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1. Introduction

The definitions of the Fourier transform vary from one function space to an-
other, and sometimes drastically. To illustrate this, one may compare the defi-
nitions of the Fourier transform for Lebesgue integrable functions, for Lebesgue
p-integrable functions with 1 < p ≤ 2, the distributional approach, and so on.
The space of functions of bounded variation has its own features. An important
initial reference to harmonic analysis on this space is Bochner’s celebrated book
[10]. It gives us the first basis of our treatment: the Fourier transform will mainly
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2 ELIJAH LIFLYAND

be understood in the improper sense. Since we will mostly work on the half-axis
R+ = [0,∞), we recall this notion just for R+:

∫
R+

= lim
ε→0+,N→∞

∫ N

ε

.

Of course, there are other classical sources where the reader can find important
results from harmonic analysis of functions of bounded variation, see, e.g., [41],
[45], [44], etc.

We will study how the fact that a function belongs to the space of functions of
bounded variation or to certain of its subspaces affects integrability and summa-
bility properties of the Fourier transform. The above illustration demonstrates
that it is meaningless to try to define the Fourier transform immediately and once
and for all; in each problem we need to specify the definition.

Very classical results are given without proofs, with references to classical
sources. More recent results and/or less known results are given with proof.
In any case, we try to keep a balance between the details and the picture as a
whole. We shall try to make the presentation reasonably self-contained.

This is a survey of main results on the topic in question, from classical to those
quite recent; many of them have been obtained by the author, alone and with
collaborators.

Let us outline the main subjects we will elucidate. First, we cannot avoid the
classical Fourier inverse result which will be presented in Section 2. We then
discuss in Section 3 less known results on connections between periodic and non-
periodic cases. A summability result in Section 4 is related to multipliers. The
greatest part of the paper, Section 5, is devoted to problems of integrability of
Fourier transforms.

Let us give the two notations that we will use throughout. The space of
functions of bounded variation will be denoted by BV and the norm of a function
in it ‖·‖BV . When we have to fix a set D on which the total variation of functions
is calculated, we write BVD. By C we will denote absolute constants, which may
be different in various occurrences.

2. Preliminaries on functions of bounded variation

Let us give certain basics that will be a starting point for us. As for the defi-
nition of bounded variation, we are not going to concentrate on various details.
On the contrary, following Bochner, we will mainly restrict ourselves to functions
with Lebesgue integrable derivative, since every such function is of bounded vari-
ation in the sense that it is representable as a linear combination (generally, with
complex coefficients) of monotone functions. Without loss of generality, it suffices
to prove this for real-valued functions. Indeed, let f have integrable derivative in
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FUNCTION OF BOUNDED VARIATION 3

[a, b]. Then it is representable as

f(x) = f(b) +

∫ b

x

|f ′(t)| − f ′(t)
2

dt−
∫ b

x

|f ′(t)|+ f ′(t)

2
dt

= f(b) + h1(x)− h2(x).

Both functions h1(x) and h2(x) are monotone decreasing. If b = ∞, we just
consider lim

x→∞
f(x). Since in that case,

lim
x→∞

h1(x) = lim
x→∞

h2(x) = 0,

a function of bounded variation vanishing at infinity can be represented as a
difference of two monotone decreasing functions, each of them tending to zero at
infinity. Of course, the usual definition that applies to the uniform boundedness of
the sums of oscillations of a function over all possible systems of non-overlapping
intervals might be helpful.

There is a characterization of functions of bounded variation by means of in-
tegral smoothness. It main part is due to Hardy and Littlewood [25, 26]; the
reader may also consult [40, Ch.III, §3.6]. In these sources the result is proved
on a finite interval, however, the proof goes along the same lines on an infinite
set as well. For simplicity, we restrict ourselves to the case of R+.

Theorem 1. Let f be of bounded variation on R+. Then it satisfies the Lipschitz
condition in the integral metrics∫ ∞

0

|f(t+ h)− f(t)| dt ≤Mh(1)

for any h and absolute constant M .
Conversely, if f satisfies (1), then almost everywhere on R+ it coincides with

a function of bounded variation.

Proof. The first part is obvious. Indeed,∫ ∞
0

|f(t+ h)− f(t)| dt ≤
∫ ∞

0

∫ t+h

t

|df(u)| dt

=

∫ h

0

|df(u)|
∫ u

0

dt+

∫ ∞
h

|df(u)|
∫ u

u−h
dt

≤ h

∫ ∞
0

|df(u)|.

Here the constant M is just the total variation of f on R+.
To prove the second part, let us assume that f satisfies (1) and denote

fn(x) = n

∫ 1/n

0

f(x+ t) dt.(2)
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4 ELIJAH LIFLYAND

We then have∫ ∞
0

|fn(x+ h)− fn(x)| dx

= n

∫ ∞
0

∣∣∣∣∣
∫ 1/n

0

[f(x+ t+ h)− f(x+ t)] dt

∣∣∣∣∣ dx
≤ n

∫ n

0

∫ ∞
0

|f(x+ t+ h)− f(x+ t)| dx dt ≤Mh.

We mention that (1) ensures also the possibility of application of Fubini’s theo-
rem.

If [xk, xk + hk], k = 1, 2, ...,m, is a finite system of mutually disjoint intervals,
then

m∑
k=1

|fn(xk + hk)− fn(xk)| ≤
m∑
k=1

∫ xk+hk

xk

|f ′n(x)| dx

≤
∫ ∞

0

|f ′n(x)| dx.

Fatou’s lemma implies∫ ∞
0

|f ′n(x)| dx ≤ lim

h→ 0

∫ ∞
0

∣∣∣∣fn(x+ h)− fn(x)

h

∣∣∣∣ dx ≤M,

and, correspondingly,

m∑
k=1

|fn(xk + hk)− fn(xk)| ≤M.(3)

Since f is locally integrable, almost every point is its Lebesgue point. Therefore
fn(x) → f(x) as n → ∞ for all x except maybe a set Q of measure zero. If the
points xk and xk + hk do not belong to Q, then passing to the limit as n→∞ in
(3), we obtain

m∑
k=1

|f(xk + hk)− f(xk)| ≤M.(4)

This means that f is of bounded variation on the complement of Q and conse-
quently can be represented as the difference of two monotone functions. To let
it take values on Q, one can define it as the right limit at every point of Q. This
completes the proof. �

Theorem 1 in the book [10] states that the Fourier transform, no matter
whether cosine, sine or complex, of a function monotone decreasing to zero, and
correspondingly of bounded variation, exists everywhere, maybe except at zero.
This can easily be seen by integration by parts, which also shows that similarly
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FUNCTION OF BOUNDED VARIATION 5

to the Riemann-Lebesgue lemma for integrable functions the Fourier transform
in this case also tends to zero at infinity.

Let us give a representation theorem from Chapter 1 in [44, 1.1.4] concerning
functions of bounded variation.

Proposition 1. Let g be locally integrable on [0,+∞), i.e., g ∈ L[0, b] for any
b > 0, and let f be of bounded variation on [0,+∞). Then

lim
λ→+0

∫ ∞
0

f(λt) g(t) dt = f(+0)

∫ ∞
0

g(t) dt,

provided the integral on the right-hand side converges.

