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SUPPLEMENTARY INFORMATION SCALING OF TROPICAL-CYCLONE
DISSIPATION

ÁLVARO CORRAL AND ALBERT OSSÓ, JOSEP ENRIC LLEBOT

1. SUPPLEMENTARY METHODS

1.1. Summary of the Analysis. A sketch of our procedure is shown in Fig. S1. For
a single tropical cyclone, the PDI, which is an estimation of dissipated energy, is
calculated as the sum of the cube of the velocity profile. When this is done for many
tropical cyclones, a probability distribution for the PDI emerges. This distribution can
also be filtered by different climatic variables, in order to evaluate the characteristics
of the dissipation of energy as a function of those variables.

1.2. Data. As it is mentioned in the main text, the tropical-cyclone data used in the
research has been obtained from the best tracks provided by the NOAA’s National
Hurricane Center (NHC) [1, 2], for the North Atlantic (N. Atl.) and the Northeastern
Pacific (E. Pac.); and by the US Navy’s Joint Typhoon Warning Center (JTWC) [3, 4],
for the Northwestern Pacific (W. Pac.) and the Southern Hemisphere (S. Hem.). A
remarkable difference between the databases of both agencies is that the one from the
JTWC includes a few tropical depressions each year, whereas the records from the
NHC exclude such small storms.

Figure S2 shows the longitude and latitude of the best tracks of all tropical cyclones
analyzed, in addition to those corresponding to the North Indian ocean (N. Ind.), which
have not been considered in the paper due to their poor statistics. Note that there is not
a clear boundary between the Northwestern and Northeastern Pacific basins, as well
as between the Southern Indian and Southwestern Pacific. For this reason we have
analyzed the basins as provided in the records of each agency.

1.3. Probability Density. In order to obtain the distribution of the tropical-cyclone
PDIs we use the probability density, defined as the probability that the value of the
power dissipation index is in a narrow interval, [PDI,PDI + dPDI), divided by the
size of the interval, dPDI. Mathematically,

D(PDI)≡ Prob[PDI ≤ value < PDI +dPDI]
dPDI

,

and the probability is estimated as the number of occurrences n(PDI) in a given inter-
val divided by the total number of occurrences, N, i.e.,

D(PDI)dPDI ' n(PDI)
N

.
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FIGURE 1. Outline of the procedure used in the paper. Hurricane Ka-
trina is selected as an illustration of the calculation of the PDI. The
large-scale application of the same calculation yields the PDI proba-
bility density, as the North Atlantic case shows. Separating years of
high and low sea surface temperature, for example, splits the probabil-
ity density into two contributions, shown here for the North Atlantic as
well.
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FIGURE 2. Worldwide tropical-cyclone activity analyzed in the main
text. The North Atlantic and Northeastern Pacific basins include all
recorded hurricanes and tropical storms from 1966 to 2007, the rest of
the basins are restricted to tropical cyclones from 1986 to 2007, includ-
ing also some tropical depressions. The Southern Hemisphere record
ends in May 2007. The number of tropical cyclones in each basin is: N.
Atl., 469; E. Pac., 674; W. Pac., 690; S. Hem., 601; N. Ind., 110. North
Indian TCs, excluded from the analysis, are plotted in a different colour.
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4 ÁLVARO CORRAL AND ALBERT OSSÓ, JOSEP ENRIC LLEBOT

For variables distributed across a wide range of scales, it is convenient to take a
variable size of the interval, increasing accordingly to the scale of the variable. The
most natural selection is what is called logarithmic binning [5], where each interval
is a factor c larger than the previous one, i.e., [PDImin,PDImax) = [m,cm), [cm,c2m),
[c2m,c3m), etc.; so, for the k−th interval, dPDI = ck−1(c− 1)m. We have usually
taken c = 5

√
10 ' 1.58, which corresponds to 5 intervals per decade, and an absolute

minimum value, for instance, m = 108 m3s−2.
In this way, the value of D(PDI) is associated to the whole interval PDImin =

ck−1m≤ PDI < PDImax = ck, as in a bar histogram. If we want to take a single point of
the interval, PDI∗, to be representative of the probability density, we need to solve the
equation D(PDI∗) = [F(PDImax)−F(PDImin)]/dPDI, where F(PDI) is the cumula-
tive distribution function, F(PDI) ≡ ∫ PDI

0 D(x)dx. Note that the equation depends on
the mathematical form of the distribution. However, a prescription for PDI∗ is given
in Ref. [5], which shows that the geometric mean of the limits of the interval is a
reasonable solution, i.e., PDI∗ =

√
PDIminPDImax. Nevertheless, as it is explained in

the next subsection, our estimates of the power-law exponent are independent on the
estimation of the probability densities, which are only displayed as a visual indication.

