2p where p is a natural number, and
tm = xp, then we get the nodes X = {tj; j = 1, 2, . . . , m} where 2m = n. Hence,

Mm(ρ) ≥ 2m − 1.

Taking into account the remark (1.6) we get:

Mm(ρ) = 2m − 1.

Thus we found a Chebyshev-type quadrature formula for ρ ∈ W
n

of highest
possible degree, where the number of nodes m = n/2 is a power of 2.
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