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Tropical Cyclonesas a Critical Phenomenon

Alvaro Corral

Abstract It has been proposed that the number of tropical cyclonesfaiscion
of the energy they release is a decreasing power-law funaijpto a characteristic
energy cutoff determined by the spatial size of the oceaimlasvhich the storm
occurs. This means that no characteristic scale existhéemnergy of tropical cy-
clones, except for the finite-size effects induced by thenblaties of the basins.
This has important implications for the physics of tropicationes. We discuss up
to what point tropical cyclones are related to critical ptr@ena (in the same way
as earthquakes, rainfall, etc.), providing a consistectupé of the energy balance
in the system. Moreover, this perspective allows one toalize more clearly the
effects of global warming on tropical-cyclone occurrence.

Keywords: power laws, scaling, self-organized criticality, powesgipation index,
hurricanes

1 Introduction

A fundamental way to characterize a physical phenomenonashlyzing the fluc-
tuations of the energy it releases over successive ocaase®f course, in most of
the cases this is not a simple issue. For tropical cyclonsseBand Emanuel [7]
have found that the dissipated eneEjygan be estimated by integrating the cube of
the surface velocity field over space and time, by means dbttmeula

E~ /pCD|v(r,t)|3d2rdt, @
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with p the surface air densitgp the surface drag coefficient, an(r,t) the sur-
face wind speed at positianand timet. It is implicit in the formula that the main
contribution to dissipation comes from the atmospheritaserlayer.

In order to obtain the distribution of energy then, one ordgas to apply the pre-
vious formula to as many tropical cyclones as possible @utlany selection bias)
and perform the corresponding statistics. However, intmache available records
do not allow such a detailed calculation: instead of prowgci nearly instantaneous
velocity field, best-track data consist of a single valuehef $peed reported every
six hours (the maximum sustained surface wind speed).

Emanuel has envisaged a way to reconcile the calculatioheoehergy with
the limitation of the data [20]. Firsfp andCp can be approximated as constants
in Eq. (1). Second, one can apply the similarity betweenatgatiofiles of speeds
for different tropical cyclones to write(r,t) = v (t) f(r /R(t)), whereR(t) is the
radius of storm at timé (no matter how it is definedym(t) is the maximum of the
surface velocity field for alt att, and f is the function that describes the shape
of the velocity profile (the same for all storms, the scaleegibyvy, andR). This
yields a scaling between the integral over space on the deeasid the maximum
speed and the radius on the other (with the same constanbpbrtionality), and
then,

ED [ ()R,

where the symball indicates proportionality. An additional approximatianthat
the radius of the storm is nearly uncorrelated with the spaed therefore assigning
a common radius to all storms (al all times) leads only to canckrrors in the
evaluation of the energy. Finally, enlarging the integnatiime step up ta\t = 6
hours gives

EOPDI = Zvﬁm,

with PDI defining the so-called power dissipation index, which isitagproxy for
the total energy dissipated by a tropical cyclone duringtsllife. The symbolv
denotes the maximum sustained surface wind speed.

A similar definition is that of the so-called accumulatedlope energy ACE)
[6, 26], which integrates kinetic energy over time,

ACE = vam,

where the essential difference with tR®I is the replacement of the cube of the
speed by a square. Note that the time integral of the kinaicgy is not an energy,
unless some proportionality factors are introduced in tienfila, in the same way
as in Eq. (1). In any case, in this work we will study the dizition of energy
dissipated by tropical cyclones using b&bl andACE as proxies for the energy,
evaluated over the complete lifetime of the storms.
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2 Power-Law Distribution of the Energy of Tropical Cyclones

In order to describe probability distributions we will udeetprobability density
function. For the case of power dissipation index this isrifias the probability
that the value of this variable lies in a narrow interval @aeslPDI around a concrete
PDI, divided bydPDI to make the result independentdRDl, i.e.,

Prob[PDI — dPDI /2 < value< PDI + dPDI /2]

D(PDI) = e

where Prob denotes probability, which is evaluated as thebeun of events that
fulfill the condition divided by the total number of eventhis definition ensures
normalization,fy’ D(PDI)dPDI = 1. Note also that the units of the density are the
reciprocal of the units of the variable, so, ©(PDI) these are%m? (if the PDI
is measured in f1s?). An analogous definition applies to the probability densit
the ACE, D(ACE), or of any other variable.

