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A BLOCK SOLVER FOR THE EXPONENTIALLY FITTED
IIPG-0 METHOD

BLANCA AYUSO DE DIOS, ARIEL LOMBARDI, PAOLA PIETRA,
AND LUDMIL ZIKATANOV

Abstract. We consider an exponentially fitted discontinuous Galerkin
method for advection dominated problems and propose a block solver for the
resulting linear systems. In the case of strong advection the solver is robust
with respect to the advection direction and the number of unknowns.

1. Introduction

Let Ω ⊂ IR2 be a polygon, f ∈ L2(Ω), g ∈ H1/2(∂Ω) and let ε > 0 be constant.
We consider the advection-diffusion problem

(1) −div(ε∇u− βu) = f in Ω, u = g on ∂Ω,

where β ∈ [W 1,∞(Ω)]2 derives from a potential β = ∇ψ. In applications to
semiconductor devices, u is the electron density, ψ the electrostatic potential and
the electric field |∇ψ| might be fairly large in some parts of Ω, so that (1) be-
comes advection dominated. Its robust numerical approximation and the design
of efficient solvers, are still a challenge. Exponential fitting Brezzi et al. [2005]
and discontinuous Galerkin (DG) are two approaches that have been combined in
Lombardi and Pietra [2011] to develop exponentially fitted DG methods (in pri-
mal and mixed formulation). In this note, we consider a variant of these schemes,
based on the use of the Incomplete Interior Penalty IIPG-0 method and propose
an efficient solver for the resulting linear systems.

The change of variable ρ := e−
ψ
ε u in the problem (1) leads to

(2) −∇ · (κ∇ρ) = f in Ω, ρ = χ on ∂Ω ,

where κ := εe
ψ
ε and χ := e−

ψ
ε g. An IIPG-0 approximation to (2) gives rise

to the EF-IIPG-0 scheme for (1). We propose a block solver that uses ideas
from Ayuso de Dios and Zikatanov [2009] and reduce the solution to that of
an exponentially fitted Crouziex-Raviart (CR) discretization, which has much
less degrees of freedom. The associated (CR) matrix is further reduced to an
approximate block lower triangular form, which is efficiently solved by a block
Gauss-Siedel algorithm.

In our description we focus on the case β = ∇ψ piecewise constant; although we
include some numerical results for a more general case (cf. Test 2). Extensions of
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2 B. AYUSO DE DIOS, A. LOMBARDI, P. PIETRA, AND L. ZIKATANOV

the method (allowing ψ to be discontinuous) and further analysis of the proposed
solvers are topics of current research.

2. The Exponentially Fitted IIPG-0 method

Let Th be a shape-regular family of partitions of Ω into triangles T and let
h = maxT∈Th hT with hT denoting the diameter of T for each T ∈ Th. We assume
Th does not contain hanging nodes. We denote by Eoh and E∂h the sets of all interior
and boundary edges, respectively, and we set Eh = Eoh ∪ E∂h .

Let T+ and T− be two neighboring elements, and n+, n− be their outward
normal unit vectors, respectively (n± = nT±). Let ζ± and τ± be the restriction
of ζ and τ to T±. We define the average and jump trace operators:

2{ζ} = (ζ+ + ζ−), [[ ζ ]] = ζ+n+ + ζ−n− on E ∈ Eoh,
2{τ} = (τ+ + τ−), [[ τ ]] = τ+ · n+ + τ− · n− on E ∈ Eoh,

and on e ∈ E∂h we set [[ ζ ]] = ζn and {τ} = τ . We will also use the notation

(u,w)Th =
∑
T∈Th

∫
T

uwdx 〈u,w〉Eh =
∑
e∈Eh

∫
e

uwds ∀u,w,∈ V DG ,

where V DG is the discontinuous linear finite element space defined by:

V DG =
{
u ∈ L2(Ω) : u|T ∈ P1(T ) ∀T ∈ Th

}
,

Here, P1(T ) is the space of linear polynomials on T . Similarly, P0(T ) and P0(e)
are the spaces of constant polynomials on T and e, respectively. For each e ∈ Eh,
let P0

e : L2(e) 7→ P0(e) (resp. P0
T : L2(T ) 7→ P0(T ), for each T ∈ Th) be the

L2-orthogonal projections defined by

P0
e (u) :=

1

|e|

∫
e

u, ∀u ∈ L2(e) , P0
T (v) :=

1

|T |

∫
T

v, ∀ v ∈ L2(T ) .