Proof. Here g need not be (Lebesgue) integrable on [0,+∞), written g /∈L[0,+∞),
therefore the integral in 〈f, g〉λ is understood in the improper sense. Since for a
constant function f the formula in question is valid, and for each f ∈ BV[0,+∞)

the limit exists as t→ +∞, one may assume, without loss of generality, that this
limit is zero. Denoting

G(t) =

∫ t

0

g(u) du and G(+∞) =

∫ ∞
0

g(u) du,

and integrating by parts in the Stieltjes integral yield∫ ∞
0

f(λt) g(t) dt = −
∫ ∞

0

G(t) df(λt).

The usual estimate of the Stieltjes integral and the fact that homothety does not
change the total variation of the function f imply |〈f, g〉λ| ≤ ‖G‖∞ ‖f‖BV .

Now, as above, we have to check the formula on a set of functions G dense
in the space of continuous functions, each function in G having a finite limit at
infinity. Let this space be endowed with the norm ‖ · ‖∞. An appropriate set is
that of step-functions which are constant off a finite interval. Consequently, to
check the formula, we may restrict ourselves to the indicators of infinite intervals,
i.e., to functions of the form χ[b,+∞). We have

−
∫ ∞

0

χ[b,∞)(t) df(λt) = −
∫ ∞
b

df(λt)

= f(bλ)→ f(+0) = f(+0) lim
t→+∞

χ[b,∞)(t).

The first equality holds only if the point b/λ is not a discontinuity point of f
(otherwise the Stieltjes integral does not exist). Clearly, these b may be taken
on the dense subset of (0,+∞). Then we argue as follows. It suffices to prove
the desired formula for any sequence λn → 0. But then each function f(λnt),
n = 1, 2, . . . , has, as does f , no more than a countable number of discontinuity
points. Thus, one can choose b on any interval so that the points b/λn, n =
1, 2, . . . , will be continuity points for f. �
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6 ELIJAH LIFLYAND

We now give a well-known classical result on Fourier inversion on which the
whole treatment of the Fourier transform of a function of bounded variation is
based, in a sense (see, e.g., [45, Vol.II, Ch.XVI, §2] or [44, 3.1.17]); the proof uses

the previous result. Let f̂ be the Fourier transform of f defined as

f̂(x) =

∫ +∞

−∞
f(t)e−ixt dt.

Theorem 2. If f is a function of bounded variation on R, and lim f(x) = 0 as
|x| → ∞, then for all x0 ∈ R there holds

f(x0 + 0) + f(x0 − 0)

2
= lim

N→∞
lim
δ→0

1

2π

∫
δ≤|y|≤N

f̂(y)eiyx0dy.(5)

Proof. In this case the Fourier transform is defined as an improper integral, and
is continuous for all y ∈ R \ {0}, even without assuming f ∈ L(R). This is easily
checked by integrating by parts. Therefore, the right-hand side equals

1

2π
lim
N→∞

lim
δ→+0

∫ ∞
−∞

f(x) dx

∫
δ≤|y|≤N

eiy(x0−x)dy

=
1

π
lim
N→∞

∫ ∞
−∞

f(x)
sinN(x0 − x)

x0 − x
dx

− 1

π
lim
δ→+0

∫ ∞
−∞

f(x)
sin δ(x0 − x)

x0 − x
dx.

To check that the second integral on the right converges uniformly in δ, we in-
tegrate by parts over the segment [M1,M2], taking into account that integrating
t−1 sin δt over any segment gives a value bounded by an absolute constant. Thus
we may pass to the limit under the integral sign, which is evidently zero. To
calculate the limit of the first integral, we substitute t = N(x0 − x) and finally
apply Proposition 1. �

3. From series to integrals and vice versa

In this section, we present two useful results where one sees relations between
periodic and non-periodic objects. The first one is apparently quite special and
applicable only to functions of bounded variation. The second one is a version of
the Poisson summation formula for functions of bounded variation, one of many
possible in various settings.

3.1. Fourier integrals and trigonometric series. For functions of bounded
variation, to pass from series to integrals and vice versa, we will make use of the
following result due to Trigub [42, Th. 4] or [44, 4.1.2] (for its extension, see [43];
an earlier version, for functions with compact support, is due to Belinsky [3]):

sup
0<|x|≤π

∣∣∣∣∫ +∞

−∞
f(t)eixt/ε dt− ε

+∞∑
k=−∞

f(εk)eikx
∣∣∣∣ ≤ 2ε‖f‖BV .(6)



C
R

M
P

re
p
ri

nt
S
er

ie
s

nu
m

b
er

11
04

FUNCTION OF BOUNDED VARIATION 7

Proof. First, let us note that the series is convergent for x 6≡ 0(mod2π) according
to Dirichlet’s test, its sum is 2π-periodic, and the integral is convergent for x 6= 0
and has a zero limit as |x| → ∞. Let us prove this inequality for ε = 1, since the
general case readily follows from this particular one by replacing f(·) by f(ε·)
and by the appropriate change of variables in the integral. In that case, the total
variation of the function is left unchanged.

Thus, keeping in mind that ε = 1, we see that the difference between the sum
and the integral can be expressed as

x

2 sin(x/2)

+∞∑
k=−∞

∫ k+1/2

k−1/2

[f(k)− f(t)]eixt dt

−
(

x

2 sin(x/2)
− 1

)∫ +∞

−∞
f(t)eixt dt.

Integrating by parts in the last integral, we obtain∣∣∣∣∫ +∞

−∞
f(t)eixt dt−

+∞∑
k=−∞

f(k)eikx
∣∣∣∣ ≤ ∣∣∣∣ x

2 sin(x/2)

∣∣∣∣ +∞∑
k=−∞

∫ k+1/2

k−1/2

|f(k)− f(t)| dt

+

∣∣∣∣ x

2 sin(x/2)
− 1

x

∣∣∣∣ ∣∣∣∣∫ +∞

−∞
eixt df(t)

∣∣∣∣.
We then observe that the absolute value of the last Stieltjes integral is at most
‖f‖BV , while

+∞∑
k=−∞

∫ k+1/2

k−1/2

|f(k)− f(t)| dt =

∫ 1/2

−1/2

+∞∑
k=−∞

|f(k)− f(t)| dt ≤ ‖f‖BV .

Hence, noting that sinx < x for 0 < x ≤ π, we get∣∣∣∣∫ +∞

−∞
f(t)eixt dt−

+∞∑
k=−∞

f(k)eikx
∣∣∣∣ ≤ ∣∣∣∣ |x|

2 sin(x/2)
+

1

2 sin(x/2)
− 1

x

∣∣∣∣ ‖f‖BV .
It remains to take into account that the function on the right whose absolute
value is taken increases on [0, π] from 1 to

π + 1

2
− 1

π
< 2,

which completes the proof. �

3.2. Poisson summation formula. The Poisson summation formula, discov-
ered by Siméon Denis Poisson, is sometimes called Poisson resummation. A
typical form of the Poisson summation formula for integrable functions is given
in [37, Ch.VII, Th.2.4].

Moreover, the results are known which show that the Poisson summation char-
acterize, in that or another sense, the Fourier transform (see [14] and [18]).
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8 ELIJAH LIFLYAND

In [45, Ch.II, §13], one can find certain versions of the Poisson summation
formula for the validity of which the boundedness of the variation of a function
is assumed, along with additional mild conditions, rather than integrability. In
[43, Lemma 2], a somewhat different formula is obtained for functions of bounded
variation. It reads as follows.

Proposition 2. If f is a function of bounded variation on R,
2f(k) = f(k + 0) + f(k − 0)

for all k ∈ Z, and lim f(t) = 0 as |t| → ∞, then for all x 6≡ 0(mod2π) we have
+∞∑

k=−∞

f(k)eikx =
+∞∑

k=−∞

f̂(2kπ − x).

