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SPECTRAL PROPERTIES OF DEGENERATE ELLIPTIC
OPERATORS WITH MATRIX COEFFICIENTS

M.G. GADOEV, S.A. ISKHOKOV

Introduction

The paper is continuation of the work [1] and it is devoted to spectral properties
of a class nonselfadjoint degenerate elliptic operators A in the spaceHl = L2(0, 1)l

associated with noncoercive bilinear forms.
Questions as completeness of the system of root vector-functions of the operator

A in Hl, description of the domain of operator A, estimation of the resolvent of
operator A, asymptotical distribution of eigenvalues of operator A are considered.

Spectral asymptotics of degenerate elliptic operators far from selfadjoint ones
were studied in [2-7] in a case when eigenvalues of an operator are divided into
two series, one lies out of the angle | arg z| ≤ ϕ, ϕ < π and another localizes to
the ray R+ = (0,+∞). This paper as [1] sides with [2,3,7], among them more
general results were obtained in [7] where it was assumed that a leading coefficient
of operator A

a(t) ∈ Cm([0, 1];EndCl) (0.1)

and has simple different eigenvalues (e.v.) for any t ∈ [0, 1].
In stead of (0.1) we require only that a(t) ∈ C([0, 1];EndCl).

1. Statement of main results

1. A nonselfadjoint operator A given in a Hilbert space H is called far from
selfadjoint ones if it is impossible to express it in the form

A = B(E + S), B = B∗, S ∈ σ∞(H). (1.1)

Here, and in the sequel, the symbol σ∞(H) stands for the class of completely
continuous linear operators in H and B∗ - adjoint operator of B.

Spectral properties of elliptic differential and pseudodifferential operators near
to selfadjoint ones, i.e. those are expressible in the form (1.1), have been studied
in a literature in greater details (see [8, 9]). Also, spectral properties of elliptic
differential operators (d.o.) and pseudodifferential operators (p.d.o.) far from
selfadjoint ones were investigated in the case when those are given in a compact
manifold without edge (see [7, 10-12], and references cited therein). In the case
of domains with a boundary d.o. and p.d.o. that are far from selfadjoint were
studied in [3, 4, 13-18]; only [3, 4, 13] are devoted to degenerate elliptic problems.
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2 M.G. GADOEV, S.A. ISKHOKOV

2. In this work we study spectral properties nonselfadjoint operator in L2(0, 1)l

generated by bilinear form

A[u, v] =
m∑

i,j=0

1∫
0

< pi(t)aij(t)u
(i)(t), pj(t)v

(j)(t) >Cl dt. (1.2)

Here

pi(t) = {t(1− t)}θ+i−m (i = 0,m), θ < m, u(i)(t) =
diu(t)

dti
,

aij ∈ L∞(J ; EndCl) (i, j = 0,m),

where J = (0, 1). Symbol < , >Cl stands for scalar product in Cl.
Let H+ to be the closer of linear manifold C∞0 (J) with respect to the norm

|ϕ|+ = (

∫
J

p2
m(t)|ϕ(m)(t)|2dt+

∫
J

|ϕ(t)|2dt)1/2.

We put:

H = L2(J), Hl = H⊕ · · · ⊕ H (l − ),

Hl
+ = H+ ⊕ · · · ⊕ H+ (l − ).

Here and in the sequel we denote the scalar products in the spaces H,Hl by the
same symbol ( , ). Analogously the norms in the spaces H+,Hl

+ and H,Hl,Cl

will be denoted by | |+, | | respectively.
Denote by ‖T‖ the norm of a bounded operator T given in H or Hl.
As a domain of the bilinear form A[u, v] (1.2) we accept the space Hl

+.

Suppose that amm(t) ∈ Cm(J ; EndCl) and matrix a(t) = amm(t) for any
t ∈ J has l different nonzero eigenvalues µ1(t), ..., µl(t). Thus the eigenvalues of
the matrix a(t) can be numerated such that µj(t), µ

−1
j (t) ∈ Cm(J), j = 1, l.

Let the following conditions are fulfilled:

|aij(t)| ≤Mtδ(1− t)δ (i+ j < 2m), δ > 0, (1.3)

µj(t) 6∈ S (j = 1, l, t ∈ J̄), (1.3′)

where S ⊂ C - some closed angle with vertex at the origin and µj(t) - eigenvalue
(e.v.) of the matrix a(t).