Recently, we have shown that the distributiorP@fl in different tropical-cyclone
basins follows a power law,

D(PDI) 0 1/PDI?,

except for the largest and smallest value$Dbi. The exponentr turns out to be
close to 1 (between 1 and 1.2, roughly) [15]. Note that an egpbequal to one
implies that all decades contribute in the same proportiothé total number of
events, in other words, any interval BDI values in which the extremes keep the
same proportion contains the same probability.

The calculation oD(PDI) is not direct, though. The quantity of interest, the
PDI, varies across a broad range in the basins studied, fronthassl§ m3/s? to
more that 18 m%/s?, being necessary to plot the distribution in logarithmiesix
in order to represent the different scales. Moreover, tasthe advantage that on a
log-log plot a power law appears as a straight line (notetttiatis not the case for
the cumulative distribution function if the power law hasugper cutoff [28]).

On the other hand, the broad range of variation also makegiogriate the use
of a constantinterval siz#PDI (essentiallydPDI should be large enough to contain
enough statistics but small enough to provide a complet@kagnof the range of
variation ofD(PDI)). Logarithmic binning is a solution to this problem [28], are
the size of the bins appears as constant in the logarithrale ssed. (An equiva-
lent, simpler solution, is to work with the distribution 6 InPDI, calculating its
probability densityD(¢) using standard linear binning and then obtainingRbd
density by means of the change of variablg*’DI ) = D(¢)d¢/dPDI = D(¢)/PDI;
of course D(PDI) andD(¢) have different functional forms, despite the ambiguous
notation.) Naturally, similar considerations hold for tistribution of ACE.

Turning back to the results of Ref. [15], it is shown there tia PDI distribu-
tion is well described by a decreasing power law in the Nortlaic (NAtl), the
Northeastern and Northwestern Pacific (EPac and WPac) haen8duthern Hemi-
sphere (SHem) basins, with an exponentanging from 098+ 0.03 in the WPac
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to 1.19+ 0.07 in the NAtl, where the uncertainty refers to one standaxdadion of
the maximum-likelihood-estimator mean value. The powerhalds from a range
of a bit more than one decade (for the NAtl and the EPac) upaaiecades (for the
WPac). The data used were the best tracks from NOAA's Naltidnaicane Center
for NAtl and EPac [29, 45] and from US Navy’s Joint Typhoon Wag Center for
WPac and SHem [13, 31]. Here we will use the same data sets.
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Fig. 1 Probability density of tropical-cyclone dissipated ernerfgr the NAtl, EPac, and WPac
basins, during 1986—-2007, compressing 1212 stormsPé)probability density,D(PDI), to-
gether with the number of tropical cyclones in each bin parpéPDI). A maximum-likelihood
fit of the distribution between the value2310° and 40- 10*° m®/s? yieldsa = 1.07+0.06 with

a p—value= 99+ 0.3% (calculated generalizing the method of Ref. [14], witlesolution in the
optimization of 10 points per decade). §FE probability density. A maximum-likelihood fit be-
tween the values.&-10° and 20- 10° m?/s. yieldsa = 1.1040.05 with ap—value= 59+ 1.6%.
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As an illustration, we show in Fig. 1(a) tHeDI distribution for the Northern
Hemisphere (excluding the Indian Ocean, i.e., only NAtlaEPNVPac) for the years
1986 to 2007. Tropical depressions (storms whose maximstaised surface wind
speed does not exceed 34 knots), not included in the NAtl &atEecords, have
been eliminated from our analysis of the WPac, for consistedf course, the re-
sults are in agreement with Ref. [15], with an exporent 1.07+ 0.06.