Proof. By Dirichlet’s test, the series on the left is uniformly convergent on [−π, π]

outside any neighborhood of zero, and the integral in the definition of f̂ behaves
likewise on R. Let us set

s(x) =
+∞∑

k=−∞

f(k)eikx − f̂(−x), σ(x) =
∑
k 6=0

f̂(2kπ − x).

We are now going to analyze the function s(x) − σ(x). Since the discontinuity
at zero is removable, we will show that it is continuous on [−π, π] and has zero
Fourier coefficients. This will yield s(x) = σ(x) for 0 < |x| ≤ π, and hence for
all x 6≡ 0(mod2π), since each side of the relation is 2π-periodic. For the cut-off
function fn, that coincides with f on [−n, n] and vanishes off [−n, n], we have
‖fn‖BV ≤ ‖f‖BV . Denoting

sn(x) =
n∑

k=−n

f(k)eikx −
∫ n

−n
f(t)eixtdt,

we apply (6) to fn to get |sn(x)| ≤ 2‖f‖BV for any n ∈ N.
Now, we calculate the m-th Fourier coefficient of s:

cm(s) = lim
n→∞

1

2π

∫ π

−π
sn(t)e−imtdt

= f(m)− 1

2π
lim
n→∞

∫ π

−π
e−imt

∫ n

−n
f(u)eixudu dt.

To estimate the limit, let us split [−π, π] into two parts: [−δ, δ] and [−π,−δ) ∪
(δ, π]. After certain calculations we will let δ tend to zero. On [−δ, δ] we have

lim
n→∞

∫ δ

−δ
e−imxdx

∫ n

−n
f(t)eixtdt = 2

∫ ∞
−∞

f(t)
sin(t−m)δ

t−m
dt.

Since the integral of
sin tδ

t
over any interval is bounded by an absolute constant,

the last integral converges uniformly in δ and hence its limit as δ → 0 is zero.
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FUNCTION OF BOUNDED VARIATION 9

The integral in the definition of f̂ converges uniformly off [−δ, δ], which again
gives a possibility to pass to the limit under the integral sign. By this,

cm(s) = f(m)− lim
δ→0

1

2π

∫
δ≤|x|≤π

f̂(x)eimxdx.

Let us now proceed to σ(x). Since it is independent of any correction of f on a
set of measure zero, we can think of f as right continuous. Integrating by parts,
we obtain

σn(x) =
∑

1≤|k|≤n

f̂(2kπ − x) =
∑

1≤|k|≤n

−i
2kπ − x

∫ ∞
−∞

e−it(2kπ−x)df(t).

All the summands are continuous when |x| ≤ π. Using the equality

1

2kπ − x
=

1

2kπ
+

x

2kπ(2kπ − x)
,

we split σn into two sums, while σ into two series, respectively. The second series
converges uniformly on [−π, π] in virtue of the Weierstrass test. The sequence of
partial sums of the first series∑

1≤|k|≤n

−i
2kπ − x

∫ ∞
−∞

e−it(2kπ−x)df(t) = −
∫ ∞
−∞

eitx
( n∑
k=1

sin 2kπt

kπ

)
df(t)

converges boundedly to the continuous function∫ ∞
−∞

eitxϕ0(t)df(t);

with ϕ0(t) = t− [t]− 1
2

for t non-integer and ϕ0(k) = 0, k ∈ Z. Here Lebesgue’s
theorem on dominated convergence is applied to the integral in measure generated
by the function f of bounded variation. Thus, σn converges boundedly to σ on
[−π, π], with σ ∈ C[−π, π], and

2πcm(σ) = lim
n→∞

∑
1≤|k|≤n

∫ π

−π
f̂(2kπ − x)e−imxdx

= lim
n→∞

∫
π≤|t|≤π(2n+1)

f̂(t)eimtdt.

The needed equality cm(s) = cm(σ) follows now from the Fourier inversion for
the function of bounded variation (5), which completes the proof. �
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4. Bounded variation, summability and multipliers

The main object of this topic are various spaces X∧ of the Fourier integrals

f ◦(t) ∼ 1

2π

∫
R
ϕ(x)eixtdx

such that ϕ is the Fourier transform f̂ of f ∈ X

ϕ(x) = f̂(x) =

∫
R
f(t)e−ixtdt.

Given X a normed space, we define ‖f ◦‖X∧ = ‖f‖X .
For more details and references, see [2]. In particular, our scope is such that

we avoid the distributional approach.
For functions of bounded variation, the notion of the Fourier-Stieltjes transform

proved to be sometimes more natural in many respects than the usual Fourier
transform:

d̂F (x) =

∫
R
e−ixtdF (t).

We study conditions under which f ◦ belongs to the space dαV ∧, α ≥ 0, that
is, when

(ix)1−αϕ(x) = d̂F (x),

where F is a function of bounded variation. For this we need an appropriate
notion of fractional derivative. The one corresponding to our scope is naturally
defined via the Fourier transform: g(α), the αth derivative of g, is the function
for which

ĝ(α)(x) = (ix)α ĝ(x).

We shall study these spaces in connection with summability. Let the summa-
bility method be defined by a single function λ, a multiplier, as

(ΛNf)(x) =
1

2π

∫
R
λ

(
t

N

)
ϕ(t)eixtdt.(7)

It is clear that λ should be defined at each point, so let λ be continuous. The
following representation is useful in many cases:

(ΛNf)(x) =
1

2π

∫
R
Nλ̂(N(t− x))f(t) dt.(8)

When f, λ ∈ L1(R) it is merely equivalent to (7), see, e.g., [37, Ch.I, Th.1.16];
moreover, this is true under any assumptions which ensure the validity of the
Parseval identity. In what follows we assume that

both λ and λ̂ are integrable on R(9)

and

λ(0) = 1.(10)
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FUNCTION OF BOUNDED VARIATION 11

We shall make use of either (7) or (8) as a definition of the linear means ΛN just
according to which of the two formulas is valid.

When a function is already represented by a Fourier integral, to take its αth
derivative means multiplying the integrand by (it)α. Therefore, by (ΛNf)(1−α) we
understand

(ΛNf)(1−α)(x) =
1

2π

∫
R
λ

(
t

N

)
ϕ(t)(it)(1−α)eixtdt.

The above-mentioned conditions are given in the following

Theorem 3. Let ϕ and λ be such that λ( t
N

)ϕ(t)(it)(1−α) are integrable for all N.
In order that f ◦ belong to dαV ∧, it is necessary and sufficient that

‖(ΛNf)(1−α)‖L1(R) = O(1).(11)

Remark 4. Clearly, α = 0 and α = 1 are two main cases. Slightly less general
versions of these cases are known from [17] and [16], respectively. For more
information, see [13] or [29].

Recalling that a function s is called a multiplier of class (X, Y ) if for each
f ◦ ∈ X∧ there holds sf ◦ ∈ Y ∧, we see that Theorem 3 is a criterion for (ix)1−αϕ
to be a multiplier of class (L1, L1) (see, e.g., [13, Th.6.5.6]).