Under above stated conditions the following theorems are valid (see [1]):

Theorem 1.1. There is a unique closed operator A in Hl enjoying the following
properties:

(i) D(A) ⊂ Hl
+, (Au, v) = A[u, v] (∀u ∈ D(A), v ∈ Hl

+),
(ii) for some z0 ∈ C there is a continuous inverse operator

(A− z0E)−1 : Hl → Hl.

Let A be the same operator as one in the conditions (i), (ii).
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SPECTRAL PROPERTIES OF ELLIPTIC OPERATORS 3

Theorem 1.2. The operator A has discreet spectrum. The system of root vector-
functions of the operator A is complete in Hl, i.e. the set of its finite linear
combinations is dense in Hl. The order of the resolvent of the operator A is
not greater then 1

2m
. For N(λ) – the number of eigenvalues of the operator A

whose modules are less or equal to λ with the multiplicity counted, the bound
N(λ) ≤Mλ1/2m, (λ ≥ 1) is valid.

3. Denote by H− the completion of H with respect to the norm

|u|− = sup
06=ϕ∈H+

|(u, ϕ)|
|ϕ|+

.

We put Hl
− = H−⊕ · · · ⊕H− (l - times). An element F = (F1, . . . , Fl) ∈ Hl

−
generates antilinear continuous functional on Hl

+ by the formula

< F, v >= lim
i→+∞

(ui, v), v ∈ Hl
+,

where a sequence of vector-functions u1, u2, . . . ∈ Hl is selected such that ui →
F (i→ +∞) Hl

−.
Note that if v = (v1, . . . , vl) ∈ Hl

+ then

< F, v >=
l∑

i=1

< Fi, vi >, |F |− = (
l∑

i=1

|Fi|2−)1/2.

Here and in the sequel both for the case l = 1 and for any arbitrary l ∈ N we
use the same notations: | |−, < , >.

Conversely for any antilinear continuous functional g(v) (v ∈ Hl
+) there is a

unique element F ∈ Hl
− suchthat g(v) =< F, v >, ∀v ∈ Hl

+. At the same time
the norm of the functional g is equal to |F |−.

In what follows, antilinear continuous functionals on Hl
+ are identified with

the corresponding elements of the space Hl
−.

4. By the aid of the Hardy inequality under the condition (1.3) we have

|A[u, v]| ≤M |u|+|v|+ (∀u, v ∈ Hl
+).

Thus it is possible to introduce an operator A : Hl
+ → Hl

−, acting by the equality

< Au, v >= A[u, v] (∀u, v ∈ Hl
+).

Let A be the same operator as in theorems 1.1, 1.2. The following theorem is
valid:

Theorem 1.3. For sufficiently large by modules λ ∈ S there are continuous
inverses

(A− λE)−1 : Hl
− → Hl

−, (A− λE)−1 : Hl → Hl,

and an equality

(A− λE)−1u = (A− λE)−1u (∀u ∈ Hl)
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4 M.G. GADOEV, S.A. ISKHOKOV

holds. At the same time Au = Au (∀u ∈ D(A)), and

D(A) = {u ∈ Hl
+ : Au ∈ Hl}.

A similar result for partial differential operators with scalar coefficients has been
received in article [19]. Note that the first part of the assertion of the theorem
1.3 can be proven by the scheme of the article [19] only in a case of additional
assumption that

| arg {γ(t) < a(t)h, h >Cl}| < π − ε
2

(∀t ∈ J̄ , 0 6= h ∈ Cl), (1.4)

where ε > 0, γ(t) ∈ C(J̄), γ(t) 6= 0 (∀t ∈ J̄). Here and in the sequel it is
considered that the function arg z takes values in on the interval (−π, π].

In particular, it followes from (1.4)that

| arg γ(t)µj(t)| ≤
π − ε

2
(∀t ∈ J̄ , j = 1, l).

5. The proof of the theorem 1.2 is produced in §2. Note that following bound
of the resolvent of the operator A in the sector S is obtained in §2:

‖(A− λE)−1‖ ≤M(|λ|)−1, (λ ∈ S, |λ| ≥ c(S)),

where c(S) > 0. Summability of the Fourier series of elements f ∈ Hl with
respect to the system of root vector-functions of the operator A by the Abel
method with brackets was established in [1]. In this work completeness of the
system of root vector-functions of the operator A in Hl is proved.

In §3 we describe the domain of the operator A. In §4 we investigate asymptotic
behavior of eigenvalues of the operator A.

2. Resolvent estimate of the operator A

1. Let P be a selfadjoint operator in H associated with the bilinear form

P
′
[u, v] = (ρθu(m), ρθv(m)), D[P

′
] = H+.