The error bars for each interval are estimated from the standard deviation of the
density, obtained from the formula

ε(PDI) = εrel(PDI)D(PDI)

with

εrel(PDI) =

√
1−P

n
' 1√

n
,

which makes use of the binomial distribution for the number of counts, with P ≡
n/N = D(PDI)dPDI, see for instance page 185 of Ref. [6].

1.4. Power-law Fit and Kolmogorov-Smirnov Goodness-of-Fit Test. In order to fit
the PDI distributions and to test the goodness of such fits we essentially follow the
method proposed by Clauset et al. [7], generalizing it for the case in which the power
law has both a lower and an upper cutoff, A and B, respectively.

The power-law exponent is obtained by maximizing the likelihood function, or
equivalently, its logarithm, the log-likelihood. The normalized density, with x ≡ PDI
and defined between x = A and x = B, is

D(x) =
C
xα

=
(α−1)Aα−1

1− rα−1
1

xα

with r≡ A/B. The log-likelihood L is defined, dividing by the number of data NAB in
the range A≤ x≤ B, as

L (α) =
1

NAB

NAB

∑
i=1

lnD(xi) = ln
α−1

1− rα−1 −α ln
G
A
− lnA,
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SUPPLEMENTARY INFORMATION SCALING OF TROPICAL-CYCLONE DISSIPATION 5

where i labels the different data points (the tropical cyclones considered) inside the
interval [A,B] and G is the geometric mean of the data in the considered range, i.e.,
lnG = ∑i lnxi/NAB. The log-likelihood only depends on one unknown parameter, α ,
as, following Clauset et al., A and B (and therefore r) are taken as fixed parameters
(later they will be allowed to vary). Maximization of the log-likelihood is performed
numerically to obtain the maximum-likelihood estimator for α , which we call here
αdata (for details in the procedure, see Ref. [8]). The uncertainty of the exponent αdata
can be obtained from its standard deviation, σα ; we have used the value derived by
Aban et al. [9].

Usually, at this point, provided a fitting range and the estimated parameters, the
Kolmogorov-Smirnov (KS) test [10] (or an equivalent test) quantifies the goodness of
the fit. However, Clauset et al. use the KS statistic to decide the best fitting range,
which for them is the one that minimizes the KS statistic. Let us recall that the KS
statistic, or KS distance, is defined as

ddata ≡ max
A≤x≤B

[Fdata(x)−F(x|αdata)],

where F(x|αdata) is the theoretical power-law distribution (stressing the dependence
of the distribution on its parameter, with value αdata), F(x|αdata)≡

∫ x
A D(x|αdata)dx =

C(1/Aαdata−1− 1/xαdata−1)/(αdata− 1), and Fdata(x) is the empirical cumulative dis-
tribution of the data, calculated simply as the fraction of data below a given value x,
which results in a staircase-like function.

In contrast with Clauset et al.’s case, where B→ ∞, when B is finite several power
laws can fit different portions of the distribution. We just chose the values of A
and B that minimize ddata under the constrain that B/A has to be large enough,
typically B/A > 20. This yields the optimal values Â and B̂, with a corresponding
maximum-likelihood exponent α̂data and the minimized KS statistic d̂data =
min∀A,B s.t. B/A>20[ddata].

Once we have decided a fitting range (i.e., Â and B̂) and have also the corresponding
exponent α̂data, we need to quantify the goodness of the fit. The temptation is just to
use the KS tables, however, as the distribution that we are going to test is the optimum
one that fits the data, we cannot use this procedure. In order to avoid such a bias, the
alternative is to compute the distribution of the KS statistic by Monte Carlo simulations
[7]. The key point is to proceed with the simulated data exactly in the same way as
with the empirical data, avoiding in this way any bias.

To be concrete, our null hypothesis states that, for Â ≤ x ≤ B̂, the data come from
the power-law distribution F(x|α̂data) (i.e., D(x|α̂data), where the dependence on Â
and B̂ is implicit). Therefore, we need to simulate N data, following such distribution
between Â and B̂ but with a distribution similar to the empirical one outside this range,
in order to be able to apply to the simulated data the same estimation procedure used
for the empirical data. We generalize the semiparametric method described in Ref. [7],
in such a way that the simulated values outside the interval [Â, B̂] are randomly selected
from the empirical data and the values inside the interval are taken from a synthetic



C
R

M
Pr

ep
ri

nt
Se

ri
es

nu
m

be
r1

07
3

6 ÁLVARO CORRAL AND ALBERT OSSÓ, JOSEP ENRIC LLEBOT

power-law distribution. Let us define N̂A as the number of data with x < Â, N̂AB as the
number of data with Â ≤ x ≤ B̂, and N̂B as the number of data with x > B̂, fulfilling
N = N̂A + N̂AB + N̂B. So, with probability N̂A/N we take at random one of the empirical
data with x < Â, with probability N̂B/N we take at random one of the empirical data
with x > B̂ and with probability N̂AB/N we generate a power-law random number as