Let

ϕ(t) = Si(|t|) =

∫ |t|
0

1

u
sinu du,

which is bounded and non-negative, and λ(t) = (1−|t|) for |t| < 1 and 0 otherwise.
We wish to check that (ΛNf) are uniformly integrable for this choice. The values∫ 1/N

0

|(ΛNf)(x)| dx

are uniformly bounded; the same is true for any bounded ϕ. Given x > 1/N, we
obtain for y = Nx > 1 by changing the order of integration

2π(ΛNf)(y) = N

∫ 1

0

1

u

[
− 1

y2
cos y − 1

y
(1− u) sin(yu) +

1

y2
cos(yu)

]
sinNudu.

The main term for ∫
R
|(ΛNf)(x)| dx =

1

N

∫
R
|(ΛNf)(y)| dy

is ∫ ∞
1

1

y

∣∣∣ ∫ 1

0

1

u
sin(Nu) sin(yu) du

∣∣∣ dy,
the uniform integrability of the rest is rather obvious. For y > 2N and 1 < y <
N/2, we obtain the needed bounds by estimating the inner integral as

1

2

∣∣∣∣∫ y+N

|y−N |

1

u
cosu du

∣∣∣∣ ≤ 1

2
ln

∣∣∣∣y +N

y −N

∣∣∣∣,
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and straightforward calculations. For instance, when y > 2N just use that

ln

∣∣∣∣y +N

y −N

∣∣∣∣ ≤ 2N

y −N
.

For the integrals from N/2 to N − 1 and N + 1 to 2N , use that

∫ ∞
1

cosu

u
du

exists and

∫ 2N

N/2

1

y
dy = ln 4 . The estimate over N − 1 ≤ y ≤ N + 1 is simple.

Hence Si(|t|) is a multiplier of class (L1, L1).
Taking the same λ and ϕ(t) = 1 for |t| ≤ 1 and ϕ(t) = 0 otherwise, the partial

Fourier integrals, we easily derive that this function cannot be a multiplier of
class (L1, L1). Indeed, we immediately arrive at∫ 1

0

(
1− t

N

)
cosxt dt =

(
1− 1

N

)
1

x
sinx+

1

Nx2
(1− cosx),

which is non-integrable for any N > 1.
The other negative example is delivered, again with the same λ, by ϕ(t) = 1

for t > 0 and ϕ(t) = −1 for t < 0. The calculations are simple:∫ N

0

(
1− t

N

)
sinxt dt =

1

x
− 1

Nx2
sinNx,

and the right-hand side is non-integrable for any N. This gives a different proof
that the Hilbert transform is not a bounded operator on L1. We recall that the
Hilbert transform g̃ of an integrable function g is defined in the principal value
sense as

g̃(x) =
1

π

∫
R

g(t)

x− t
dt = lim

ε→0

1

π

∫
|x−t|≥ε>0

g(t)

x− t
dt.(12)

Proof of Theorem 3. Necessity. Let f ◦ ∈ dαV ∧. Then

(ΛNf)(1−α)(x) =

∫
R
λ

(
t

N

)
(it)(it)−αϕ(t)eixtdt

=

∫
R
λ

(
t

N

)
d̂F (t)eixtdt.

By the Stieltjes version of (3) (see, e.g., [13, Th.6.5.6]) we have

(ΛNf)(1−α)(x) =

∫
R
Nλ̂(N(t− x)) dF (t).

Hence

‖(ΛNf)(1−α)‖L1(R) ≤
∫

R

∫
R
N |λ̂(N(t− x))| |dF (t)| dx.
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Since λ̂ is integrable on R, and F is of bounded variation, we may use here and
in what follows the Fubini theorem freely. This yields

‖(ΛNf)(1−α)‖L1(R) ≤
∫

R
|dF (t)|

∫
R
N |λ̂(N(t− x))| dx

= ‖F‖BV ‖λ̂‖L1(R),

and we are done.
Sufficiency. Denote

ΦN(x) =

∫ x

−∞
(ΛNf)(1−α)(t) dt.

This sequence possesses the following properties. First, (11) provides that both
the family {ΦN} and the family of variations of these functions are uniformly
bounded (by the same constant ‖(ΛNf)(1−α)‖L1(R)). By virtue of the boundedness
of {ΦN} along with their variations, the first Helly’s theorem (see, e.g., [29,
Th.9.1.1]) ensures the existence of a subsequence {Nk}, Nk → ∞ as k → ∞,
such that

lim
k→∞

ΦNk
= Φ(x)

at any point x on the whole R, where Φ is a function of bounded variation
(bounded by ‖ΛNf‖L1(R) along with its total variation). Our next (and final)
step is to show that

d̂Φ(x) =

∫
R
e−ixtdΦ(t) = lim

k→∞

∫
R
e−ixtdΦNk

(t).(13)

Generally speaking, the second Helly theorem is true only under additional as-
sumptions (see, e.g., [29, Th.9.1.3]). For example, it holds true if the last limit is
uniform on every finite interval. As in [16], we have

λ

(
t

Nk

)
(it)1−αϕ(t) =

∫
R
e−ixt dΦNk

(x).

The right-hand side is continuous as well as λ( t
Nk

), hence (it)1−αϕ(t) almost

everywhere coincides with a continuous function ψ(t). Now, by (9) and (10),
we get that λ( t

Nk
)ψ(t) converges, as N → ∞, to ψ(t) uniformly on every finite

interval. Thus, (13) is true, which completes the proof. �

5. Integrability of the Fourier transform

Finding conditions for the integrability of the Fourier transform has long been
the subject of research. Such conditions are mostly given in terms of the trans-
formed function belonging to certain space. However, searching for such spaces as
subspaces of the space of functions of bounded variation apparently was started
in [30]. The “candidates” were analogs of sequence spaces from the theory of
integrability of trigonometric series. Though in [30] or in greater detail in [33]
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the whole story is presented, let us give some important references to the papers
where the mentioned sequence spaces were either introduced or studied to a great
extent: [28], [8], [38], [39], [20], [22].

On the other hand, what is given below is not fixed, there are interesting
problems there and continuing activity. Just a few references: [31], [32], [21], [36].

5.1. Function spaces. In this subsection we will introduce a scale of subspaces
of L1, and when the derivative of a transformed function belongs to such a sub-
space will characterize behavior of the Fourier transform. Correspondingly, we
will study the Fourier transform of functions from subspaces of the space of func-
tions of bounded variation.

For 1 < q <∞, set

‖g‖Aq =

∫ ∞
0

(
1

u

∫
u≤|t|≤2u

|g(t)|qdt
)1/q

du.

These spaces and their sequence analogs first appeared in the paper by D. Borwein
[12], but became - for sequences - widely known after the paper by G. A. Fomin
[20]; see also [22, 23]. On the other hand, these spaces are a partial case of the
so-called Herz spaces (see first of all the initial paper by C. Herz [27], and also a
relevant paper of Flett [19]).

Further, for q =∞ let

‖g‖A∞ =

∫ ∞
0

ess supu≤|t|≤2u|g(t)|du.

The role of integrable monotone majorant for problems of almost everywhere
convergence of singular integrals is known from the work of D.K. Faddeev (see,
e.g., [1, Ch.IV, §4]; also [37, Ch.I]); for spectral synthesis problems it was used
by A. Beurling [7], for more details see [6].

Finally, let

‖g‖HBT
=

∫
R
|g(t)| dt+

∫
R

∣∣∣∣∣
∫ u/2

0

g(u− t)− g(u+ t)

t

∣∣∣∣∣ du.(14)

This space was first introduced in [30]. In [21], the inner integral in the last
summand on the right of (14) was called the Telyakovskii transform; we shall
write it as Tg.