Below we need the following (see [1, p.36]).

Lemma 2.1. There exists continuous inverse operator Tω : H− → H, ω ≥ 1,

such that Tωu = (P + ωE)−
1
2u, ∀u ∈ H , moreover

|TωF | ≤M |F |−ν (∀ω ≥ 1, ν ∈ [1, 2ω),∀F ∈ H−ν),
where a number M > 0 dose not depend on ω, ν.

2. Let Tω be the same operator as in lemma 2.1, Tω : H → H− – inverse
operator with respect to the operator Tω : H− → H. As in lemma 2.1 it is proved
that

|Tωu|−ν ≤M |u| (∀ω ≥ 1, ν ∈ [1, 2ω),∀u ∈ H),

where M > 0 is independent of ω, ν. At the same time if u ∈ Hν , then

Tωu = (P + ωE)
1
2u.
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Introduce operators T lω : Hl
− → Hl, T lω : Hl → Hl

− by the formulas:

T lω = diag{Tω, ..., Tω}, T lω = diag{Tω, ..., Tω}.
We put Pl = diag{P, ..., P}.

The following theorem is valid
Theorem 2.1. For λ ∈ S, |λ| ≥ σ, where σ > 0 is sufficiently large, the
following representation hold

(A− λE)−1 = (Pl + |λ|E)−1Φ(λ)Tλ (2.1)

(A− λE)−1 = (Pl + |λ|E)−
1
2 Φ(λ)(Pl + |λ|E)−

1
2 , (2.1′)

where Φ(λ) : Hl → Hl – bounded operator and

sup
λ∈S, |λ|≥σ

||Φ(λ)|| < +∞. (2.2)

Proof. We prove that if ν = |λ| then for sufficiently large in magnitude λ ∈ S,

|(Pl + |λ|E)
1
2 (Aν − λE)−1T l|λ|u| ≤M |u| (∀u ∈ Hl)

we use the equality (see [1], §4, (4.6), (4.7))

(Aν − λE)−1 = Xν(λ)Γ
′

ν(λ).

It is clear that

|T l|λ|Γ
(λ)
|λ| T

l
|λ|u| ≤ |Γ

(λ)
|λ| T

l
|λ|u|−|λ| ≤M1|T l|λ|u|−|λ| ≤M2|u|, (λ ∈ S, |λ| ≥ σ1).

It remains to show that (see [1], §4, (4.6), (4.7))

|(Pl + |λ|E)
1
2X|λ|(λ)T l|λ|u| ≤M3|u|, (u ∈ Hl). (2.3)

Using (4.3), (3.13) from [1] we bring a proof of the estimate (2.3), as above, to
the proof of the following inequality:

|(Pl + |λ|E)
1
2Rk,|λ|(λ)T|λ|v| ≤M4|v|, (v ∈ H).

This inequality for numbers λ ∈ S sufficiently large in magnitude follows from
representation (3.12) from [1]. Thus we have

(Aν − λE)−1 = (Pl + |λ|E)−
1
2 Φ(λ)T l|λ|, (λ ∈ S, |λ| ≥ σ), (2.4)

where Φ(λ) : Hl → Hl – a bounded operator satisfying the estimate (2.2).
Note that

(Aν − λE)−1F = (A− λE)−1F. (∀ ν ≥ 1, F ∈ Hl
−). (2.5)

For u ∈ Hl we have

T l|λ|u = (Pl + |λ|E)−
1
2u, (A− λE)−1u = (A− λE)−1u,

which together with (2.4), (2.5) proves (2.1), (2.1′). The theorem is proven.



C
R

M
P

re
p
ri

nt
S
er

ie
s

nu
m

b
er

10
78

6 M.G. GADOEV, S.A. ISKHOKOV

3. From representation (2.1′) it follows that

||(A− λE)−1|| ≤M |λ|−1. (λ ∈ S, |λ| ≥ σ). (2.6)

Since the order of the resolvent of the operator Pl equals to 1
2m

, it follows from

(2.1′) that the order of the resolvent of the operator A is at most 1
2m

. From here
and from (2.6), applying theorem 6.4.1 from [20], we establish that the system of
root vector-functions of operator A is complete in Hl.

Note that summability of the Fourier series of elements f ∈ Hl with respect to
the system of root vector-functions of the operator A by the Abel method with
brackets was established in [1].

4. Let H be a Hilbert space. Denote by στ (H), τ > 0 the space of operators
L ∈ σ∞(H), which series of s-numbers in order τ is convergent ([21]):

||L||τ =

(
∞∑
j=1

sτj (L)

) 1
τ

< +∞.

