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UNIVERSAL COMPLEX STRUCTURES IN WRITTEN LANGUAGE

ÁLVARO CORRAL, RAMON FERRER-I-CANCHO, ALBERT D́IAZ-GUILERA,
GEMMA BOLEDA

Quantitative linguistics has provided us with a number of empirical laws that
characterise the evolution of languages1,2,3 and competition amongst them3,4. In
terms of languageusage, one of the most influential results is Zipf’s law of word
frequencies5. Zipf’s law appears to be universal, and may not even be unique to
human language6. However, there is ongoing controversy over whether Zipf’slaw
is a good indicator of complexity7,8. Here we present an alternative approach that
puts Zipf’s law in the context of critical phenomena (the cornerstone of complex-
ity in physics9) and establishes the presence of a large-scale “attraction” between
successive repetitions of words. Moreover, this phenomenon is scale-invariant and
universal – the pattern is independent of word frequency andis observed in texts
by different authors and written in different languages. There is evidence, how-
ever, that the shape of the scaling relation changes for words that play a key role in
the text, implying the existence of different “universality classes” in the repetition
of words. These behaviours exhibit striking parallels withcomplex catastrophic
phenomena10,11,12.

Zipf’s law states that the relative frequencyfw of any wordw in a text is approxi-
mately related with rankrw according to an inverse power law5:

(1) fw ∝ 1/rα
w.

The rankrw of a word (its position in the list of words ordered by decreasing frequency)
measures its rarity. In practice the exponentα is usually close to one. Note that Zipf’s
law describes astatic property of language; shuffling pages, for instance, would not
affect its validity.

To investigate thedynamicalproperties of discourse generation, we can study the
distance between consecutive appearances, or “tokens”, ofa given wordw. This inter-
appearance distance, denoted byℓ, is measured as the total number of words between
two tokens plus one (so it takes on positive values 1, 2, etc.). It is immediately clear
that ℓ can have a very wide range of values. In the novelClarissaby S. Richardson,
for example, the worddependappears 99 times with a mean inter-appearance distance
of 9248. The minimum distance is 1, and the maximum is 50476. Although Zipf’s law
allows one to estimate the mean inter-appearance distance of each word (by means of
ℓ̄w ≃ 1/ fw ∝ rα

w), it cannot account for or predict the variability of word recurrence. In
addition, it has been reported that high-frequency words are distributed according to
a Poisson process13. This is the simplest stochastic point process, characterised by a
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total lack of memory. Nevertheless, even the Poisson process is unable to explain such
large variability.

In order to characterize the dispersion inℓ, we would normally estimate its probabil-
ity density. Due to the size of the dispersion, however, a large number of appearances
are necessary to get significant statistics. But Zipf’s law tells us that there are many
more low-frequency (high-rank) words than high-frequency(low-rank) words. Thus,
the vast majority of words cannot be used in such a study, no matter how long the text
considered.

As an alternative, we define a rescaled, “dimensionless”, inter-appearance distance:
θ ≡ ℓ/ℓ̄w. For each wordw, θ measures the inter-appearance distance in units of its
own mean value,̄ℓw. We can then calculate the probability densityDs(θ) for large sets
of wordss having similar relative frequenciesfw. We remark that we arenot studying
the heterogeneous distribution of words in a collection of texts14,15,16, but rather the
properties of word repetitions in an individual text. In fact, Zipf himself studied this
issue using a similar approach for very low-frequency words5 and proposed a power
law forDs(θ). As we shall see, the behaviour ofDs(θ) is actually much more complex.

We have analysed eight texts in four languages (for details,see the Methods sec-
tion). The curves in Fig. 1 show the probability densities ofrescaled inter-appearance
distances for all verbs ofClarissaappearing in their root form. The verbs are collected
into six frequency groupss, from about 30 appearances to more than 10000, andDs(θ)
is plotted for each group in a different point style. It is clear that the six distributions
collapse onto a unique curve. This phenomenon signals the approximate fulfilment of
a lawDs(θ) = F(θ), where thescaling function Fis independent of the word sets. It
is therefore also independent of frequency, except for the smallest distances (ℓ . 10).
The shape ofF approximates a gamma distribution over about five orders of magni-
tude,

(2) F(θ) =
1

aΓ(γ)

( a
θ

)1−γ
e−θ/a,

with the parametera ≃ 1/γ (after rescaling, so that̄θ = 1) andΓ the Euler gamma
function. A least-square fit yieldsγ = 0.60±0.05.