We denote by V CR the classical Crouziex-Raviart (CR) space:

V CR=
{
v ∈ L2(Ω) : v|T ∈ P1(T )∀T ∈ Th and P0

e [[ v ]] = 0 ∀ e ∈ Eh
}
.

Note that v = 0 at the midpoint me of each e ∈ E∂h . To represent the functions
in V DG we use the basis {ϕe,T}T∈Th,e∈Eh , defined by

(3) ∀T ∈ Th ϕe,T (x) ∈ P1(T ) e ⊂ ∂T ϕe,T (me′) = δe,e′ ∀e′ ∈ Eh .

In particular, any w ∈ P1(T ) can be written as w =
∑

e⊂∂T w(me)ϕe,T .
We first consider the IIPG-0 approximation to the solution of (2): Find ρ ∈

V DG such that A(ρ, w) = (f, w)Th for all w ∈ V DG with

(4) A(ρ, w) = (κ∗T∇ρ,∇w)Th − 〈{κ∗T∇ρ}, [[w ]]〉Eh + 〈Se{[[ ρ ]]},P0([[w ]])〉Eh .
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BLOCK SOLVER FOR EXPONENTIAL FITTING IIPG-0 3

Here, Se is the penalty parameter and κ∗T ∈ P0(T ) the harmonic average approx-
imation to κ = εeψ/ε both defined in Lombardi and Pietra [2011] by:

(5) κ∗T :=
1

P0
T (κ−1)

=
ε

P0
T (e−

ψ
ε )
, Se := αeh

−1
e {κ∗T}e .

Next, following Lombardi and Pietra [2011] we introduce the local operator
T : V DG 7→ V DG that approximates the change of variable introduced before (2):

(6) Tw :=
∑
T∈Th

(Tw)|T =
∑
T∈Th

∑
e⊂∂T

P0
e (e−

ψ
ε )w(me)ϕe,T ∀w ∈ V DG .

By setting ρ := Tu in (4), we finally get the EF-IIPG-0 approximation to (1):
Find uh ∈ V DG s.t. B(uh, w) := A(Tuh, w) = (f, w)Th ∀w ∈ V DG with

(7) B(u,w)=(κ∗T∇Tu,∇w)Th− 〈{κ∗T∇Tu}, [[w ]]〉Eh+ 〈Se{[[ Tu ]]},P0[[w ]]〉Eh .

It is important to emphasize that the use of harmonic average to approximate κ =
εeψ/ε as defined in (5) together with the definition of the local approximation of
the change of variables prevents possible overflows in the computations when |∇ψ|
is large and ε is small. (See Lombardi and Pietra [2011] for further discussion).

Also, these two ingredients are essential to ensure that the resulting method
has an automatic upwind mechanism built-in that allows for an accurate approx-
imation of the solution of (1) in the advection dominated regime. We will discuss
this in more detail in Section 3.
Prior to close this section, we define for each e ∈ Eh and T ∈ Th:

ψm,e := min
x∈e

ψ(x) ψm,T := min
x∈T

ψ(x); ψm,T ≤ ψm,e for e ⊂ ∂T .

In the advection dominated regime ε� |β|h = |∇ψ|h

(8) P0
T (e−(ψ/ε)) ' ε2e−

ψm,T
ε P0

ei
(e−ψ/ε) ' ε e−

ψm,e
ε .