(The lower bound of numbers τ such that L ∈ στ (H) is called the order of the
operator L.)

Denote by µ1(t), µ2(t), ... the sequence of e.v. of operator L ∈ σ∞(H) num-
bered according nonincreasing their magnitudes and taken with their algebraic
multiplicities. Note that

sj

(
(L∗L)

1
2

)
= µj(L), j = 1, 2, ... .

In what follows, we need the following well known inequalities (for example,
see [21])

+∞∑
j=1

|µj(t)| ≤ ||L||1, (∀L ∈ σ1(H)) (2.7)

||LL′||p ≤ ||L||p||L′||, ||L′L||p ≤ ||L′||||L||p, (2.8)

if L ∈ σp(H), p ≥ 1, L′ is a bounded operator;

||L1...Lr||p ≤ ||L1||κ1 ...||Lr||κr , (2.9)

if Lj ∈ σκj(H), 1 ≤ p ≤ κj (j = 1, r),
r∑
j=1

κ−1
j = 1

p
. From (2.9) for L1 = ... =

Lr = L ∈ σ1(H), κj = r (j = 1, r) it follows that

||Lr||1 ≤ ||L||rr. (2.10)

From (2.7) follows convergent of the series:

SpL
def
=

+∞∑
j=1

muj(t), ∀L ∈ σ1(H).

5. In the last part of current section we prove the assertion of the theorem 1.2
on spectral estimation of operator A.
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SPECTRAL PROPERTIES OF ELLIPTIC OPERATORS 7

Denote by λ1, λ2, ... the sequence of e.v. of operator A numbered according
nonincreasing their magnitudes and taken with their algebraic multiplicities.

Using (2.1′), (2.8)-(2.10) we obtain

||(A− λE)−r||1 ≤ ||(Pl + |λ|E)−
1
2 Φ(λ)(Pl + |λ|E)−

1
2 ||

r

r ≤M ||(Pl + |λ|)−
1
2 ||

2r

2r,

(λ ∈ S, |λ| ≥ σ) (2.11)

where r = 4m,σ > 0 is a sufficient large number. It is known that

N0(t)
def
=
∑
ωj≤t

1 ∼ const · t
1

2m (t→ +∞),

where ω1, ω2, ... denotes the sequence of e.v. of the operator L. Therefore

||(Pl + |λ|E)−
1
2 ||

8m

8m =
+∞∑
j=1

(ωj + |λ|)−4m =

+∞∫
0

dN0(t)

(t+ |λ|)4m ≤M |λ|
1

2m
−4m (|λ| ≥ 1).

From here and from (2.7), (2.11) we conclude that

+∞∑
j=1

|(λj − λ)−4m| ≤M |λ|
1

2m
−4m (λ ∈ S, |λ| ≥ σ).

Let us choose a number ϕ ∈ (−π; π] such that the ray Γ = {λ = teiϕ : t ≥ 0}
be the mean line of the angle S. Then

|z|+ |λ| ≤ c′|z − λ| (∀z 6∈ S, λ ∈ Γ), (2.13)

where c′ > 0 depends only on the spread of the angle S. For sufficiently large
j ≥ j0 we have λj 6∈ S. It is clear that

N(t) =

t∫
0

dN(τ) ≤ (2t)4m

t∫
0

dN(τ)

(t+ τ)4m
≤ (2t)4m

+∞∫
0

dN(τ)

(t+ τ)4m
=

= (2t)4m

+∞∑
j=1

(|λj|+ t)−4m,

where N(t) = card{j : |λj| ≤ t}. Therefore (see (2.12), (2.13))

N(t) ≤M1 +M2t
4m

+∞∑
j=j0

|λj − teiϕ|−4m ≤M2t
1

2m (t ≥ 1).

Thus proof of the theorem 1.2 is completely finished.



C
R

M
P

re
p
ri

nt
S
er

ie
s

nu
m

b
er

10
78

8 M.G. GADOEV, S.A. ISKHOKOV

3. Description of the domain of operator A

1. Let A be the same operator as in the theorem 1.1 and coefficients

aij(t) ∈ Cj(J ; EndCl) (i, j = 0,m). (3.1)

Theorem 3.1. The domain D(A) of the operator A is described as a class of
vector-functions u ∈ W 2m

2,loc(J)l ∩Hl
+ such that

f =
m∑

i,j=0

(−1)j(pi(t)pj(t)aij(t)u
(i)(t))(j) ∈ Hl.

At the same time f = Au.