The validity of this result extends well beyond verbs inClarissa. The topmost curves
in Fig. 2 show inter-appearance distance distributions foradjectives in the same novel,
well described by the scaling functionF. Remarkably, other works in English follow
the same trend, as shown by the next curves in Fig. 2. for the adjectives inMoby
Dick andUlysses. Even more unexpectedly, the verbs and adjective distributions from
texts in French, Spanish, and Finnish (a highly agglutinative language, in contrast
with the other cases) display the same quantitative behaviour, displayed in Fig. 2
and in the Supplementary Information; in all casesγ is in the range 0.60± 0.10. It
appears that the dimensionless inter-appearance distancedistribution is “universal”
in the sense of statistical physics9: many different systems (texts) obey the same law
despite significant differences in their “microscopic” details (style, grammatical rules).
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UNIVERSAL COMPLEX STRUCTURES IN WRITTEN LANGUAGE 3

Although it has been suggested that Zipf’s law may have an elementary explana-
tion7, clearly the distributionsDs(θ) are far from trivial. Thiswould be the case if
each word followed a Poisson process, as happens in random texts (see Supplementary
Information). Instead, the shape of the scaling function implies a clustering phenome-
non: the appearance of a word tends to “attract” more appearances, as the distribution
is dominated by a decreasing power law forθ . 1. This indicates an increased prob-
ability for small inter-appearance distances relative to the Poisson process, which is
characterized by a pure exponential distribution and approximated byF(θ) ≃ 1 for
θ < 0.1. The difference is clear betweenℓ ≃ 10−4ℓ̄w and 0.1ℓ̄w, but beyondℓ ≃ ℓ̄w it
is difficult to distinguish the distribution from a Poisson process.

On the other hand, the plot also shows that clustering and data collapse are not
valid for very short distances,ℓ . 10; rather, some anticlustering (“repulsion”) shows
up instead, probably due to grammatical and stylistic restrictions on word repetition
within the same sentence. In Figs. 1 and 2, this phenomenon isvisible as a downturn
in many distributions with respect to the scaling function on the left-hand side.

Clustering properties of words have some striking similarities to the occurrence of
natural hazards10,11; the time delay between earthquakes is shown in the lowest curve
of Fig. 2 (“earthQ”) for comparison. This suggests that the models used to describe
aftershock triggering may also provide insight into the process of text generation: the
appearance of a word enhances its likelihood for a certain time, but without a charac-
teristic scale up to the mean distanceℓ̄w. This result also validates Skinner’s hypothesis
regarding the repetitive appearance of sounds in speech17.

The case of nouns and pronouns is more intricate. Their overall distributionsDs(θ)
clearly deviate from the functionF . It turned out that for some words, inter-appearance
distances considerably larger than the mean value (θ ≫ 1) are more common than the
scaling relation would predict. If we remove by hand the relatively few nouns and
pronouns with anomalous behaviours, we recover the same lawfollowed by verbs and
adjectives. For instance, forClarissaone only needs to eliminate 12 nouns and 10
pronouns (out of 315 and 34, respectively).

We now turn our attention to these special words. Surprisingly, they appear to follow
a new type of structure. We display in Fig. 3a the distributions for 9 nouns (letter, lady,
mother, brother, father, sister, uncle, lord, cousin)and 6 pronouns (his, your, her, him,
she, he). Both groups are divided into two frequency groups. The four distributions
still collapse onto a unique curve, but the results are clearly not fit by the function
F. Rather, we need a new scaling functionG. A good approximation is the stretched
exponential function

(3) G(θ) =
δ

a′Γ(1/δ )
e−(θ/a′)δ

.