Recall that H := H(R) is the space of functions g ∈ L1(R) for which their
Hilbert transform (12) belongs to L1(R) as well. A different way to define the
Hilbert transform is

g̃(x) = lim
ε→0

1

π

∫
R

g(t)(x− t)
(x− t)2 + ε2

dt.(15)

In many cases these two definitions are equivalent, but sometimes either one is
more convenient for concrete applications.
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Lemma 1. The following embeddings hold:

A∞ ↪→ Ap1 ↪→ Ap2 ↪→ HBT ↪→ L1 (p1 > p2 > 1).(16)

Proof. The first two embeddings are merely the results of applying the Hölder
inequality. Indeed, with p1/p2 > 1∫ ∞

0

(
1

u

∫
u≤|t|≤2u

|g(t)|p1dt
)1/p1

du

≤
∫ ∞

0

(
1

u

(∫
u≤|t|≤2u

|g(t)|p2dt
)p1/p2 (∫

u≤|t|≤2u

dt

)1−p1/p2
)1/p1

du

= 21/p1−1/p2

∫ ∞
0

(
u−p2/p1+(1−p1/p2)p2/p1

∫
u≤|t|≤2u

|g(t)|p2dt
)1/p2

du

= 21/p1−1/p2

∫ ∞
0

(
1

u

∫
u≤|t|≤2u

|g(t)|p2dt
)1/p2

du,

and we are done; in the case q =∞, the left embedding obviously goes along the
same lines.

To prove the embedding of Aq into L1, we will use a standard expedient

2 ln 2

∫ ∞
0

|g(t)| dt =

∫ ∞
0

1

u

∫
u≤|t|≤2u

|g(t)| dt du.

Applying Hölder’s inequality to the inner integral on the right yields∫ ∞
0

1

u

∫
u≤|t|≤2u

|g(t)| dt du

≤
∫ ∞

0

1

u

(∫
u≤|t|≤2u

|g(t)|q dt
)1/q (∫

u≤|t|≤2u

dt

)1−1/q

du

= 21−1/q

∫ ∞
0

(
1

u

∫
u≤|t|≤2u

|g(t)|qdt
)1/q

du.

A bit more delicate are estimates for the second term on the right-hand side of
(14). First, because of Lemma 2 below, we can deal with

ln 3

∫ ∞
0

∣∣∣∣ ∫ 3x/2

x/2

g(t)

x− t
dt

∣∣∣∣ dx =

∫ ∞
0

1

u

∫ 3u/2

u/2

∣∣∣∣ ∫ 3x/2

x/2

g(t)

x− t
dt

∣∣∣∣ dx du.
The following estimates are similar to those for sequences in [20]; they mainly
reduce to M. Riesz’s theorem. Thus, the last integral does not exceed∫ ∞

0

1

u

∫ 3u/2

u/2

{∣∣∣∣∫ x/2

u/2

g(t)

x− t
dt

∣∣∣∣+∣∣∣∣ ∫ 3u/2

3x/2

g(t)

x− t
dt

∣∣∣∣+ biggr|
∫ 3u/2

u/2

g(t)

x− t
dt

∣∣∣∣} dx du.
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The estimates are the same for the first and the second integrals in braces. For
example,∫ ∞

0

1

u

∫ 3u/2

u/2

∣∣∣∣ ∫ x/2

u/2

g(t)

x− t
dt

∣∣∣∣ dx du
≤
∫ ∞

0

1

u

∫ 3u/2

u/2

{∫ x/2

u/2

|g(t)|q dt
} 1

q

{∫ x/2

u/2

x− t
q

1−q dt

}1− 1
q

dx du

≤ 21/q

∫ ∞
0

1

u

∫ 3u/2

u/2

{∫ x/2

u/2

|g(t)|q dt
} 1

q

(
x

2
)(1− q

q−1
)(1− 1

q
) dx du

= 22/q

∫ ∞
0

1

u

∫ 3u/2

u/2

{
1

x

∫ x/2

u/2

|g(t)|q dt
} 1

q

dx du

≤ 22/q

∫ ∞
0

1

u

∫ 3u/2

u/2

{
1

x

∫ x/2

x/3

|g(t)|q dt
} 1

q

dx du

= 22/q ln 3

∫ ∞
0

{
1

x

∫ x/2

x/3

|g(t)|q dt
} 1

q

dx.

It now remains to make use of the following simple relation (see [30, (16)]): for
any real numbers α and β, 0 < α < β,

α1−1/q

∫ ∞
0

(
1

u

∫ βu

αu

|g(t)|qdt
)1/q

du

≤
∫ ∞

0

(
1

u

∫ ∞
u

|g(t)|qdt
)1/q

du

≤ (α1/q−1 − β1/q−1)−1

∫ ∞
0

(
1

u

∫ βu

αu

|g(t)|qdt
)1/q

du.(17)

The left-hand side inequality in (17) follows immediately by the change of the
variable u for αu. Indeed,∫ ∞

0

(
1

u

∫ ∞
u

|g(t)|qdt
)1/q

du = α1−1/q

∫ ∞
0

(
1

u

∫ ∞
αu

|g(t)|qdt
)1/q

du,

and it remains to discard a part of the inner integral on the right-hand side.
Then,

α1−1/q

∫ ∞
0

(
1

u

∫ ∞
αu

|g(t)|qdt
)1/q

du ≤ α1−1/q

∫ ∞
0

(
1

u

∫ βu

αu

|g(t)|qdt
)1/q

du

+ α1−1/q

∫ ∞
0

(
1

u

∫ ∞
βu

|g(t)|qdt
)1/q

du.
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But the last summand is equal to(
β

α

)1/q−1 ∫ ∞
0

(
1

u

∫ ∞
u

|g(t)|qdt
)1/q

du,

and the right-hand side of (17) becomes obvious.
For the last summand in braces from (17) applying again Hölder’s inequality

yields ∫ ∞
0

1

u

∫ 3u/2

u/2

∣∣∣∣ ∫ 3u/2

u/2

g(t)

x− t
dt

∣∣∣∣ dx du
≤
∫ ∞

0

1

u

{∫ ∞
−∞
|G̃(t)|q dt

}1/q
{∫ 3u/2

u/2

dt

}1−1/q

du,(18)

where G̃ is the Hilbert transform, up to a constant, of the function G which is
equal to g on [u/2, 3u/2] and vanishes otherwise. By the M. Riesz theorem{∫ ∞

−∞
|G̃(t)|q dt

}1/q

≤ Cq

{∫ ∞
−∞
|G(t)|q dt

}1/q

= Cq

{∫ 3u/2

u/2

|g(t)|q dt
}1/q

,

and the right-hand side of (18) is bounded by

Cq

∫ ∞
0

1

u

{∫ 3u/2

u/2

|g(t)|q dt
}1/q

{∫ 3u/2

u/2

dt

}1−1/q

du

= Cq

∫ ∞
0

{
1

u

∫ 3u/2

u/2

|g(t)|q dt
}1/q

du.

Now, applying (17) completes the proof of the lemma. �

In [34], the following example of a function h which belongs to HBT but not
to the considered subspaces is constructed. Let h be non-zero only on a family
of intervals (ak, bk), where it is equal to Sk, with Sk being a monotone increasing
positive sequence. By this,∫

R+

|h(t)| dt =
∞∑
k=1

Skdk <∞,(19)

where dk = bk − ak.
Calculating the norm in Ap, we assume dk to be small enough, while bk distant

enough from bk−1, at least so that only one (ak, bk) is located on each (bk−1, 2bk).
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We then get

∞∑
k=2

bk∫
bk−1

(
1

x

2x∫
x

|h(t)|pdt
)1/p

dx ≥
∞∑
k=2

bk∫
bk−1

(
1

x

bk∫
ak

|h(t)|pdt
)1/p

dx.