The first of the above scalings together with the definitions in (5) implies

(9) κ∗T '
1

ε
e
ψm,T
ε , Se '

α

2ε
|e|−1e

(ψm,T1
+ψm,T2

)

ε e = ∂T1 ∩ ∂T2 .

3. Algebraic System & Properties

Let A and B be the operators associated to the bilinear forms A(·, ·) (4) and
B(·, ·) (7), respectively. We denote by A and B their matrix representation in the
basis {ϕe,T}T∈Th,e∈Eh (3). In this basis, the operator T defined in (6) is represented
as a diagonal matrix, D, and B = AD. Thus, the approximation to (2) and (1)
amounts to solve the linear systems (of dimension 2ne−nb; with ne and nb being
the cardinality of Eh and E∂h , respectively):

(10) Aρ = F , and Du = ρ or Bu = F̃ ,
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4 B. AYUSO DE DIOS, A. LOMBARDI, P. PIETRA, AND L. ZIKATANOV

where ρ,u,F and F̃ are the vector representations of ρ, u and the right hand
sides of the approximate problems. From the definition (6) of T it is easy to
deduce the scaling of the entries of the diagonal matrix D = (di,i)

2ne−nb
i=1 .

D = (di,j)
2ne−nb
i,j=1 di,i = P0

ei
(e−ψ/ε) ' ε e−

ψm,e
ε , di,j ≡ 0 i 6= j .

We now revise a result from Ayuso de Dios and Zikatanov [2009]:

Proposition 1. Let Z ⊂ V DG be the space defined by

Z =
{
z ∈ L2(Ω) : z|T ∈ P1(T ) ∀T ∈ Th and P0

e{v} = 0 ∀ e ∈ Eoh
}
.

Then, for any w ∈ V DG there exists a unique wcr ∈ V CR and a unique wz ∈ Z
such that w = wcr + wz , that is: V DG = V CR ⊕ Z. Moreover, A(wcr, wz) = 0
∀wcr ∈ V CR, and ∀wz ∈ Z.

Proposition 1 provides a simple change of basis from {ϕe,T} to canonical basis
in V CR and Z that results in the following algebraic structure for (10):

(11) ρ =

[
ρz

ρcr

]
, A =

[
Azz 0
Avz Avv

]
, B =

[
Bzz 0
Bvz Bvv

]
.

Due to the assumed continuity of ψ, D is still diagonal in this basis. The algebraic
structure (11) suggests the following exact solver:

Algorithm 1. The solution u = uz + ucr satisfying B(u,w) = (f, w)Th, for all
w ∈ V DG is then obtained by

1. Solve for uz: B(uz, wz) = (f, wz)Th ∀wz ∈ Z.
2. Solve for ucr: B(ucr, wcr) = (f, wcr)Th − B(uz, wcr) ∀wcr ∈ V CR.

Next, wet discuss how to solve efficiently each of the above steps.

Step 1: Solution in the Z-space. In Ayuso de Dios and Zikatanov [2009] it
was shown that Azz is a diagonal positive definite matrix. This is also true for
Bzz since it is the product of two diagonal matrices. The continuity of ψ implies

(12) B(uz, wz) = 〈SeT[[uz ]],P0
e ([[wz ]])〉Eh ∀ uz, wz ∈ Z .

Using (8) and (5) we observe that the entries of Bzz scale as:

Bzz = (bi,j)
ne
i=1 bi,j = Sei |ei|djδi,j ' δi,j

α

2
e−(ψm,e−ψm,T1

−ψm,T2
)/ε

which are always positive, so in particular Bzz it is also an M -matrix.

Step 2: Solution in V CR. In Ayuso de Dios and Zikatanov [2009] it was shown
that the block Avv coincides with the stiffness matrix of a CR discretization of
(2), and so it is an s.p.d. matrix. However, this is no longer true for Bvv which
is positive definite but non-symmetric.