If instead of thePDI we use theACE the results do not change in essence,
yielding a = 1.104+ 0.05, as displayed in Fig. 1(b). The reason for the coinci-
dence of results between both variables is due to the fatttitey are highly
(though non-linearly) correlated. Figure 2 shows a scattet for the values of
the PDI versus theACE, using the same data as above. A linear regresion applied
to InPDI versus IACE yieldsPDI O ACEY, with y ~ 1.36 and a correlation coeffi-
cientp = 0.994. If we write our probability distributions d@(PDI) 0 1/PDI*+p
and D(ACE) 0 1/ACE!*Pa, and introducePDI [0 ACEY in the identity relation
D(PDI) = D(ACE)dACE/dPDI, one getsBa = yBp, which implies that a power
law with exponentr = 1 (i.e.,3 = 0) is invariant under power-law changes of vari-
ables. These results are in good concordance with our ncahéridings.
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Fig. 2 Non-linear correlation betweeRDI and ACE. The former variable is plotted versus the
latter for all hurricanes, typhoons, and tropical stormsuoigng in the NAtl, EPac, and WPac for
the period 1986-2007. A power-law correlatiB®! 0 ACE1-36 shows up, with a corresponding
linear correlation coefficient (for the logarithm of the iadnles) p = 0.994. The two regression

lines are included, although they overlap.
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Fig. 3 Trajectories of hurricanes, typhoons, and tropical stofines, excluding tropical depres-
sions) in the WPac, EPac, and NAtl, separated for differahtas of thé?Dl. Different line styles
correspond to different years, from 2003 to 2007. The topeppaints to the incompleteness of
the record for the smalle&DI values, whereas the bottom panel shows that the tropictiruys
with the largesPDI values tend to travel through the whole basin.
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An importantissue is the deviation of the distribution frme power-law behav-
ior for small and large energies. In the first case, the dievias due to the scarcity
of data referring to small storms. The best tracks of thead¥ati Hurricane Center
(for NAtl and EPac) do not contain tropical depressions eodata are truncated
including only hurricanes (of category 1 at least) and tapstorms (maximum
sustained surface wind speed larger than 34 knots but beloricAne category).
In the case of the best tracks of the Joint Typhoon WarningeCesome tropical
depressions are included, but these are very few, only thmsgwhich are consider
“significant”. This artificial truncation of the data obvisly makes the distribution
depart from the power-law behavior for small values of thergy. The paths of the
tropical cyclones of a small part of the record, just for thee&r period 2003-2007,
are shown in Fig. 3, separated in distiR2l ranges; the top panel shows how the
set of storms witlPDI < 10° m3/s? seems certainly incomplete.

More fundamental is a decay faster than power law for largieagof the energy.
We suggest in Ref. [15] that this is due to a finite size effét:spatial size of the
basin is not big enough to sustain tropical cyclones withdaPDI values (remem-
ber that thePDI integrates; over time, and time can be considered equivalent to
space). Indeed, when a tropical cyclone in any of the basinsidered reaches a
PDI of about 161 m3/s? it is very likely that its evolution is affected by the bound-
aries of the basin, which are constituted essentially eltlgecontinental land or by
a colder environment; this deprives the tropical cyclomerfiits source of energy
in the form of warm water and provokes its attenuation anaeis death, see Fig.
3(d). Under the name “colder environment” we can compretis&tow sea surface
temperature (as it happens in high latitudes or with the Gallifornia Current) or
the presence of extratropical weather systems. In any tasenakes the bound-
aries of the basin be not fully “rigid” in contrast to condedsnatter physics (even
for the case of continental boundaries, there have beeithoes that have jumped
from the NAtl to the EPac).

Another relevant issue to take into account is up to whattgbmpower law is
the right distribution to fit thé°DI and ACE distributions. We have shown in Ref.
[15] that the power law provides indeed a good fit, but thissdioet exclude that
other distributions can fit the data equally well, or evertdyetn fact, any power
law in a finite domain (let us say, with the varialdé betweerm; andmy,) can be
fit also by a lognormal distribution, with @-parameter (the standard deviation of
the underlying normal distribution) which tends to infinitgdeed, the lognormal

probability density,
1 (Inx— u)?
D(x) O ;exp(—T ,
can be written as

1+(Inx—p)/(202)
et \ X

This is a kind of pseudo-power-law, with a pseudo-exponest(hx — p)/o?
that changes very slowly witl if o is big enough. Takingm = ehro’a and
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m = e“+°'282, the pseudo-exponent changes from & for x =my to 1+ &, for