Routine calculations give that this value is not smaller than
∞∑
k=2

Sk(bk − bk−1)

(
dk
bk

)1/p

.(20)

It is clear that when p = ∞ we have the same value by formally considering
p =∞.

Let us now estimate the integral of |Th|. For this we separately estimate

2bk∫
2ak/3

|Th(x)| dx.

In fact, there are 5 subintervals of (2ak/3, 2bk) on which calculation of Th is
slightly different. Integration of the results is similar over each of them, hence
we consider one of the most problematic (2bk/3, ak). The point is that, as also
for (bk, 2ak), the length of the interval is not proportional to dk. We get

ak∫
2bk/3

[ln(ak − x)− ln(bk − x)] dx = dk ln
1

dk(ak − 2bk/3)
+
bk
3

ln

(
1− 3

dk
bk

)
.

Up to logarithmic factors, this is equivalent to dk.
To conclude, we must have (19), even with possible logarithmic factors, such

that the series in (20) diverges for each p ∈ (1,∞]. For instance, let dk = 2−k,
bk = 2k, and Ak = k−β2k. Here β should be large enough to ensure not only (19)
but the same with possible logarithmic factors which are powers of k. For the
sum in (20), we will get

∞∑
k=2

k−β22(1−1/p)k.

Since 1− 1/p > 0, we obtain the desired counterexample.

5.2. Behavior of the Fourier transform. For functions with derivative in
each of the spaces considered in the previous subsection, either Aq, 1 < q ≤
∞, or HBT , the following result, Theorem 5, is obtained in [30] (for convex
functions as well as for functions with derivative in A∞ it was earlier obtained by
R.M. Trigub, see, e.g., [42] and [44]). See also [23] and [21].

In view of (16), the assertions of Theorem (5) with HBT replaced by Ap will fol-
low immediately. Nevertheless, though HBT is wider, the conditions of belonging
to smaller spaces are more practical.
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The space HBT is of importance not only because of (16) but also because of
its proximity to the real Hardy space H. It is obvious that the inner integral
in the second summand on the right-hand side of (14) is very close to g̃. More
precisely, (14) means (cf. Lemma 2) that the odd extension of g belongs to H(R)
rather than g itself.

Let us here denote by ϕ the odd extension of f ′ from [0,∞) to the whole R.

Theorem 5. Let f be a locally absolutely continuous function on [0,∞), with
lim
t→∞

f(t) = 0, and let ϕ ∈ H(R). Then for y > 0

Fc(y) =

∫ ∞
0

f(x) cos yx dx = γ1(y),

and

Fs(y) =

∫ ∞
0

f(x) sin yx dx =
1

y
f(

π

2y
) + γ2(y),

where
∫∞

0
|γj(y)|dy ≤ C‖ϕ‖H(R), j = 1, 2.

The possibility to prove the theorem in this form is justified by the following
assertion.

Lemma 2. Let g be an odd function integrable on R. Then∫
R

g(t)

x− t
dt =

∫ 3x/2

x/2

g(t)

x− t
dt+ γ(x),

where ∫
R
|γ(x)| dx ≤ C

∫
R
|g(t)| dt.

Proof. We may assume, without loss of generality, that x > 0 since for x < 0 the
proof is exactly the same. Substituting t→ −t in the integral

I1 =

∫ −3x/2

−∞

g(t)

x− t
dt,

we obtain

I1 =

∫ ∞
3x/2

g(−t)
x+ t

dt = −
∫ ∞

3x/2

g(t)

x+ t
dt.

We have ∫ ∞
3x/2

g(t)

x− t
dt+ I1 =

∫ ∞
3x/2

g(t)

[
1

x− t
− 1

x+ t

]
dt,

and by Fubini’s theorem∫ ∞
0

∣∣∣∣∫ ∞
3x/2

g(t)

[
1

x− t
− 1

x+ t

]
dt

∣∣∣∣ dx
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≤
∫ ∞

0

|g(t)| dt
∫ 2t/3

0

[
1

x+ t
− 1

x− t

]
dx

=

∫ ∞
0

|g(t)| dt ln
x+ t

t− x

∣∣∣2t/3
0

=

∫ ∞
0

|g(t)| dt ln
2t/3 + t

t/3
= ln 5

∫ ∞
0

|g(t)| dt.

In the same way∫ 0

−x/2

g(t)

x− t
dt =

∫ x/2

0

g(−t)
x+ t

dt = −
∫ x/2

0

g(t)

x+ t
dt,

and ∫ ∞
0

∣∣∣∣∫ x/2

0

g(t)

[
1

x− t
− 1

x+ t

]
dt

∣∣∣∣ dx
≤
∫ ∞

0

|g(t)| dt
∫ ∞

2t

[
1

x− t
− 1

x+ t

]
dx

=

∫ ∞
0

|g(t)| dt ln
x− t
t+ x

∣∣∣∞
2t

= ln 3

∫ ∞
0

|g(t)| dt,

which completes the proof. �

Remark 6. Since∫ ∞
0

∣∣∣∣∫ 3x/2

x/2

g(t)

x+ t
dt

∣∣∣∣ dx ≤ ∫ ∞
0

|g(t)| dt
∫ 2t

2t/3

dx

x+ t

=

∫ ∞
0

|g(t)| dt ln(x+ t)
∣∣∣2t
2t/3

= ln(9/5)

∫ ∞
0

|g(t)| dt,

we have ∫
R

g(t)

x− t
dt =

∫ ∞
0

g(t)

[
1

x− t
− 1

x+ t

]
dt+ γ(x).

We are now in a position to prove Theorem 5.

Proof. Integrating by parts yields

Fs(y) =
1

y
f(0) +

1

y

∫ π/(2y)

0

f ′(x) dx

+
1

y

∫ π/(2y)

0

f ′(x)(cos yx− 1) dx

+
1

y

∫ ∞
π/(2y)

f ′(x) cos yx dx
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=
1

y
f(π/(2y)) +O

(∫ π/(2y)

0

|f ′(x)|x dx
)

+
1

y

∫ ∞
π/(2y)

f ′(x) cos yx dx.

Similarly,

Fc(y) = O

(∫ π/(2y)

0

|f ′(x)|x dx
)
− 1

y

∫ ∞
π/(2y)

f ′(x) sin yx dx.

Since ∫ ∞
0

dy

∫ π/(2y)

0

|f ′(x)|x dx =
π

2

∫ ∞
0

|f ′(x)| dx,

it remains to show that the last integral in both representations, for Fs and Fc,
satisfies the assumptions imposed on γj. We will prove this in detail for Fs, since
for Fc computations are similar.

Thus we examine, for sufficiently large N,∫ N

0

∣∣∣∣∫ ∞
π/(2y)

f ′(x) cos yx dx

∣∣∣∣ dyy .
Denoting

Φ(y) =



∫∞
π/(2y)

f ′(x) cos yx dx, 0 ≤ y ≤ N,

(2− y
N

)
∫∞
π/(2y)

f ′(x) cos yx dx, N < y ≤ 2N,

0, y > 2N,

we have ∫ N

0

∣∣∣∣∫ ∞
π/(2y)

f ′(x) cos yx dx

∣∣∣∣ dyy ≤
∫ ∞

0

|Φ(y)| dy
y
.