x =
Â[

1− (1− r̂α̂data−1)u
]1/(α̂data−1) ,

where r̂ ≡ Â/B̂ and u is uniformly distributed between 0 and 1.
In this way, we select arbitrary values of A and B and fit the exponent α in the cor-

responding interval by maximum likelihood to the simulated data, as before, obtaining
an estimator αsim; then we compute the KS statistic as

dsim ≡ max
A≤x≤B

[Fsim(x|α̂data)−F(x|αsim)],

where Fsim(x|α̂data) is the cumulative distribution of the simulated data, and F(x|αsim)
is the theoretical distribution for such simulated data, with the parameter αsim obtained
from maximum likelihood from the simulated data. As before, we select the fitting
range for which A and B yield d̂sim ≡ min[dsim], with the condition that B/A > 20,
which leads to the values Âsim, B̂sim, α̂sim and, our main interest, d̂sim.

Repeating this Monte Carlo procedure many times we will obtain the distribution of
the KS statistic d̂sim under the null hypothesis, i.e., for data following the distribution
F(x|α̂data). In particular, the p−value, defined as

p≡ Prob [KS statistic takes value larger than the empirical
value if the null hypothesis is true],

is estimated as

p =
Number of simulations with d̂sim ≥ d̂data

Total number of simulations
.

In general, it is straightforward to see that, under the null hypothesis, the p−value it-
self will be randomly distributed, with a uniform distribution defined between 0 and 1.
It seems clear that if p = 0.9, p = 0.5 or even p = 0.2, we should not reject the null
hypothesis, whereas if p = 0.0001 we must reject it. Intermediate cases are more deli-
cate. In any case, if we reject the null hypothesis, the p−value gives us the probability
that we are rejecting a true null hypothesis.

Finally, the uncertainty of the p−value, which we call σp is obviously associated
to the number of simulations used to obtain it. The number of simulations with
KS statistic larger than d̂data is a binomial variable. Using the same argument than
for the error bars of the probability density (see Ref. [6]) one gets that σp/p '√

(1− p)/(pNs), where Ns denotes here the total number of simulations, and there-
fore σp '

√
p(1− p)/Ns. Note that for p ' 0.5 and Ns ' 2500, σp is around 0.01,
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in agreement with the recipe given in Ref. [7]; however, if p is close to 0 or 1, this
agreement is not valid anymore.

Section II contains the results of applying this procedure to the tropical-cyclone
PDIs.

1.5. Kolmogorov-Smirnov test for similarity of distributions. We can also test if
two data sets come from the same distribution, independently on the shape of the
distribution, using the two-sample Kolmogorov-Smirnov test [10]. In this case the KS
statistics is defined as

d ≡max
∀x

[Fdata1(x)−Fdata2(x)],

where Fdata1(x) and Fdata2(x) refer to the empirical cumulative distributions of the two
data sets under consideration. The distribution of d can be easily calculated with the
help of some numerical recipes, given only the number of data in each set [10]. In this
way we can test both the stationarity of the distributions of PDI and their dependence
with SST and MEI. The results for the tropical-cyclone data are provided in the next
section.

basin period N A(m3/s2) B(m3/s2) NAB CNAB/N α±σα ddata p−value

N. Atl. 1966-2007 469 2.7 ·109 6.3 ·1010 328 37.423 1.190± 0.060 2.40 ·10−2 69.0 ± 1.5 %

E. Pac. 1966-2007 674 3.2 ·109 7.4 ·1010 450 28.456 1.175± 0.050 1.56 ·10−2 98.4 ± 0.4 %

W. Pac. 1986-2007 690 0.5 ·109 14.7 ·1010 655 0.073 0.960± 0.025 1.81 ·10−2 58.8 ± 1.6 %

S. Hem. 1986-2007 601 1.6 ·109 9.3 ·1010 474 3.593 1.110± 0.040 2.35 ·10−2 24.0 ± 1.3 %

N. Atl. 1900-1953 436 1.8 ·109 9.3 ·1010 381 2.299 1.090 ± 0.050 2.93 ·10−2 19.1 ± 1.2 %

N. Atl. 1954-2007 579 2.2 ·109 7.9 ·1010 446 18.320 1.170 ± 0.050 2.02 ·10−2 76.2 ± 1.3 %

TABLE 1. Parameters of the maximum likelihood estimation and the
KS test for the PDI data in Figs. 1(a) and 1(b) (upper and lower part
of the table, respectively). NAB refers to the number of tropical cy-
clones with PDI value between A and B; CNAB/N is the constant of
the power law that fits the distribution between A and B when it is nor-
malized from 0 to ∞, its units are (m3/s2)α−1. Note that in the worst
case, one standard-deviation uncertainty is around ±0.06. A and B are
determined with a resolution of 30 points per decade. The p−values
are calculated from 1000 Monte Carlo simulations.
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8 ÁLVARO CORRAL AND ALBERT OSSÓ, JOSEP ENRIC LLEBOT

2. SUPPLEMENTARY RESULTS

2.1. Power-law distribution of tropical-cyclone dissipation. Table S1 shows the re-
sults of applying the procedure to determine the fitting range and the power-law expo-
nent (explained in the previous section) to the PDI data sets of Fig. 1(a). It is apparent
that the proposed fitting power-law distributions cannot be rejected, as the p−values
are high enough. In fact, one of the values (E. Pac.) is very close to 1; this would mean
that the power-law fit is “too good”, which could be a consequence of the fact that the
statistical independence of the variables does not hold. We note that correlations be-
tween the size of successive occurrences of natural hazards have become an important
research topic recently [6, 11, 12]. In any case, the tropical-cyclone-PDI power-law
behaviour is very clear over the selected range.