X = mp, and the extreme valuas; andnm, can be as large as desireddifis big
enough. Note, anyhow, that the lognormal distribution has two paeters [t and
0), whereas the power law has just ong.(A similar argument can be presented for
other long-tailed distributions. In conclusion, the cleodf the right fit is a problem
that cannot be solved only by means of the statistical aisalgsd it is the physical
knowledge which has to provide a criterion to select the rapgtopriate distribu-
tion. The rest of this work will justify the preferability ¢fie power law as a physical
model of tropical-cyclone dissipation distribution.

3 Power-Law Distribution of Earthquake Energies

The power-law distribution of energy dissipation in tragicyclones is analogous
to the well known Gutenberg-Richter law of earthquakes.usesee how. This law
states that, for a given spatial region and over a certailogef time, the number
of earthquakes with magnitude larger thisinis about 10 times greater than the
number of earthquakes with magnitude larger than- 1, which in its turn is 10
times greater than the number of earthquakes largeritha2 and so on [33]. In
mathematical terms, the number of earthquakes abbvedenoted byN(M), is a
decreasing exponential function,

N(M) 010~°M

where theb—value is a parameter close to 1.

The cumulative distribution function of magnitudes, defires S(M) = Prob[
magnitude value> M ] is estimated directly fronN(M) as SM) = N(M)/.4,
where.#" is the total number of earthquakes considered, of any madgmitit is
obvious that the cumulative distribution is exponentiall dherefore the density,
given asD(M) = —dS(M)/dM, is an exponential too, with the sarbe value. (This
allows that, when working with magnitude distributionseatoes not need to spec-
ify if one is measuring the density or the cumulative disttibn, unfortunately. Of
course, this is only acceptable for exponential distrimns).

But magnitude is not a physical variable (it has no units} ltelieved, at least as
a first approximation, that the enerfyradiated in an earthquake is an exponential
function of the magnitudeE [0 10°M/2 (with a proportionality factor between 30
and 10 Joules) [33]. Therefore, the energy probability densitly e a power law,

D(E) = D(M)dM/dE O D(M)/E 0 1/E¥20/3,

Note that, as in the case of tropical cyclones, we have useddme symbol for
the density of energies and for the density of the logaritdthpugh the functional
form of each one is not the same (power law versus expongrmsdectively).

1 The last two sentences have been corrected, in comparisbitheiprinted version of the chapter.
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Summarizing, although the Gutenberg-Richter law impliesgponential dis-
tribution of the magnitudes of earthquakes, in terms of tédiated energy the
Gutenberg-Richter law is given by a power law. Then, the &mental difference
in the structure of energy release between earthquakesaridal cyclones is only
quantitative and not qualitative, as both phenomena foflower-law distributions
of energy witha ~ 1.7 in the first case and ~ 1.1 for tropical cyclones. Another
difference is the deviation from the power-law behaviotat largest values of the
energy in tropical cyclones; in the case of earthquakessistemce or not of this
boundary effect is not clear [32, 42].

In fact, many other complex phenomena in the geoscienckspdsver-law dis-
tributions of energies, or, broadly speaking, “sizes”. wphenomena include, in
addition to earthquakes and tropical cyclones: rainfafl][4andslides and rock
avalanches [43, 22], forest fires [44], volcanic eruptiod@][ solar flares [17, 3],
the activity of the magnetosphere [54], tsunamis [8], anchges meteorite im-
pacts [10]. Nevertheless, the power laws are not totallguibdus, see for instance
Ref. [16].

4 Relevance and M echanisms for Power-L aw Distributions

Which are the implications of having a power-law distributias it happens for the
released energy of tropical cyclones, earthquakes and plieomena just men-
tioned? In general, power-law distributions denote thag@nee of three main char-
acteristics:

e Divergence of the mean value of the variable.
e Absence of a characteristic scale.
e Possible connection with criticality.

Let us explain each one.