We need the following extension of the Hardy-Littlewood theorem (see, e.g., [45,
Ch.VII, Th.8.7]); though the proof can be found in [30], the following short proof
is contained in essence already in [5].

Lemma 3. Let Φ ∈ L1(−∞,∞), with suppΦ ⊂ [0,∞). Then∫ ∞
0

|Φ(y)|
y

dy ≤ C

∫ ∞
0

|Φ̂(u)| du.(21)

Proof. We have

1

R

∑
αR≤k≤βR

|Φ(
k

R
)|R
k
≤

∞∑
k=1

|Φ(
k

R
)|k
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≤ C

∫ 1/2

−1/2

|
∞∑
k=1

|Φ(
k

R
)e2πikx| dx ≤ C

∫ ∞
0

|Φ̂(u)| du.(22)

For sufficiently large R and an appropriate choice of α and β, the first inequality is
obvious, the second one is the Hardy-Littlewood theorem, and the last one is well
known (see, e.g., [4], where it is given under much more general assumptions).
We observe that an integral sum for the left-hand side of (21) occurs on the left
of (22). Passing then to the limit as R→∞ completes the proof. �

We are now going to estimate the Fourier transform of Φ. Since eiuy = cosuy+
i sinuy, we restrict ourselves to estimating, say, the sine Fourier transform of Φ;
the cosine Fourier transform is estimated in the same way with minor changes.
We have∫ ∞

0

Φ(y) sinuy dy =

∫ N

0

sinuy dy

∫ ∞
π/(2y)

f ′(x) cos yx dx

+

∫ 2N

N

(2− y/N) sinuy dy

∫ ∞
π/(2N)

f ′(x) cos yx dx.

Changing the order of integration, we arrive at the integral∫ ∞
π/(2N)

f ′(x) dx

[∫ N

π/(2x)

sinuy cos yx dy

+

∫ 2N

N

(2− y/N) sinuy cos yx dy

]
.

Using known trigonometric formulas for both inner integrals and integrating by
parts in the second one, we get

1

2

∫ ∞
π/(2N)

f ′(x) dx

{[
−cos(u+ x)y

u+ x
− cos(u− x)y

u− x

]N
π/(2x)

+ (2− y

N
)

[
−cos(u+ x)y

u+ x
− cos(u− x)y

u− x

]2N

N

− 1

N

∫ 2N

N

[
−cos(u+ x)y

u+ x
− cos(u− x)y

u− x

]
dy

}
=

1

2

∫ ∞
π/(2N)

f ′(x)

[
1

u+ x
− 1

u− x

]
sin

πu

2x
dx

− 1

2N

∫ ∞
π/(2N)

f ′(x)

∫ 2N

N

[
cos(u+ x)y

u+ x
+

cos(u− x)y

u− x

]
dy dx.(23)

We are now going to group certain values on the right-hand side in a special way.
In accordance with Lemma 3, we then integrate them modulo over [1/(2N),∞).
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Indeed, integration over [0, 1/(2N)] is carried out trivially:∫ π/(2N)

0

|Φ̂(u)| du ≤
∫ 1/(2N)

0

[(∫ N

0

+

∫ 2N

N

)
dy

∫ ∞
0

|f ′(x)| dx
]
du

= π

∫ ∞
0

|f ′(x)| dx.

We mostly deal with the terms corresponding to u− x since those corresponding
to u+ x are handled in an even easier manner. First, grouping∫ ∞

π/(2N)

f ′(x)
1

N

∫ 2N

N

1

u− x

[
− cos 2π(u− x)y + sin

πu

2x

]
dy dx

and estimating the expression in the square brackets by

2

∣∣∣∣sin(u− x2
(
π

2x
− 2πy)

)∣∣∣∣,
we proceed with the integral over [u− π/(4N), u+ π/(4N)] as follows:∫ ∞

π/(2N)

∣∣∣∣∫ u+π/(4N)

u−π/(4N)

f ′(x)
1

N

∫ 2N

N

(2πy − π/(2x)) dy

∣∣∣∣ du dx
≤ 1

N

∫ 3π/(4N)

π/(4N)

|f ′(x)|
∫ 2N

N

(2πy − π/(2x)) dy

∫ x+π/(4N)

π/(2N)

du dx

+
1

N

∫ ∞
3π/(4N)

|f ′(x)|
∫ 2N

N

(2πy − π/(2x)) dy

∫ x+π/(4N)

π/(2N)

du dx

≤ C

∫ ∞
0

|f ′(x)| dx.

When x 6∈ [u − π/(4N), u + π/(4N)], we check integrability of the last integral
in (23) separately. Integrating in the inner integral and estimating | sin(u− x)y|
roughly by 1, we get the term (u− x)−2 to deal with and obtain

1

N

∫ ∞
π/(2N)

∣∣∣∣∫ u−π/(4N)

π/(4N)

|f ′(x)| 1

(u− x)2
dx

∣∣∣∣ du
≤ 1

N

∫ ∞
π/(4N)

|f ′(x)|
∫ ∞
x+π/(4N)

1

(u− x)2
du dx

= 4

∫ ∞
0

|f ′(x)| dx.

Similarly,

1

N

∫ ∞
π/(2N)

∣∣∣∣∫ ∞
u+1/(4N)

|f ′(x)| 1

(u− x)2
dx

∣∣∣∣ du
≤ 1

N

∫ ∞
3π/(4N)

|f ′(x)| dx
∫ x−π/(4N)

π/(2N)

1

(u− x)2
du
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=
1

N

∫ ∞
3π/(2N)

|f ′(x)| dx
(

4N

π
− 1

x− π/(2N)

)
≤ 4

∫ ∞
0

|f ′(x)| dx.

It remains to proceed with (one half of)(∫ u−π/(4N)

π/(4N)

+

∫ ∞
u+π/(4N)

)
f ′(x)

[
1

u− x
− 1

u+ x

]
sin

πu

2x
dx.

Estimating | sin πu
2x
| ≤ 1, we thus obtain∫ ∞

π/(2N)

∫ u/2

π/(4N)

|f ′(x)|
[

1

u− x
− 1

u+ x

]
dx du

≤
∫ ∞
π/(4N)

|f ′(x)|
∫ ∞

2x

[
1

u− x
− 1

u+ x

]
du dx

≤ C

∫ ∞
0

|f ′(x)| dx.

Since analogously∫ ∞
π/(2N)

∫ ∞
3u/2

|f ′(x)|
∣∣∣∣ 1

u− x
− 1

u+ x

∣∣∣∣ dx du
≤
∫ ∞

3π/(2N)

|f ′(x)|
∫ 2x/3

π/(2N)

[
1

u+ x
− 1

u− x

]
du dx

≤ C

∫ ∞
0

|f ′(x)| dx,

we arrive to the estimating (one half of)(∫ u−1/(4N)

u/2

+

∫ 3u/2

u+1/(4N)

)
f ′(x)

[
1

u− x
− 1

u+ x

]
sin

πu

2x
dx.