Proof. Let u ∈ W 2m
2,loc(J)l ∩ Hl

+ and a vector function f(t) ∈ Hl. Then for

arbitrary vector-function v(t) ∈ C∞0 (J)l by integrating by parts we obtain

(f, v) =
m∑

i,j=0

(pi(t)aij(t)u
(i)(t), pj(t)v

(j)(t)) = A[u, v].

These equalities are extended by continuity for any v ∈ Hl
+. Therefore according

the theorem 1.1 u ∈ D(A), f = Au.
Conversely, let u ∈ D(A), f1 = Au. Then

(f1, v) =
m∑

i,j=0

(piaiju
(i), pjv

(j)), ∀v ∈ C∞0 (J)l,

so that an element

f2 =
m∑

i,j=0

(−1)j(pi(t)pj(t)aij(t)u
(j)(t))(j),

considered in the sense of distributions belongs to the space Hl. f1 = f2. Fur-
thermore it follows from general theory of elliptic equations that u ∈ W 2m

2,loc(J)l.

2. In connection with the theorem 3.1 we note that the space Hl
+ when −1

2
<

θ < m−1
2

is described (see [20]) as a class u(t) ∈ Hl with fined norm

|u|+ =

∫
J

|ρ2θ(t)u(t)|2dt+

∫
J

|u(t)|2dt

 1
2

< +∞, (3.2)

which have zero traces

u(j)(0) = u(j)(1) = 0, j = 0, 1, ..., s0 − 1;

here s0 is an integer such that m − θ−1
2
≤ s0 < m − θ + 1

2
. If θ ≤ −1

2
or

m−1
2
≤ θ < m, then the space Hl

+ consists of vector-functions u(t) ∈ Hl ( [20])
with finite norms |u|+ (3.2).

3. Together with theorem 3.1 the following theorem is valid
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SPECTRAL PROPERTIES OF ELLIPTIC OPERATORS 9

Theorem 3.2. Let condition (3.1) is satisfied and

|a(k)
ij (t)| ≤M{t(1− t)}−k, (k = 0, 1, ..., j).

Let furthermore θ + 1
2
6∈ {1, 2, ...,m}. Then the domain of the operator A is

described as a class of vector-functions u ∈ W 2m
2,loc(J)l ∩Hl

+ such that

p0(t)u(t),
m∑

i,j=0

(−1)j(pi(t)pj(t)aij(t)u
(j)(t))(j) ∈ Hl.

4. Asymptotic distribution of eigenvalues of operator A

1. Let A be thesame operator as in the theorem 1.1. Suppose that an eigenval-
ues µ1(t), ..., µl(t) of matrix a(t) are located on the complex plane in the following
way:

µ1(t), ..., µn(t) ∈ R+
def
= {z ∈ C : Rez > 0, Imz = 0}, µn+1(t), ..., µl(t) 6∈ Φ,

where 1 ≤ n ≤ l. Φ = {z ∈ C : |argz| < ϕ}, ϕ ∈ (0, π). Then according the
theorem 1.3 in any closed sector S ⊂ Φ\R+, with vertex the origin includes a
finite number of e.v. of operator A. It follows from here that

lim
j→+∞

argλj = 0,

where λ1, λ2, ... denotes a sequence of e.v. of operator A, located in the angle
Φ and numerated in order to nondecreasing their magnitude taking into account
root multiplicities.

The following theorem is valid

Theorem 4.1. For the function

N(t) = card{j : |λj| ≤ t},
the asymptotic formula

N(t) ∼ ct
1

2m , c =
1

π

n∑
j=1

1∫
0

ρ−
θ
m (t)µ

− 1
2m

j (t)dt

holds as t→ +∞.

Analogous result for the second order differential operators was established in
[4, 13]. However we note that the scheme of works [4, 13] is not applicable for the
case m > 1 even if condition (1.4) is satisfied. An significant moment of methods
of current work is that we “single out” in an explicit form a principle part of
“generalized resolvent” as operator acting from Hl

−ν to Hl
ν .

In combination with application of some another analytic techniques it allows
us to compute a principle part of asymptotic of the function Sp(A − zE)−1 as
z → +∞ by some half-line Γ ⊂ Φ\R+ with beginning from zero. Obtained
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asymptotic formulas here even for the case m = 1 related to more general class
of operators then those in works [4, 13].

2. To prove theorem 4.1 we use (4.6), (4.7) (see [1], §4) for ν = |λ|. Let
Pl, T

l
ω, T lω are the same operators as in subsection 1 of section 2.