4.1 Divergence of the mean value

Regarding the first issue, it is obvious that, if we consither tnean energy value,
this fulfills (E) = | ED(E)dE = oo, if the power law exponent is smaller than
2 (but larger than 1 for normalization), with the minimum value of the energy.
Note that this is a property which is neither a characteristiall power laws nor
exclusive of some power laws (there are many other distabatwhich show this
divergence, for instanc®(E) 0 E~% coSE).

Obviously, from a physical point of view, the mean energ\sigiated by a phe-
nomenon as earthquakes or hurricanes cannot be infinit&étte has a finite en-
ergy content) and therefore the power-law behavior canaarapolated to in-
finity. But if we do not know up to which maximum energy value thower law
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holds (which seems to be the case of earthquakes, but naifttiapical cyclones),
the mean value of the energy is not defined and its calculéteon any data set
does not converge. What happens is that the scarce extreneselominate the
calculation of the average, as when they occur their canttah to the mean value
is large enough to alter significantly this mean value. Se,flhctuations are the
most significant trend of the energy, and not the mean vatuad case of tropical
cyclones, we can only say that if it were not for the finiteeséffects imposed by
the boundaries of the basins, the mean released energyruuiube calculated.

4.2 Lack of characteristic scale

In contrast to the first one, the second property, the abseinaay characteristic
scale for the energy release, is an exclusive property oéptaws [12]. Itis possible
to show that a power-law functiog(x) 0 1/x9 (with —c0 < a < ) is the only

solution to the scale-invariance conditiag(x) = cg(x/a), Vx,Va, where it turns

out then that has to be related ta by c = 1/a” (alternatively, fixing the relation
betweera andc determines the value of the exponemt This condition means that
it does not matter in which scale we look at the variableve will see the same
shape for the functiog(x). For example, let us take= 1000, then, when we write

x/a we are looking ak at a scale that is 3 orders of magnitude smaller than the

original one (we go from the scale of kilo-Joules to Joulesuk say); if we take
¢ = 0.01, which means that we are performing another linear toainsdtion in the
y—axis, we find that the corresponding scale-invariant fumcts g(x) O 1/\%?,
indeed,a = —logc/loga = 2/3. Another example is given in Fig. 4.

Nevertheless, there is a “little” problem regarding scalariance of probability
distributions: a function of the kind(x) O 1/x% cannot be a probability density for
all x, even for justx > 0, as [5 g(x)dx = o, for all a. In practice, it is necessary
a small-energy cutoffn if o > 1 or a large-energy cutoff ifr < 1, so, the scale
invariance only can exist for a rangexénda, and not for all of them.

4.3 Criticality

One has to recognize that scale invariance is a rather gtjamogerty. How can it
be that the relative proportion of the value of a physicakobasble at two different
values of its variableg(x)/g(x/a), is the same=£ c) at the milli-scale and at the
Mega-scale (i.e., independentxyif the values<andx/atake a constant proportion
(a)? This means that the study of the functgpdoes not allow us to distinguish the
scale of observation (in order wordg,cannot be used as an-meter). It seems
obvious that the same physics has to operate at very diffecates.

In order to elucidate how scale invariance in energy distiims is achieved we
need a model of the energy release. Let us have in mind the@taaethquakes, just
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to fix ideas. There, energy is released in tectonic faultsiav@lanche-like process.
The picture can be summarized as follows: stress in the Eaust displays very
small changes; sooner or later, at some point in the cruststtitic friction cannot
sustain a small variation in stress and a slip takes plaég]dbal slip increases
the stress in the neighboring area, where more slip can heéutin this way, and
S0 on.

A very simple model of this process is given by a chain of daves the slip at
a fault patch is represented by the toppling of one piecepaese of topplings,
until the end of the activity, constitutes an avalanche thptesents an earthquake
(or other phenomenon); and the energy released in the mrackde proportional
to the number of topplings, which is called the avalanche.diz the usual game,
the toppling of one piece induces the toppling of the nextsmdn; this is the so-
calleddomino effect and yields toppling events (avalanches) whose size is équal
the size of the system (the number of topplings equals tlaénomber pieces). We
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Fig. 4 lllustration of the scale invariance of power laws. A powas function witha = —0.5
looks exactly the same at two different scales. The box indpepanel is enlarged in the bottom
one, the scale factors of the scale transformatioraatet andc = 1/a% = 2.
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arrive then to the so-called characteristic-earthquak@ah®ut this is not what the
data tells us; the Gutenberg-Richter law shows that theyeldtbe avalanches of all
sizes, with no characteristic scale.