W. Pac. 1986–2007, no TD

W. Pac. 1986–2007

PDI (m3s−2)
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FIGURE 3. Comparison of PDI probability densities in the Northwest-
ern Pacific excluding tropical depressions (TD) and including them (as
in the main text).

2.2. Effect of tropical depression incompleteness. As we have already mentioned,
records for the Northwestern Pacific and the Southern Hemisphere, compiled by the
JTWC, contain some tropical depressions, whereas the Northeastern Pacific and the
Northern Atlantic data are devoid of these storms (defined by maximum sustained sur-
face velocities below 32 knots). The inclusion of tropical depressions enlarges the
range of the power-law behaviour to small values of PDI, as can be seen in Fig. S3.
So, we can attribute to this the fact that the power-law range is shorter in the Northeast-
ern Pacific and the Northern Atlantic. In the same way, as only tropical depressions of
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some significance are retained in the records, we expect that the addition of not signif-
icant tropical depressions would extend further the power-law range to smaller values
of the PDI.
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FIGURE 4. Tropical-cyclone best tracks with PDI greater than
1011 m3s−2 for the North Atlantic, during the period 1966-2007.

2.3. Effect of the Finite Size of the Basin. Figures S4, S5 and S6 show the best
tracks of the tropical cyclones with PDI values in the tail of the distribution, con-
cretely, PDI > 1011 m3/s2, except for the Northwestern Pacific, where we have taken
PDI > 1.5 · 1011 m3/s2 (due to the large number of cyclones which verify the former
condition). It is clear that, in general, these storms travel through the whole basin,
being limited in their evolution by the finiteness of the size of the basins.

We can make this argument quantitative. Below we count how many of these large-
in-PDI tropical cyclones end by effect of becoming extratropical, landfall, or other
factors. Note that the information contained in the records is not fully reliable in this
regard, and we have needed to consult other sources (among them [13, 14, 15]). The
results are:

• North Atlantic
– Extratropicals: 12 (Faith 1966, David 1979, Gilbert 1988, Hugo 1989,

Luis 1995, Edouard 1996, Mitch 1998, Gert 1999, Fabian 2003, Isabel
2003, Frances 2004, Wilma 2005).

– Landfall: 7 (Inez 1966, Beulah 1967, Allen 1980, Georges 1998, Ivan
2004, Emily 2005, Dean 2007).

– Other: 1 (Gabrielle 1989).



C
R

M
Pr

ep
ri

nt
Se

ri
es

nu
m

be
r1

07
3

10 ÁLVARO CORRAL AND ALBERT OSSÓ, JOSEP ENRIC LLEBOT

• Northeastern Pacific
– Extratropicals: 5 (Fico 1978, Kevin 1991, John 1994, Guillermo 1997,

Ioke 2006).
– Landfall: 2 (Norbert 1984, Oliwa 1997).
– Other: 7 (Uleki 1988, Trudy 1990, Tina 1992, Emilia 1994, Linda 1997,

Paka 1997, Dora 1999).
• Northwestern Pacific

– Extratropicals: 7 (Mireille 1991, Yvette 1992, Yates 1996, Joan 1997,
Keith 1997, Lupit 2003, Chaba 2004).

– Landfall: 0.
– Other: 4 (Gay 1992, Angela 1995, Paka 1997, Fengshen 2002).

• Southern Hemisphere
– Extratropicals: 6 (Harry 1989, Hanitra 1989, Susan 1997-98, Frank 2004,

Olaf 2005, Percy 2005).
– Landfall: 7 (Alibera 1989-90, Geralda 1994, Litanne 1994, Hudah 2000,

Fay 2004, Ingrid 2005, Monica 2006).
– Absorbed: 1 (Ron 1998 by Susan).
– Other: 7 (Rewa 1993-94, Daryl/Agnielle 1995, Melanie/Bellamire 1996,

Pancho/Helinda 1997, Dina 2002, Hary 2002, Kalunde 2003).
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FIGURE 5. Tropical-cyclone best tracks with PDI greater than
1011 m3s−2 for the Southern Hemisphere, during the period 1986-2007
(ending in May). Note that for such large storms the Southern Indian
and the Southern Pacific basins get clearly separated; nevertheless, the
similar sizes of both basins justifies their treatment as a unique system,
in order to improve the statistics.
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FIGURE 6. Tropical-cyclone best tracks with PDI greater than
1011 m3s−2 for the Northeastern Pacific during the period 1966-2007
and greater than 1.5 · 1011 m3s−2 for the Northwestern Pacific during
1986-2007. Note that some storms cross the “boundary” between the
basins and there is one storm that is present in both databases.