B(ucr, wcr) = (κ∗T∇Tucr,∇wcr)Th ∀ ucr , wcr ∈ V CR .
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BLOCK SOLVER FOR EXPONENTIAL FITTING IIPG-0 5

In principle, the sparsity pattern of Bvv is that of a symmetric matrix. Using (8)
and (5), we find that the entries of the matrix scale as:

(13) Bvv =
(
bcri,j
)ncr:=ne−nb
i,j

bcri,j := κ∗T
|ei||ej|
|T |

nei · nejdj ' e−
(ψm,e−ψm,T )

ε .

Since ψ is assumed to be piecewise linear, for each T , it attains its minimum (and
also its maximum) at a vertex of T , say x0 and ψm,e is attained at one of the
vertex of the edge e, say xe. In particular, this implies that

ψm,e − ψm,T ≈ ∇ψ · (xe − x0) = β · (xe − x0) =

{
0 xe = x0

|β|h xe 6= x0

Hence, in the advection dominated case ε� |β|h some of the entries in (13) vanish
(up to machine precision) for ε small; this is the automatic upwind mechanism
intrinsic of the method. As a consequence, the sparsity pattern of Bvv is no longer
symmetric and this can be exploited to re-order the unknowns so that Bvv can
be reduced to block lower triangular form.

Notice also that for Th acute, the block Avv being the stiffness matrix of the
Crouziex-Raviart approximation to (2), is an M-matrix. Hence, since the block
Bvv is the product of a positive diagonal matrix and Avv, it will also be an M -
matrix if the triangulation is acute (see Brezzi et al. [2005]).

4. Block Gauss-Siedel solver for V CR-block

We now consider re-orderings of the unknowns (dofs), which reduce Bvv to
block lower triangular form. For such reduction, we use the algorithm from Tarjan
[1972] which roughly amounts to partitioning the set of dofs into non-overlapping
blocks. In the strongly advection dominated case the size of the resulting blocks
is small and a block Gauss-Seidel method is an efficient solver. Such techniques
have been studied in Wang and Xu [1999] for conforming methods. The idea is
to consider the directed graph G = (V ,E) associated with Bvv ∈ IRncr×ncr ; G
has ncr vertices labeled V = {1, . . . , ncr} and its set of edges E has cardinality
equal to the number of nonzero entries1 of Bvv. By definition, (i, j) ∈ E iff bcrij 6=
0. Note that in the advection dominated case, the built-in upwind mechanism
results in a non-symmetric sparsity pattern for Bvv (see the last two paragraphs
of Section 3). Thus, we may have (i, j) ∈ E, while (j, i) /∈ E. Then, the problem
of reducing Bvv to block lower triangular form of Bvv is equivalent to partitioning
G as a union of strongly connected components. Such partitioning induces non-
overlapping partitioning of the set of dofs, V = ∪Nbi=1ωi. For i = 1, . . . , Nb, let
mi denote the cardinality of ωi; let Ii ∈ IRncr×mi be the matrix that is identity
on dofs in ωi and zero otherwise; and Bvv

i = ITi BvvIi is the block corresponding
to the dofs in ωi. The block Gauss-Seidel algorithm reads: Let ucr0 be given, and

1Each dof corresponds to a vertex in the graph; each nonzero entry to an edge.
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6 B. AYUSO DE DIOS, A. LOMBARDI, P. PIETRA, AND L. ZIKATANOV

assume ucrk has been obtained. Then ucrk+1 is computed via: For i = 1, . . . Nb

(14) ucrk+i/Nb = ucrk+(i−1)/Nb
+ Ii(Bvv

i )−1ITi
(
F − Bvvucrk+(i−1)/Nb

)
.

As we report in Section 5, the action of (Bvv
i )−1 can be computed exactly since

in the advection dominated regime the size of the blocks Bvv
i is small.

5. Numerical Results

We present a set of numerical experiments to assess the performance of the
proposed block solver. The tests refer to problem (2) with ε = 10−3, 10−5, 10−7,
and Ω is triangulated with a family of unstructured triangulations Th. In the
tables given below J = 1 corresponds to the coarsest grid and each refined trian-
gulation on level J , J = 2, 3, 4 is obtained by subdividing each of the T ∈ Th on
level (J − 1) into four congruent triangles. From the number of triangles nT the
total number of dofs for the DG approximation is 3nT .