We need to modify the domino model. Instead of having thatoppling always
induces just one toppling, let us consider that one topptidgces one toppling, or
none, or may be two, or three, etc. That is, we have a randonbeuai topplings,
with the probability of the number of induced topplings givey the same proba-
bility distribution for all pieces. For this purpose it isro@nient to imagine not a
one-dimensional domino chain but an array of pieces. Ma#tiesally, this is just an
image of a simpléranching process, introduced in science to describe in the first
place the growth and extinction of populations.

The outcome of a branching process depends on the so-cadedHing ratio
B, which is the average number of topplings induced direcflalsingle toppling
(from one time step to the next) [27, 51]. It is clear thaBif- 1 the process will
have a tendency to grow exponentially, giving rise to a sgstpanning avalanche
(although there is also a finite probability that the chairiapfplings dies sponta-
neously); in contrast, iB < 1, the activity attenuates fast, on average, and the size
of the avalanches is small. However Hfis precisely equal to one (with a stan-
dard deviation different than zero) these two tendenciespemsate, and then we
loose any characteristic scale in the size of the avalanthegare power-law dis-
tributed, the concrete shape of the density bdiig) 0 1/s%?2, with s the size of
the avalanche (proportional to the energy). This case lectalcritical branching
process.

So, in principle, we have arrived at a reasonable model tegea power-law
distributions, just adjusting the branching ratio to beado one. The next question
in order to give an explanation of these phenomena is of edur# the fine tuning
of the branching ratio is achieved in nature. An answer isgby the idea o$elf-
organized criticality proposed by Bakt al. in the 80’s [4, 30]. The basic idea is the
existence of a feedback mechanism that keeps the branddtiogctose to one; if
it is larger than one this produces large avalanches andsrc#ise the branching
ratio is reduced (the distance between the domino piecesrigased somehow); if
the branching ratio is small, the avalanches are small, lagnal the branching ratio
is increased [56].

The idea is better illustrated substituting the topplindafino pieces by the top-
pling of grains in a sandpile [5, 11]. The advantage of thelpda is that after a large
avalanche (which usually happens for hB)hmany grains leave the pile through its
open boundaries (the pile is built over a finite support) dmsldecreases the aver-
age slope of the pile, making more difficult the toppling & temaining grains and
reducing then the branching ratio. On the contrary, wherllsavalanches predom-
inate (lowB) the grains do not reach the boundaries of the pile, and sgulsit
slow addition of more grains increases the slope and alsortireching ratio (as the
toppling of the grains is facilitated by a steeper pile).

The ideal sandpile is a particular realization of one kindysftems called owly
driven, interaction-dominated threshold systems [30], whose three main ingredi-
ents are, as the name denotes: a slow energy input, an irdiateenergy storage
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caused by local thresholds, and sudden bursty energy eslélast spread through
the system [47]. The energy input comes from the slow additiograins and the
energy storage is in the form of potential energy of the makds configurations of
the grains, which are possible thanks to the thresholdstyuthe static friction be-
tween grains. When the input of grains makes one of the thtésko be overpassed,
some grains start to move, this helps other grains to ovetpas thresholds, giving
rise (or not) to an energy release in the form of an avalanche.

Earthquakes also fulfill this picture. In this case the sloergy input comes from
the relative motion of the tectonic plates, this energyadsest in the form of stress in
the faults, due again to the thresholds provided by stdtitidn. When an increase
in stress cannot be sustained by friction, energy is reteasd redistributed in the
system, triggering an avalanche of slips, i.e, an earthgiuak

Among the geophysical phenomena mentioned at the end o8%salisplaying
power-law statistics in their energy release, most of theximfall, landslides, rock
avalanches, forest fires, volcanic eruptions, magnetasutivity, and solar flares)
can be understood as self-organized critical systems,afgle T. Perhaps, the only
exceptions are tsunamis, which are not slowly driven (biviedrby earthquakes,
landslides, etc.), and may be meteorites. In the next seat®will discuss if the
evolution of tropical cyclones can be understood in thesage