We see how in all basins, except in the Northeastern Pacific, most of the largest (in
PDI) tropical cyclones end by transitioning into extratropical cyclones or by landfall.
In both cases this constitutes a boundary or finite size effect. In the Northeastern
Pacific these termination mechanisms take place in about half of the largest-in-PDI
hurricanes. But this does not exclude that for some of the hurricanes in the other half
of the record a boundary effect is also playing a role; indeed, hurricanes at somehow
low latitudes encounter soon the cold California Current to the North, and also cool
SST to the West. This effectively delimits the lifetime of hurricanes and therefore the
size of the basin.

A finite-size analysis can be easily performed. We restrict the calculation of PDIs
only to the cases in which the best-track coordinates are in some bounded region of
the basin. Mathematically,

PDI ≡ ∑
t s.t. (x,y)∈R

v3
t ∆t,

which is restricted to the case (time) in which the coordinates (x,y) are inside region R.
In order keep the statistics as high as possible, we will average the PDI distributions
over regions R with the same size.
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N. Atl. 1966–2007, L = 5◦
N. Atl. 1966–2007, L = 10◦
N. Atl. 1966–2007, L = 20◦
N. Atl. 1966–2007
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N. Atl. 1966–2007, L = 5◦
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FIGURE 7. (a) PDI probability densities averaged over sections of dif-
ferent width in longitude in the Northern Atlantic. The values of the
width are L = 20◦, 10◦ and 5◦, and the sections are taken in the win-
dow from 100◦ W to 40◦ W. (b) The same distributions under rescaling.
Note that the rescaling is done with the mean value because although
the power-law exponent is greater than one, the power-law behaviour is
lost at small values of the PDI, see Subsec. 2.6.
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Figure S7(a) shows the results of this procedure applied to the North Atlantic for
regions of different width in longitude. It is apparent how the tail of the distribution
moves to the left while keeps its shape nearly constant when the size of the region is
decreased. The rescaling of the densities with their mean values yields the collapse
of the distributions, which is shown in Fig. S7(b). Similar results hold for the other
basins.

N. Atl. 1966–2007, TC stage

N. Atl. 1966–2007
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I
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10−12
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10−14

FIGURE 8. PDI probability density for Northern Atlantic tropical cy-
clones when the stage of the storm is strictly that corresponding to a
tropical cyclone, and the same density when this restriction is released
(as in the main text).

2.4. Robustness of Results. First, we check the robustness of the distribution over
long periods of time. For the two distributions in Fig. 1(b), corresponding to N.
Atlantic hurricanes for the years 1900-1953 and 1954-2007, the estimated power-law
exponents and p−values are displayed in the bottom part of Table S1, showing a good
agreement between them and with the more reliable period 1966-2007. Moreover,
the two-sample KS test described in the previous section yields a value d = 0.07,
which leads to p = 15%. If we fix a minimum value PDI value A = 2 ·109m3/s2 then
d = 0.055, and p = 51%. (Comparison of 1954-2007 with the subset 1966-2007 yields
a p−value around 97 %.) We conclude then that the distributions for the two periods
cannot be considered as different.

In order to test further the robustness of our results, we introduce variations in the
definition of the PDI of a storm. Figure S8 shows the PDI distribution for the North
Atlantic when extratropical, subtropical, wave and low stages are not accounted in the
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calculation of the PDI. If US landfalling hurricanes are excluded from the North At-
lantic record, the PDI distribution is that appearing in Fig. S9. No essential difference
arises between these distributions and those appearing in the main text, included also
here for comparison.

N. Atl. 1966–2007, no landfall

N. Atl. 1966–2007

PDI (m3s−2)

D
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D
I
)
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)
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10−10

10−11

10−12

10−13

10−14

FIGURE 9. PDI probability density for Northern Atlantic tropical cy-
clones excluding those that make landfall in the US. The original dis-
tribution is also shown.

It has been suggested that the measurement of wind velocities previous to 1970 was
not well calibrated. Following an approach by Landsea, we correct those velocities
simply by subtracting 4 m/s [16]. This correction changes significantly small values
of the PDI, but not the rest of values, and in this way the shape of the PDI distribution
keeps very similar, except at small values, as can be seen in Fig. S10. Nevertheless,
Landsea has later argued that the correction is probably not necessary [17].