Further, since∫ ∞
π/(2N)

∫ 3u/2

u/2

|f ′(x)|(u+ x)−1dx du

≤
∫ ∞

0

|f ′(x)|
∫ 2x

2x/3

(u− x)−1du dx = ln 3

∫ ∞
0

|f ′(x)| dx

and ∫ ∞
0

∫ 3u/2

u/2

|f ′(x)| |u− x|−1| sin πu
2x
− 1| dx du

≤ C

∫ ∞
0

|f ′(x)|x−1

∫ 2x

2x/3

du dx ≤ C

∫ ∞
0

|f ′(x)| dx,



C
R

M
P

re
p
ri

nt
S
er

ie
s

nu
m

b
er

11
04

FUNCTION OF BOUNDED VARIATION 25

it remains to estimate (∫ u−π/(4N)

u/2

+

∫ 3u/2

u+π/(4N)

)
f ′(x)

u− x
dx

for N large enough. For convenience, we rewrite the last quantity as(∫ u−ε

u/2

+

∫ 3u/2

u+ε

)
f ′(x)

u− x
dx

with small ε, or, equivalently,∫
u/2≤x≤3u/2,
|x−u|≥ε

f ′(x)

u− x
dx.

By Lemma 2, we may consider ∫
|x−u|≥ε

ϕ(x)

u− x
dx

rather than the last integral. From now on we no longer need to remember that ϕ
is odd, the only thing we are interested in is the integrability of ϕ. Unfortunately,
considering ∫

R

∣∣∣∣∫
|x−u|≥ε

ϕ(x)

u− x
dx

∣∣∣∣ du
does not lead us directly to the desired Hilbert transform. We will consider the
Hilbert transform in the form (15). For this, we estimate, for arbitrary ε > 0,∫

R

∣∣∣∣∫
|x−u|≥ε

ϕ(x)

u− x
dx−

∫
R
ϕ(x)

u− x
(u− x)2 + ε2

dx

∣∣∣∣ du.
Let us first handle ∫ ∞

0

∫
|x−u|≤ε

|ϕ(x)| |u− x|
(u− x)2 + ε2

dx du;

the integral over (−∞, 0) is worked out in exactly the same way. We consider
three different cases. The first one is extremely simple:∫ ε

0

∫
|u−x|≤ε

|ϕ(x)| |u− x|
(u− x)2 + ε2

dx du

≤
∫ ε

0

∫ ε

−ε
|ϕ(x)|ε−1 dx du ≤ 2

∫
R
|ϕ(x)| dx.

For the second one,∫ 2ε

ε

∫
|u−x|≤ε

|ϕ(x)| |u− x|
(u− x)2 + ε2

dx du

≤
∫ 2ε

ε

∫ ε

u−ε
|ϕ(x)| |u− x|

(u− x)2 + ε2
dx du
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≤
∫ ε

0

|ϕ(x)|
∫ x+ε

ε

ε−1du dx ≤
∫

R
|ϕ(x)| dx.

Finally,∫ ∞
ε

∫
|u−x|≤ε

|ϕ(x)| |u− x|
(u− x)2 + ε2

dx du

=

∫ ∞
ε

|ϕ(x)|
∫ x+ε

x−ε

|u− x|
(u− x)2 + ε2

du dx ≤ 2

∫ ∞
0

|ϕ(x)| dx.

We have now to estimate∫
R

∣∣∣∣∫
|x−u|≥ε

ϕ(x)

[
1

u− x
− u− x

(u− x)2 + ε2

]
dx

∣∣∣∣ du.
With

1

u− x
− u− x

(u− x)2 + ε2
=

ε2

(u− x)[(u− x)2 + ε2]

in hand, and assuming, as above, that u and x are positive, we obtain∫ ∞
ε

∣∣∣∣∫ u−ε

0

ϕ(x)
ε2

(u− x)[(u− x)2 + ε2]
dx

∣∣∣∣ du
≤
∫ ∞

0

|ϕ(x)| ε
∫ ∞
x+ε

du

(u− x)2 + ε2
dx ≤ π

4

∫ ∞
0

|ϕ(x)| dx.

Observing that∫ ∞
0

∣∣∣∣∫ ∞
u+ε

ϕ(x)
ε2

(u− x)[(u− x)2 + ε2]
dx

∣∣∣∣ du
≤
∫ ∞
ε

|ϕ(x)| ε
∫ x−ε

0

du

(u− x)2 + ε2
dx ≤ π

4

∫ ∞
0

|ϕ(x)| dx,

we then need the following

Lemma 4. Let g be an integrable function. Then∫
R
g(x)

u− x
(u− x)2 + ε2

dx = ε

∫
R

g̃(x)

(u− x)2 + ε2
dx.

Proof. This result is proved in [37, Ch.VI, Lemma 1.5] for functions from Lp,
p > 1, by passing to the Fourier transforms. This idea works here as well but
we give a simple direct proof instead. Rewriting the right-hand side and using
Fubini’s theorem, we have∫

R

1

(u− x)2 + ε2

1

π

∫
R

g(t)

x− t
dt dx =

∫
R
g(t)

1

π

∫
R

1

x− t
1

(u− x)2 + ε2
dx dt.

Substituting x− u = zε, we obtain∫
R
g(t)

1

π

∫
R

1

x− t
1

(u− x)2 + ε2
dx dt
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= ε−2

∫
R
g(t)

1

π

∫
R

1

z − (t− u)/ε

1

z2 + 1
dz dt.

Since ∫
R

1

z − a
1

z2 + 1
dz =

1

a2 + 1

∫
R

[
1

z − a
− z + a

z2 + 1

]
dz = − aπ

a2 + 1
,

we have (a = (t− u)/ε)∫
R

ϕ̃(x)

(u− x)2 + ε2
dx = ε−2

∫
R
g(t)

(u− t)/ε
((u− t)/ε)2 + 1

dt

= ε−1

∫
R
g(t)

u− t
(u− t)2 + ε2

dt,

which completes the proof. �

To finish the proof of the theorem, it remains to apply Lemma 4 with g = ϕ
and observe that∫

R

∣∣∣∣ε∫
R

ϕ̃(x)

(u− x)2 + ε2
dx

∣∣∣∣ du ≤ ∫
R
|ϕ̃(x)|

∫
R
[1 + (u− x)2/ε2]−1d((u− x)/ε) dx

= π

∫
R
|ϕ̃(x)| dx.

The terms estimated above are bounded by
∫

R |ϕ(x)| dx, along with the last one
bounded by

∫
R |ϕ̃(x)| dx they can be treated as γ2. �

6. Concluding remarks

The above is apparently the first attempt to merge into one topic various
results on the Fourier transform of a function of bounded variation. Only some
representative results are given in this survey. However, let us discuss open
problems and prospects rather than going further into details.

A natural question is what is known and/or can be done in the multidimen-
sional case. There are numerous multivariate generalizations. Many results are
presented in [44], see also [23] or [35]. However, much is unclear and there an
ocean of work remains to be done in that case.

It seems that one of the most important, interesting and challenging problems
is to find the widest subspace of the space of functions of bounded variation for
which the results from Section 5, especially Theorem 5, hold. The above shows
that it is strongly related to the theory of the Hilbert transform and Hardy
spaces. The other direction here is to get rid of absolute continuity, apparently
by using more Stieltjes integrals rather than just Riemann or Lebesgue integrals.
Not every operation with the latter in Section 5 can automatically be transferred
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to the Stieltjes integration. In case of success, the next idea can be to obtain
analogous results for the Fourier transform of measures rather than functions.

It will be interesting to find applications of Theorem 3 or related results to
probability, maybe in the spirit of [29].

In these notes, we have tried not only to convince the reader that this is
an interesting self-contained topic but also that it is vital and has interesting
prospects. If the author has succeeded to interest any of the readers in certain
problems that have been presented, then his task will have been fulfilled.
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