Table 1 Self-organized critical characteristics of diverse phreapa. All systems receive a slow
driving of energy which is stored thanks to local threshp&®ntually, a sudden release of energy
spreads through the system.

| sandpile earthquakes rainfall tropical cyclones

driving addition motion of solar solar
of grains tectonic plates  radiation radiation

storage of| gravitational elastic water in heat of the sea
energy potential energy potential energy atmosphere
threshold | friction friction saturation sea surface temperature
spread of toppling of release nucleation wind
energy grains of stress of drops

a Plus a external trigger.

5 Criticality of Tropical Cyclones

Previously we have shown that the energy dissipated bydabpiclones follows
a power-law distribution. As other catastrophic phenomasa show this behav-
ior, and as some of these other complex phenomena can be moctated to the
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perspective of self-organized criticality, it is naturalibvestigate the possible con-
nections between self-organized criticality and tropayadiones.

In principle, we can guarantee that the broad requiremehtelé-organized
criticality are fulfilled in tropical cyclones. Indeed, tlwpical sea surface stores
enormous quantities of energy, in the form of warm waterukly, this energy is
slowly supplied to the sea by solar radiation. Moreover,réage amount of stored
energy is necessary previous to its release by a tropichdmogcas if the sea surface
temperature is below about 26 these storms cannot develop [24]. However, when
the tropical cyclone is at work, the release of energy is vapjd (even more rapid
compared with the slow heating of the sea by the sun). Théasel is facilitated
by the strong winds, which increase the evaporation of wiaben the sea and then
also the release of energy, which in turn increase the dtnesfghe winds; this is
in some sense analogous to the chain-reaction nature afrekads, in which part
of the released energy is invested in facilitating furtredease. It is important to
stress that tropical cyclones liberate vast amounts of fneait the tropical oceans;
Emanuel estimates that quantity in more thas?llbules every year [21]. Table
1 illustrates the energy flow of tropical cyclones compaiingith that of some
well-known self-organized critical phenomena.

Nevertheless, there are also differences between tropycdbnes and earth-
quakes or sandpiles. In the latter cases, the release ajyesgreads through the
system in all possible directions, in principle. In contrastropical cyclone attains
a characteristic radius and moves in an irregular but closmé-dimensional path,
carried by the predominant large-scale winds. Anotheedtffice is that favorable
conditions, i.e., more than enough energy content in theiseat a sufficient con-
dition for these storms to develop. As the experts know, skime of perturbation
is needed to trigger the genesis process, by means of gastarés for example
[19]. So, some kind of overheating or supercriticality seeim be present in the
process. Curiously, recent research seems to indicatenbsttearthquakes do not
occur “spontaneously” by the slow increase of the tectotriess, rather, they are
triggered by the passing of seismic waves [53].

6 Tropical cyclone energy and climate change

The mutual influence between global warming and tropicalangs constitutes a
very complex issue. In recent years, many works have irgegstil the response of
tropical cyclones to increased sea surface temperaturethed changing climate
indicators [20, 23, 52, 38, 55, 9, 34, 50, 35, 18, 25, 40, 39,]2Most of these
studies use measures that involve the change in the annorddanwof tropical cy-
clones, as for instance tiRDI| defined originally by Emanuel [20]. In contrast, the
individual-cyclonePDI probability distribution (introduced in the previous sens)

is independent on the number of cyclones, and allows the adsgn of the charac-
teristics of single events in different years [15]. This tizes advantage of avoiding
the count of the number of storms, which is severely undienestd in old records.
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But what can one expect from the response of a self-orgamidchl system
under a change in external conditions? This kind of systems@pposed to show
a robust behavior; after all, the critical point is an attoaof the dynamics, which
means that perturbations in the parameters that define gtensyare usually not
relevant. So, criticality, and therefore the power-lawdngbr, should hold indepen-
dently of the changing of climatic conditions.