Finally, other estimations of tropical cyclone dissipation, apart from PDI, have been
suggested. It is remarkable the so called accumulated cyclone energy (ACE), defined
as

ACE = ∑
t

v2
t ∆t,

which is related to the kinetic energy [18]. Note that the essential difference with PDI
is the replacement of the cube of the velocity by its second power. Our conclusions do
not change if we replace PDI by ACE, in particular, the values of the exponents are
nearly the same. The reason is that PDI and ACE are highly correlated, and we can
consider that a functional dependence exists between both variables. As the power-law
exponents are very close to one, a change of variables from PDI to ACE changes very
little the value of the exponents.
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16 ÁLVARO CORRAL AND ALBERT OSSÓ, JOSEP ENRIC LLEBOT

N. Atl. 1944–1969, vt correction

N. Atl. 1944–1969
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FIGURE 10. PDI probability density for Northern Atlantic tropical cy-
clones when the wind velocity is corrected as vt → vt − 4 m/s. The
original distribution is also shown.

2.5. Invariance of Power-Law Distributions under Random Partitions. Let us
consider a random variable x, distributed according to the density D(x). For each x, we
will generate a uniform random number u between 0 and x, so that x = u+(x−u). So,
given an x−value, the distribution of u conditioned to the value of x can be written as

D(u|x) =
θ(x−u)

x
≡
{

1/x for 0≤ u < x
0 for u > x ,

where θ is the Heaviside step function. This process represents the split of a tropical
cyclone into two smaller ones, due to incomplete historical observations. We will
obtain the distribution of u, D(u), which plays the role of the observed PDI, as a
function of that of x, the “true” PDI. (In fact, one should also take into account the
distribution of x−u, but in virtue of the symmetry of the uniform distribution u and x−
u are distributed in the same way). From the total probability theorem, marginalization
of the joint density D(x,u) yields D(u),

D(u) =
∫
∀x

D(x,u)dx =
∫
∀x

D(u|x)D(x)dx =
∫

∞

u

D(x)
x

dx.

Substituting in this equation a power-law distribution for x, D(x) = C/xα , it is easy to
get that u turns power-law distributed as well, with the same exponent:

D(u) =
∫

∞

u

C
x1+α

dx =
C

αuα
.
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If not all the tropical cyclones undergo this split process, the observed distribution will
be a statistical mixture of D(x) and D(u), which obviously will be a power law with
the same exponent α .

The argument can be easily generalized for the case in which x is power-law dis-
tributed only in a certain range of values. In conclusion, if power-law distributed
tropical cyclones are broken randomly into two parts, the resulting distribution turns
out to be also a power law with the same exponent.

2.6. Scaling of Distributions with exponent larger than one . Let us assume that
the probability density of a certain quantity s depends on a parameter a through a
scaling form, i.e.,

D(s,a) = a−β g(s/aν),
where ν and β are scaling exponents and g(s/aν) is a scaling function. (We will
assume that ν > 0.) If the distribution is defined between smin and ∞, the kth order
moment of the distribution is, by definition,

〈sk〉 ≡
∫

∞

smin

skD(s,a)ds

and in principle depends on a. Using the scaling ansatz and the change of variable
s/aν = x, the kth moment can be written as

(1) 〈sk〉= a(k+1)ν−β

∫
∞

smin/aν

xkg(x)dx.

We are interested in two different cases in the limit of small s (we assume that in the
limit of large s the integral converges):

• Case 1. In the limit of small s we have D(s,a) ∼C/sα , with α < 1. Then the
integral of xkg(x) converges when x→ 0 and we will have 〈sk〉 ∼ a(k+1)ν−β .
Applying that the zero order moment is one (by normalization), we find that

β = ν

and from here,
〈sk〉 ∼ akν .

In particular, 〈s〉 ∼ aν , and substituting in the scaling ansatz

D(s,〈s〉) = g(s/〈s〉)/〈s〉;
in words, the distribution scales with its mean value.
• Case 2. In the limit of small s we have D(s,a)∼C/sα , with α > 1. Then, for

α > k +1, the integral of xkg(x) diverges when x→ 0 as aν(α−k−1). For k = 0
we get 1∼ aνα−β . So, the normalization condition implies that

β = να

Turning back to 〈sk〉 we can write

〈sk〉= constant if k +1 < α.
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Increasing the value of k, the integral in Eq. (1) converges and we are in the
first case, which gives now

〈sk〉 ∼ aν(k+1−α) if k +1 > α.

In the case of the PDI of tropical cyclones, α < 2, and the previous equation
is already valid for k = 1. In this way, the mean scales with a as 〈s〉 ∼ aν(2−α).
Substituting in the scaling ansatz,

D(s,〈s〉) = g(s/〈s〉1/(2−α))/〈s〉α/(2−α);

so, the distribution does not scale linearly with its mean, but with a power of
its mean.