Denote by u1, u2, ... orthonormal sequence of eigenfunctions of the operator the
Pl. Let Pluj = ωjuj, ω1 ≤ ω2 ≤ ... . Since u1, u2, ... – orthonormal basis in Hl

(A− λE)−1uj = (Aν − λE)−1uj ∀ν ≥ 1, it follows that

sp(A− λE)−1 =
+∞∑
j=1

((A− λE)−1uj, uj) =
+∞∑
j=1

((Aν − λE)−1uj, uj) =

=
+∞∑
j=1

(Xν(λ)uj, uj) +
+∞∑
j=1

(Xν(λ)Γν(λ)uj, uj), (λ ∈ S, |λ| ≥ σ = σ(S)), (4.1)

where S ⊂ Φ\R+ – arbitrary closed angle with vertex the origin. Taking into
account

(Pl + |λ|E)±
1
2uj = (ωj + |λ|)±

1
2uj,

we obtain
+∞∑
j=1

(Xν(λ)Γν(λ)uj, uj) =
+∞∑
j=1

(Xν(λ)Γν(λ)(Pl + |λ|E)
1
2uj, (Pl + |λ|E)−

1
2uj) =

=
+∞∑
j=1

((Pl + |λ|E)−
1
2Xν(λ)T|λ|T|λ|Γν(λ)T|λ|uj, uj). (4.2)

According (4.6) (see [1], §4) for ν = |λ|, u ∈ Hl we have

|T|λ|Γν(λ)T|λ|u| ≤M |Γν(λ)T|λ|u|−|λ| ≤M1|λ|−ε
′ |T|λ|u|−|λ| = M2|λ|−ε

′ |u|.

Thus operator T|λ|Γν(λ)T|λ| induces a bounded operator in Hl, which norm dose

not exceed M2|λ|−ε
′
. From here by (4.1), (4.2) we find

Z(λ)
def
= |sp(A− λE)−1−

+∞∑
j=1

(Xν(λ)uj, uj)| ≤M |λ|−ε′||(Pl+ |λ|E)−
1
2Xν(λ)T|λ|||1.

Here regardless of the fact that T|λ| –unbounded operator inHl, operatorXν(λ)T|λ|
induces in Hl a bounded operator. Applying (2.3) we obtain

Z(λ) ≤M |λ|−ε′ |(Pl + |λ|E)−1|1 ≤M1|λ|
1

2m
−1−ε′ .

Future we have (see [1], §4, (4.3)),

+∞∑
j=1

(Xν(λ)uj, uj) =
+∞∑
j=1

(U(Bν − λE)−1U−1uj, uj) =
+∞∑
j=1

((Bν − λE)−1uj, uj) =
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=
l∑

k=1

Sp(Q̃k − λE)−1.

Here operators Q̃k, k = 1, l are defined in the space H by following way:

D(Q̃k) = {v ∈ H+ : Qν,kv ∈ H},∀ν ≥ 1,

Q̃kv = Qν,kv, ∀v ∈ D(Q̃k).

Operators Qν,k were introduced in [1, §4, subsec. 1]. Note that

(Bν − λE)−1 = diag{(Qν,1 − λE)−1, ..., (Qν, l − λE)−1}.

Operators Q̃1, ..., Q̃l are defined above does not depend on ν ≥ 1.

Applying theorem 1.3 to current case when l = 1, A = Q̃j, j = 1, l we obtain

that operator Q̃j, j = n+ 1, l has a finite e.v. in angle Φ. Since µj(t) ∈ R+(j =

1, n) then Q̃j = Q̃∗j ≥ 0, (j = 1, n). Thus we have

Sp(A− λE)−1 =
+∞∑
i=1

l∑
k=1

(λi,k−λ)−1 +O(|λ|
1

2m
−1−ε′), (λ ∈ S, |λ| ≥ σ(S)), (4.3)

where ε′ > 0, S ⊂ Φ\R+ – a closed angle with vertex the origin and λ1,k, λ2,k, ...

denotes the sequence of e.v. of operator Q̃k are numbered according nonincreasing
their magnitudes.