That was indeed the result of Ref. [15], where it was shown B{#DI) O
1/PDI, both for periods of high or low tropical-cyclone activity tor periods
of high or low sea surface temperature (in the NAtl and EH2ogs this mean that
changing climate does not alter the distribution of the gneeleased by tropical
cyclones? Not at all: although the power-law exponerdoes not change (under
the statistical uncertainties) the higRDI tail of the distribution does change. Let
us approximate the distribution by means of the followingrfala,

exp(—PDl /a)

D(PDI) 0 — 57—

which covers both the power-law behavior 8Dl <« a and the faster highPDI
decrease, modeled here by an exponentiaPRir > a. The parameted, called the
cutoff, separates then both behaviors. A normalizatiorstaort, hidden under the
proportionality symbol, also depends anbut this dependence is not important in
our argument.

The effect of an increase in sea surface temperature is fusicaease in the
value ofa; so, the transition from power-law behavior to exponertgday occurs
at a largePDI value (given bya). In other words, théDI values are shifted by a
scale factor equal to the ratio of increaseaofAs a denotes the value of theDI
for which tropical cyclones are affected by the boundariethe basin, we can
understand the increasedras an enlargement of the effective size of the basin; this
is not surprising, higher sea surface temperature imphatsthe part of the ocean
over which tropical cyclones can develop is larger.

Figure 5(a) shows theDI distributions in the North Atlantic for the years 1971-
1994 and 1995-2007. The first period corresponds predoitiyrtarrelatively low
sea surface temperatures, whereas in the second periahtperatures are higher.
We clearly see how the scale that delimits the boundary tsfiacreases. In sum-
mary, the last years of the North Atlantic are charactertaethrger hurricanes, in
terms of dissipation of energy, in comparison with the pefi®71-1994.

Nevertheless, going back beyond 1970 yields a differerderay, as then the
hurricanes show a distribution very similar to that of reggzars. In fact, Fig. 5(b)
compares theDI distribution for the period 1944-1969 with the one corresfing
to 1995-2007, showing no significant differences. Even asmtion of old values of
the speeds inspired in the work of Landsea [37, 38], in wHigly are decreased by
an amount of 4 m/s, does not alter significantly the results.
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Fig. 5 Probability density of tropical-cycloneDI for time periods with different levels of activity.
(a) The comparison between 1971-1994 and 1995-2007 shawmtthe latter period large?DI
values are possible. (b) In contrast, the period 1944-19@%s no significant differences with
1995-2007. Even, a correction of the speeds of the forméogbésubtracting 4 m/s [37]) does not
change noticeably the results.
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7 Discussion

The criticality of tropical cyclones offers a new perspeetior the understanding
of this complex phenomenon. Naturally, many questiongagad much more re-
search will be necessary to answer them. First, we can wdraethis criticality
relates to the results of Peters and Neelin [49], who haventcproposed the crit-
icality of the atmosphere for the transition to rainfall aoence (i.e., the transition
from no precipitation to precipitation). After all, trogitcyclones show, in addition
to strong winds, enormous quantities of rainfall, and sy tentribute to the pre-
cipitation data analyzed by Peters and Neelin. These audimwed that the state
of the atmosphere, represented by its water-vapor corigengually close to the
onset of precipitation (this onset marks the critical pahthe transition). How-
ever, tropical cyclones clearly surpass this onset of pitation (O. Peters, private
communication) and then it is not clear why they still retaiitical characteristics.

A subsequent question is how the idea of criticality affexis vision of atmo-
spheric processes, and, in particular, the concept of atichaeather [41]. It is
true that both behaviors, chaos and criticality, share sonagacteristics, among
them, an inherent unpredictability. But there are also &mental differences. First,
chaos usually appears in low-dimensional systems, i.stesys described by a few
non-linear differential equations, for instance, where@sicality is the hallmark
of a high number of strongly interacting degrees of freeddnd second, the un-
predictability in chaos is described by the exponentiabsafion of close trajec-
tories (positive maximum Lyapunov exponent), whereas imitical system this
divergence should be a power law (with a zero maximum Lyapuwxponent, if
one likes). This suggest that a reconsideration of the dimitpredictability of the
weather could give interesting outcomes [46].
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