2.7. Separation by SST , MEI, and high and low activity. As described in the main
text, in order to investigate the effect of sea surface temperature and El Niño on the
dissipation of individual tropical cyclones, we separate the PDI data into years of
high and low SST , and into positive and negative MEI. The list of years we have
obtained in each case in each one of the basins studied appears in Table S2. For these
restricted data sets, the estimated power-law exponents and the p− values quantifying
the goodness of the fits, as well as other related quantities, are shown in Table S3.
In all cases the power-law hypothesis is acceptable, being the worst one that of the
N. Atlantic in years of low SST , for which we have obtained p = 9%. Nevertheless,
remember that the p−value has to be uniformly distributed between 0 and 1, and as
we are testing about 20 data sets it is possible that some of them yields p even below
5%, in the case in which the data were indeed power-law distributed. In the N. Atlantic
and E. Pacific we also notice some systematic decrease in the value of the exponent
when going from low activity (low SST or MEI < 0) to high activity; in some cases
this decrease is small (below 0.15) but in some others can be about 0.25.

2.8. Separation by SST , MEI, and high and low activity. As described in the main
text, in order to investigate the effect of sea surface temperature and El Niño on the
dissipation of individual tropical cyclones, we separate the PDI data into years of
high and low SST , and into positive and negative MEI. The list of years we have
obtained in each case in each one of the basins studied appears in Table S2. For these
restricted data sets, the estimated power-law exponents and the p− values quantifying
the goodness of the fits, as well as other related quantities, are shown in Table S3.
In all cases the power-law hypothesis is acceptable, being the worst one that of the
N. Atlantic in years of low SST , for which we have obtained p = 9%. Nevertheless,
remember that the p−value has to be uniformly distributed between 0 and 1, and as
we are testing about 20 data sets it is possible that some of them yields p even below
5%, in the case in which the data were indeed power-law distributed. In the N. Atlantic
and E. Pacific we also notice some systematic decrease in the value of the exponent
when going from low activity (low SST or MEI < 0) to high activity; in some cases
this decrease is small (below 0.15) but in some others can be about 0.25.
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N. Atl. high SST :

1966196919791980198119831987199019951997199819992001200220032004200520062007

N. Atl. low SST :

19671968197019711972197319741975197619771978198219841985198619881989199119921993199419962000

E. Pac. high SST :

197219761982198319861987199019911992199319941995199619971998200120022003200420052006

E. Pac. low SST :

196619671968196919701971197319741975197719781979198019811984198519881989199920002007

E. Pac. MEI > 0:

1966196919721977197819791980198119821983198619871990199119921993199419951997199820022003200420052006

E. Pac. MEI < 0:

19671968197019711973197419751976198419851988198919961999200020012007

W. Pac. MEI > 0:

198619871990199119921993199419951997199820022003200420052006

W. Pac. MEI < 0:

1988198919961999200020012007

TABLE 2. Separation of the years as a function of the value of SST
and MEI.

Additionally, we can apply a two-sample Kolmogorov-Smirnov test to each pair
of high/low SST , or positive/negative MEI (those appearing in Fig. 2(a)) in order to
quantify the difference between them. We summarize the results here. For the N. Atl,
when years are separated by SST we get: d = 0.10, p = 22%; for the E. Pac, separating
by SST : d = 0.13, p = 1%; for the E. Pac, separating by MEI: d = 0.10, p = 7%; and
for the W. Pac, separating by MEI: d = 0.11, p = 8%. Except for the N. Atlantic,
the p−values are rather low, indicating that it is unlikely that the distributions are the
same.

However, if we rescale the PDIs, in the way already explained and displayed in
Fig. 2(b) (i.e., dividing by 〈PDI〉ν ), the KS distances decrease and the p−values in-
crease. Nevertheless, the p−values obtained in this case are not reliable, as the rescal-
ing parameter in each case has been calculated from the same data set, introducing
a bias. Anyhow, as an indication, we report the obtained results for the KS statistic,
d = 0.055,0.052,0.052 and 0.038 for PDI/〈PDI〉ν > 0.0003, 0.0005, 0.0005 and 0,
in units of (m3/s2)1−ν (reported in the same order as above); for curiosity, the biased
p−values are 90 %, 80 %, 81 % and 99%.

Finally, the N. Atlantic high-activity periods displayed in Fig. 3, are compared by
means of a two-sample KS test too. The results are summarized in Table S4, showing
that these distributions are highly compatible between them, but much less compatible
with the one for the quiet period 1970-1994.
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Basin N A(m3/s2) B(m3/s2) NAB CNAB/N α±σα ddata p−value