Again, rescaling (so that the mean is 1) fixs one of the two parameters: a′ ≃
Γ(1/δ )/Γ(2/δ ). The remaining free parameter isδ = 0.33±0.05. The scaling func-
tion G also describes the clustering properties of words, but its behaviour is different
from that ofF. Relative to a Poisson process, these words are more likely to occur
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at both short distances and long distances; the clustering effect is therefore quite pro-
nounced. Amazingly, the functionG can also be used to describe the times between
ups or downs in financial markets12. The remaining 7 nouns and pronouns inClarissa,
fit by neitherF norG, arecolonel, captain, sir, you, I, me,andmy(see Supplementary
Information).

We can proceed by considering what these laws mean for individual words. If we
can accurately measure a number of single-word probabilitydensitiesDw(ℓ), then we
can compare their shapes by means of the scale transformation ℓ → ℓ/ℓ̄w ≡ θ and
Dw(ℓ) → ℓ̄wDw(ℓ). A sufficient condition for the collapse ofDs(θ) to hold is that

(4) Dw(ℓ) = G(ℓ/ℓ̄w)/ℓ̄w

(the same holds forF). This scaling law is shown to be very accurate in Fig. 3b,
which displays the individual distributions for the nouns and pronouns whose averaged
distributions were shown in Fig. 3a. The extension of this law to other texts and
languages is demonstrated in Fig. 3c, with impressive results.

If we now relate the mean distance to Zipf’s law (1),ℓ̄w ≃ 1/ fw ∝ rα
w, then Eq. (4)

becomes

(5) Dw(ℓ) = G̃(ℓ/rα
w)/rα

w

whereG̃ is essentiallyG after including the normalization constant of Zipf’s law. This
is just the condition of scale invariance for functions withtwo variables18, and reflects
the signature characteristic of word repetition: each wordfollows the same pattern,
although on a different scale which depends on its average frequency. In other words,
different parts of a text (word occurrences) have the same structure despite great dif-
ferences in their scales (this is also the main characteristic of fractals). In statistical
physics, distinct scaling relations such asF andG (or distinct values of the exponent
α) defineuniversality classes9. In linguistics these universality classes comprise dif-
ferenttypesof words, independent of author and language.

Going back to the case of adjectives and verbs, it turns out that the single-word
distributions are described byF only on average; that is, in many cases there are devi-
ations between their rescaledDw(ℓ) andF(θ). The small deviations appearing at large
θ in Fig. 2 may originate from special cases, for instance the word belle (beautiful)
in Artamène. The distribution of this word actually scales nicely withG, as seen in
Fig. 3c. Nevertheless, such cases are rare and their statistical weight is so low that they
barely modify the shape ofF.

We may wonder if the universality classes that describe wordclustering are an in-
trinsic property of language itself, or rather a fundamental characteristic of human be-
haviour reflected in literary works19,20. The first possibility is favoured by the fact that
adverbs and even function words (conjunctions, prepositions, and determiners) clearly
do not follow a Poisson process, except perhaps for those words with the very low-
est ranks (see Supplementary Information). Higher-rank adverbs and function words
display clustering, and are well described by the scaling functionF.



C
R

M
P

re
pr

in
tS

er
ie

s
nu

m
be

r
10

75

UNIVERSAL COMPLEX STRUCTURES IN WRITTEN LANGUAGE 5

However, we can establish at least one important distinction between the univer-
sality classes we have found. It turns out that most of the “special” nouns distributed
according toG refer to persons with a particularly relevant role (note that nouns not re-
ferring to persons can also play an important role, as is the case withletter in Clarissa,
an epistolic novel). Something similar is clearly happening with pronouns, as the spe-
cial cases are always personal or possessive. We observe increased clustering for these
key words, although unlike Ref.21 we find well-defined universality classes. This sup-
ports the idea that this kind of clustering originates in thespecial properties of human
behaviour19,20.