Let ψ ∈ (0, ϕ),

L = {z ∈ C : argz = ±ψ} ∪ {0}
be a contour turning round R+ from the left. Choose a number a, δ > 0 such
that the following conditions be satisfied:

(i) |(argλ′j) ± ϕ| ≥ δ, |(argλj,k) ± ϕ| ≥ δ, if |λ′j| ≥ a or |λj,k| ≥ a, (j =

1, 2, ..., k = 1, l) accordingly;
(ii) λj,k 6∈ Φ, (k = n+ 1, l), if |λj,k| ≥ a.
Here λ′1, λ

′
2, ... denotes a sequence of e.v. of operator A numbered according

nonincreasing their magnitudes.
Then in a case when |λ′j| ≥ a, |λj,k| ≥ a, λ ∈ L we have |λ − λ′j|−1 ≤

M |λ′j|−τ |λ|τ−1, |λ− λj,k|−1 ≤M |λj,k|−τ |λ|τ−1, τ ∈
(

1
2m
, 1
)
. Therefore∑

q≤|λ′
j |

|λ′j − λ|−1 ≤M1r(q)|λ|τ−1, (4.4)

r(q)
def
=
∑
q≤|λ′

j |

|λ′j|−τ → 0, (q → +∞). (4.5)

Here we use assertion of the theorem 1.2 on spectral estimate of operator A.
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Future we have

1

2πi

∫
L

 ∑
a<|λ′

j |≤q

(t+ λ)−1(λ− λ′j)−1

 dλ =
∑

a<|λ′
j |≤q

′
(t+ λ′j)

−1, (4.6)

where the summation
∑′ being taken over those j for which |argλ′j| < ψ.

Taking into account that (see (4.4), (4.5))

lim
q→+∞

r(q)

∫
L

|λ|τ−1|t+ λ|−1dλ = 0,

and passing to the limit in (4.6) as q → +∞, we find

1

2πi

∫
L

(t+ λ)−1

∑
a<|λ′

j |

(λ− λ′j)−1

 dλ =
∑
a<|λ′

j |

′
(t+ λ′j)

−1, (4.7)

Analogously

1

2πi

∫
L

(t+ λ)−1

 ∑
a<|λj,k|

(λ− λj,k)−1

 dλ =
∑

a<|λj,k|

′′
(t+ λj,k)

−1, k = 1, l, (4.8)

where the summation
∑′′ being taken over those j for which |argλj,k| ≤ ψ.

Operators Q̃n+1, ..., Q̃l have a finite number of e.v. in angle Φ. From here and
from (4.3), (4.7), (4.8) we conclude that

+∞∑
j=1

(t+ λj)
−1 =

+∞∑
j=1

n∑
k=0

(t+ λj,k)
−1 +O(t

1
2m
−1−ε′), t→ +∞.

Since argλj → 0(j → +∞), then λj|λj|−1 → 1 (j → +∞). Thus for q = 1, 2, ...
we have

+∞∑
j=q

|(t+ λj)
−1 − (t+ |λj|)−1| ≤ 2

+∞∑
j=q

{
|λj − |λj||
(t+ |λj|)2

}
≤

≤ cq

+∞∑
j=q

|λj|
(t+ |λj|)2

≤ c′q

+∞∑
j=q

(t+ |λj|)−1,

where cq, c
′
q → 0 (q → +∞). It is easy to drive from here that

+∞∑
j=1

(t+ λj)
−1 ∼

+∞∑
j=1

(t+ |λj|)−1 (t→ +∞).
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For e.v. of operator Qk, k = 1, n it is known that

+∞∑
j=1

(t+ λj,k)
−1 ∼

+∞∫
0

dNj(τ)

τ + t
, (t→ +∞),

where

Nj(τ) =
1

π
τ

1
2m

+∞∫
0

ρ−
θ
m (t)µ

− 1
2m

j (t)dt.

Thus we have
+∞∫
0

dN(τ)

τ + t
∼

+∞∫
0

dÑ(τ)

τ + t
, (t→ +∞),

Ñ(τ) =
n∑
j=1

Nj(τ).

Applying appropriate tauberian theorem we obtain the formula

N(t) ∼
n∑
j=1

Nj(t), (t→ +∞),

which proves theorem 4.1.

References

[1.] Gadoev M.G. Spectral asymptotics of nonselfadjoint degenerate elliptic operators with
singular matrix coefficients on a segment // Ufa mathematical journal, 3(3), 26–54 (2011).

[2.] Boimatov K.Kh. Asymptotic behavior of eigenvalues of nonselfadjoint operators, Funkt-
sional. Anal. Prilozhen., 11(4), 74–75 (1977).

[3.] Boimatov K.Kh., Kostuchenko A.G. The spectral asymptotics of non-selfadjoint elliptic
systems of differential operators in bounded domains. Matem. Sbornik, 181(12), 1678–
1693 (1990); English transl. in Math. USSR Sbornik, 71, No. 2, 517-531 (1992).