N. Atl. 1966-2007 SST ↑ 250 2.7 ·109 7.4 ·1010 175 8.216 1.13 ± 0.08 2.82 ·10−2 79 ± 4 %

N. Atl. 1966-2007 SST ↓ 219 2.2 ·109 7.4 ·1010 178 128.630 1.26 ± 0.07 4.58 ·10−2 ∗7 ± 3 %

E. Pac. 1966-2007 SST ↑ 350 1.6 ·109 10.0 ·1010 303 1.297 1.07 ± 0.05 2.16 ·10−2 86 ± 3 %

E. Pac. 1966-2007 SST ↓ 324 2.5 ·109 5.8 ·1010 228 61.571 1.21 ± 0.07 3.64 ·10−2 10 ± 3 %

E. Pac. 1966-2007 MEI ↑ 400 1.4 ·109 6.3 ·1010 325 0.802 1.04 ± 0.05 1.93 ·10−2 95 ± 2 %

E. Pac. 1966-2007 MEI ↓ 274 2.9 ·109 8.6 ·1010 197 571.587 1.31 ± 0.07 3.06 ·10−2 67 ± 5 %

W. Pac. 1986-2007 MEI ↑ 404 1.5 ·109 6.8 ·1010 289 0.097 0.94 ± 0.05 2.28 ·10−2 78 ± 4 %

W. Pac. 1986-2007 MEI ↓ 188 0.7 ·109 9.3 ·1010 175 0.036 0.92 ± 0.05 3.64 ·10−2 34 ± 5 %

N. Atl. 1926-1970 427 1.6 ·109 10.0 ·1010 370 1.089 1.06 ± 0.04 2.58 ·10−2 40 ± 5 %

N. Atl. 1945-1970 257 2.2 ·109 7.9 ·1010 198 0.565 1.02 ± 0.07 2.45 ·10−2 93 ± 3 %

N. Atl. 1945-1969 247 1.3 ·109 7.4 ·1010 209 0.154 0.97 ± 0.06 2.26 ·10−2 99 ± 1 %

N. Atl. 1945-1969 corr 247 0.5 ·109 5.8 ·1010 213 0.062 0.94 ± 0.05 2.49 ·10−2 93 ± 3 %

N. Atl. 1995-2005 166 1.0 ·109 9.3 ·1010 147 0.276 1.00 ± 0.06 2.87 ·10−2 94 ± 2 %

N. Atl. 1945-1970,

1971-1994 SST ↑, 1995-2005 506 2.2 ·109 7.4 ·1010 380 1.296 1.05 ± 0.05 1.82 ·10−2 92 ± 3 %

N. Atl. 1971-1994 222 2.2 ·109 7.4 ·1010 181 145.935 1.26 ± 0.07 3.62 ·10−2 50 ± 5 %

W. Pac. 1986-2007 no TD 592 1.0 ·109 7.4 ·1010 474 0.055 0.93 ± 0.04 1.72 ·10−2 92 ± 3 %

∗9.0±0.9% if Ns = 1000

TABLE 3. Parameters of the maximum likelihood estimation and the
KS test for the PDI data in Figs. 2 and 3 (and other related data). The
up arrow denotes a high or positive phase of SST and MEI, just the
opposite as the down arrow. The p−value is calculated using Ns = 100
simulations. Tropical depressions have been removed in the W. Pac.
record. The term corr refers to the subtraction of 4 m/s to all velocities
[16].

2.9. Distribution of 6-Hour Velocities. Figure S11 shows the probability densities
of the maximum sustained surface wind velocity (evaluated every 6 hours), D(vt),
conditioned to SST above or below its mean or conditioned to MEI > 0 or MEI < 0.
Note that these distributions are different to those calculated by Emanuel [19], who
measured velocity in units of the potential intensity at each time.
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high SST ,

N 1945-1970 1966-2007 1995-2005 1971-1994

1945-1970 257 – 36.4 % 44.4 % 0.2 %

high SST , 1966-2007 250 0.081 – 95.0 % 22.0 %

1995-2005 166 0.085 0.051 – 5.7 %

1971-1994 222 0.167 0.096 0.135 –

TABLE 4. KS distance d (below the diagonal) and p−value (above) for
the results of the two sample KS test applied to the Atlantic hurricanes’
PDI, for two different active periods, and for the years of high SST
during 1966-2007, compared also to the low-activity period 1971-1994.
Notice that the data set for high SST years between 1966 and 2007 is
not independent of the rest.
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MEI < 0

MEI > 0

low SST

high SST
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FIGURE 11. (a) Maximum sustained surface wind velocity probability
densities D(vt) separated for high SST and low SST in the North At-
lantic and Northeastern Pacific, and for MEI > 0 or MEI < 0, in the
Northeastern Pacific and Northwestern Pacific (shifted in the vertical
axis by integer powers of 1000 for clarity sake). Time periods are the
same as in Figs. 1(a) and 2. We have used bins of constant size, equal
to 15 knots, starting at 2.5 knots. The ratios of mean velocities between
years of high and low SST or MEI, 〈vt〉high/〈vt〉low, are 1.05, 1.07, 1.08
and 1.04, from top to bottom. When the average is for the cube of the
velocity, we find 〈v3

t 〉high/〈v3
t 〉low = 1.25, 1.4, 1.35 and 1.2. For com-

parison, the lifetimes of the TCs verify 〈T 〉high/〈T 〉low = 1.1, 1.15, 1.05
and 1.2.
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