Test 1. Boundary Layer: Ω = (−1, 1)2, β = [1, 1]t, nT = 112 for the coarsest
mesh and f is such that the exact solution is given by

u(x, y) =

(
x+

1 + e−2/ε − 2e(x−1)/ε

1− e−2/ε

)(
y +

1 + e−2/ε − 2e(y−1)/ε

1− e−2/ε

)
.

Test 2. Rotating Flow: Ω = (−1, 1)×(0, 1), f = 0 and curlβ 6= 0,

β =

[
2y(1− x2)
−2x(1− y2)

]t
g(x, y) =

{
1 + tanh (10(2x+ 1)) x ≤ 0, y = 0,
0 elsewhere .

We stress that this test does not fit in the simple description given here, and
special care is required (see Lombardi and Pietra [2011]). For the approximation,
for each T ∈ Th, with barycenter (xT , yT ), we use the approximation β|T ≈
∇ψ|T with ψ|T = 2yT (1− x2

T )x− 2xT (1− 2y2
T )y (and so ψ discontinuous). The

coarsest grid has nT = 224 triangles. In Fig. 1 are represented the plot of
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Figure 1. Plot of the connected components (blocks) of Bvv created
during Tarjan’s algorithm: Test 1 with ε = 10−5 (left); Test 2 with
ε = 10−7 (right)
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BLOCK SOLVER FOR EXPONENTIAL FITTING IIPG-0 7

the strongly connected components of the graph depicting the blocks for Bvv

created during Tarjan’s algorithm, on the coarsest meshes; for Test 1 with ε =
10−5 (left figure) and for Test 2 with ε = 10−7 (right figure). We have used
different line types (and colors) to distinguish strongly connected components
in the directed graph. In Table 1 we report the number of blocks Nb created
during Tarjan’s algorithm; the maximum size of the largest such block (Mb); the
average block size (nav); and the number of block-Gauss-Seidel iterations. After
Tarjan’s algorithm is used to re-order the matrix Bvv, we use the block Gauss-
Seidel algorithm (14) where each small block is solved exactly. In the tests that
we report here and also in all other similar tests that we have done (with similar
advection dominance) the number of block-Gauss-Seidel iterations and the size
of the blocks is uniformly bounded with respect to the number of dofs when
the advection strongly dominates. Thus, the computational cost for one block
Gauss-Seidel iteration in the advection dominated regime is the same as the cost
of performing a fixed number of matrix vector multiplications and the algorithm
is optimal in such regime.
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Test 1
HH

HHHε
J

1 2 3 4

10−3

Nb 44 150 484 1182

Mb 23 47 95 191

nav 3.55 4.32 5.45 9.02

iters 7 19 43 166

10−5

Nb 50 210 866 3474

Mb 23 47 95 191

nav 3.12 3.08 3.05 3.07

iters 4 4 4 14

10−7

Nb 50 210 866 3522

Mb 23 47 95 191

nav 3.12 3.08 3.05 3.03

iters 4 4 4 4

Test 2
H

HHHHε
J

1 2 3 4

10−3

Nb 31 1 1 1

Mb 211 1304 5296 21344

nav 10.19 1304 5296 21344

iters 10 1 1 1

10−5

Nb 122 468 1822 7106

Mb 4 4 7 37

nav 2.59 2.78 2.91 3.00

iters 4 4 7 24

10−7

Nb 122 468 1832 7247

Mb 4 4 4 6

nav 2.59 2.78 2.89 2.95

iters 4 4 4 4

Table 1. Number of blocks (Nb) created during the Tarjan’s or-
dering algorithm, size of largest block (Mb), average size of blocks
(nav) and number of block-Gauss-Seidel iterations (iters) for Test
1 (left) and Test 2 (right) .
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