[4.] Boimatov K.Kh., Kostuchenko A.G. Distribution of eigenvalues of second order non-
selfadjoint differential operators. vest. Mosk. Gos. Univ., ser. I, Mat. Mekh., 3, 24–31
(1990).

[5.] Rozenblum G.V. Spectral asymptotics of normal operators, Funktsional. Anal. Prilozhen.,
16, 82–83 (1982)

[6.] Rozenblum G.V. Conditionally asymptotics of spectrum of operators close to normal ones.
In book: Linear and nonlinear boundary value problems. spectral theory. Leningrad Gos.
Univ., 180–195 (1986).

[7.] Agranovich M.S., Markus A.S. On spectral properties of elliptic pseudo-differential oper-
ators far from self-adjoint ones. Zeitshrift fur Analysis und ihre Anwendungen. – 8( 3),
237–260 (1989).

[8.] Birman M.Sh., Solomyak M.Z. Spectral theory of selfadjoint operators in a Hilbert space.
Leninigrad Gos. Univer. 264p. (1980).

[9.] Rozenblum G.V., Solomyak M.Z., Shubin M.A. Spectral theory of differential operators,
in: Contemporary Problems of Mathematics. Fundamental trends [in Russian], VINITI,
Moscow, 64, 5–248 (1988) (Itogi Nauki i Tekhniki).



C
R

M
P

re
p
ri

nt
S
er

ie
s

nu
m

b
er

10
78

14 M.G. GADOEV, S.A. ISKHOKOV

[10.] Agranovich M.S. Elliptic operators on closed manifolds, in: Contemporary Problems of
Mathematics. Fundamental trends [in Russian], VINITI, Moscow, 63, 5–129 (1990) (Itogi
Nauki i Tekhniki).

[11.] Agranovich M.S. Some asymptotic formulas for elliptic pseudodifferential operators, Fuk-
tsional. Anal. Prilozhen., 21(1), 63–65 (1987).

[12.] Kozhevnikov A.N. On asymptotics of eigenvalues of elliptic system, Fuktsional. Anal.
Prilozhen., 11(4), 82–83 (1977).

[13.] Boimatov K.Kh. Asymptotic behavior of the spectra of second-order nonselfadjoint sys-
tems of differential operators, Mat. Zametki, 51(4), 8–16 (1992).

[14.] Boymatov K. Kh. Some spectral properties of matrix differential operators that are far
from selfadjoint, Fuktsional. Anal. Prilozhen., 29(3), 55–58 (1995).

[15.] Faierman M. An elliptic boundary problem involving an indefinite weight, Proc. of the
Roy. Soc. of Edinburgh. 130A(2), 287–305 (2000).

[16.] Kozhevnikov A. N. Asymptotics of the spectrum of Douglis-Nirenberg elliptic operators
on a compact manifold, Math. Nachr., 182, 261–293 (1996).

[17.] Pyatkov S.G. Riesz’s bases from the eigenvectors and associated vectors of elliptic eigen-
value problems with an indefinite weight function, Siberian Journal of Differential Equa-
tions, 1(2), 179–196 (1995).

[18.] Sango M. A spectral problem with an indefinite weight for an elliptic system, Electronic
Journal of Diff. Equations, 21, 1–14 (1997).

[19.] Boimatov K.Kh. Generalized Dirichlet problem, generated by noncoercive form, Dokl.
Ross. Akad. Nauk, 330(3), 285–290 (1993).

[20.] Nikol’skii S.M., Lizorkin P.I., Miroshin N.V. Weighted function spaces and their appli-
cation to investigation of boundary value problems for degenerate elliptic equations, Izv.
Vyssh. Uchebn. Zaved. Mat., 8, 4–30 (1988).

[21.] Gokhberg I.C., Krein M.G. Introduction to the theory of linear nonselfadjoint operators
in Hilbert space. English tarnsl. Amer. math. Soc., Providence, R.I. (1969).

Makhmadrakhim G. Gadoev
Head of Department of Mathematics
Mirny Polytechnic Institute (branch) of North-Eastern Federal University
named after M. K. Ammosov
ul. Tikhonova, 5/1
Mirny, Republic of Sakha (Yakutia)
678170 Russia

E-mail address: gadoev@rambler.ru

Sulaimon A. Iskhokov
Department of Mathematics
Mirny Polytechnic Institute (branch) of North-Eastern Federal University
named after M. K. Ammosov
ul. Tikhonova, 5/1
Mirny, Republic of Sakha (Yakutia)
678170 Russia

E-mail address: sulaimon@mail.ru