METHODS SUMMARY

Identification of parts of speech.English words were placed into grammatical cate-
gories using A. Kilgarriff’s lemmatised list, elaborated from the British National Cor-
pus22. However, we have changed the classification of possessive determiners to pos-
sessive pronouns15 as their behaviour is consistent with the clustering properties ob-
tained for other pronouns. Words belonging to more than one category were excluded
from the study. For Spanish words, we mainly used the Wictionary from Wikipedia23

but also drew on the electronic dictionary built by L. Padróet al. for FreeLing24. For
French, we made use of the list elaborated by S. Sharoff25, and Finnish words were
identified from a list available at the CSC, the Finnish IT Centre for Science26.
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UNIVERSAL COMPLEX STRUCTURES IN WRITTEN LANGUAGE 7

METHODS

Titles analyzed. The following table provides details on the texts. The labels (col-
umn 1) are used in Fig. 2 to identify the curves. The date givenis the year of first
publication, and the length of texts is in millions of words (Mw). Electronic versions
of the texts were downloaded from the Gutenberg Project’s web page1, except for
Artamène2.

label title author language year length (Mw)

Clar Clarissa S. Richardson English 1748 0.976

Moby Moby Dick H. Melville English 1851 0.215

Uly Ulysses J. Joyce English 1918 0.269

Arta Artamène Scudéry siblings French 1649 2.088

Brag Le Vicomte A. Dumas French 1847 0.699

de Bragelonne

DonQ Don Quijote M. Cervantes Spanish 1605 0.381

LaRe La Regenta L. A. “Cları́n” Spanish 1884 0.308

Keva Kevä ja J. Aho Finnish 1906 0.114

Takatalvi

REFERENCES

1. http://www.gutenberg.org.
2. http://www.artamene.org.

e�x (Poisson)F (�)31 < nw � 100100 < nw � 316316 < nw � 10001000 < nw � 31623162 < nw � 1000010000 < nw � 31622

�
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FIG. 1
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FIGURE 1. Scaling and clustering of inter-appearance distance dis-
tributions. Verbs appearing in their root form inClarissaare consid-
ered. Each distribution includes all words falling into oneof six equal
logarithmic ranges of absolute frequencynw. All the distributions are
well described by a unique shape: the gamma distributionF explained
in the text withγ = 0.60 anda = 1/γ (solid line). The exponential
function, characteristic of Poisson processes, is shown for comparison.

FIGURE 2. Universality of inter-appearance distance distributions.
The adjectives in several novels in different languages areanalysed
(see Methods), except for Finnish (“Keva”), where we have considered
verbs, due to their better statistics. From top to bottom thedistribu-
tions are multiplied by 1,10−2,10−4, and so on, to avoid overlapping
the curves. Recurrence-time distributions for earthquakes (earthQ) in
Southern California are included at the bottom for comparison (the dis-
tributions include all events with magnitudeM ≥ Mc between 1995 and
1998, whereMc = 2, 2.5, 3, and 3.510).

FIGURE 3. Scaling in a different universality class for special
nouns and pronouns. (a) Average rescaled probability densities for
the 9 nouns and 6 pronouns fromClarissalisted in the text, where each
group is divided into two frequency ranges. A stretched exponential
function G with δ = 0.33 describes all four distributions well. The
scaling functionF is also displayed for comparison. (b) Corresponding
rescaled distance distributions for individual words. (c)Rescaled dis-
tance distributions for words from other works, including the adjective
belle.
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31 < nw � 100100 < nw � 316316 < nw � 10001000 < nw � 31623162 < nw � 10000
earthQKevaLaReDonQBragArtaUlyMobyClar
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a

F (�)G(�)Spe
ial N, Clarissa, 316 < nw � 1000Spe
ial N, Clarissa, 1000 < nw � 3162Spe
ial P, Clarissa, 3162 < nw � 10000Spe
ial P, Clarissa, 10000 < nw � 31622
� = `= �̀w

D s(�)

10210110�110�210�310�4

10110�110�210�310�410�510�6
b

G(�)him, Clarissahis, Clarissayour, Clarissahe, Clarissashe, Clarissaher, Clarissaun
le, Clarissasister, Clarissafather, Clarissabrother, Clarissamother, Clarissalady, Clarissaletter, Clarissa

� = `= �̀w
D w(`=� `
w)=� ` w

10210110�110�210�310�4

10110�110�210�310�410�510�6
c

G(�)belle (beautiful), Artam�eneme (me), Artam�eneelle (she), Artam�eneella (she), La Regentame, UlyssesI, UlyssesI, Moby Di
k

� = `= �̀w
D w(`=� `
w)=� ` w

10210110�110�210�310�4

10110�110�210�310�410�510�6
FIG. 3
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