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EQUIDISTRIBUTION ESTIMATES FOR FEKETE POINTS ON
COMPLEX MANIFOLDS

NIR LEV AND JOAQUIM ORTEGA-CERDÀ

Abstract. We study the equidistribution of Fekete points in a compact complex man-
ifold. These are extremal point configurations defined through sections of powers of a
positive line bundle. Their equidistribution is a known result. The novelty of our ap-
proach is that we relate them to the problem of sampling and interpolation on line bun-
dles, which allows us to estimate the equidistribution of the Fekete points quantitatively.
In particular we estimate the Kantorovich-Wasserstein distance of the Fekete points to its
limiting measure. The sampling and interpolation arrays on line bundles are a subject of
independent interest, and we provide necessary density conditions through the classical
approach of Landau, that in this context measures the local dimension of the space of
sections of the line bundle. We obtain a complete geometric characterization of sampling
and interpolation arrays in the case of compact manifolds of dimension one, and we prove
that there are no arrays of both sampling and interpolation in the more general setting of
semipositive line bundles.

1. Introduction

1.1. Let L be a holomorphic line bundle on a compact complex manifold X of dimension
n. The space of global holomorphic sections to L is denoted by H0(L). If s1, . . . , sN is a
basis for H0(L) and x1, . . . , xN are N points in X, then the Vandermonde-type determinant

det(si(xj)), 1 ≤ i, j ≤ N,

is a section to the pulled-back line bundle L�N over the manifold XN . If L is endowed
with a smooth hermitian metric φ, then it also induces a natural metric on L�N .

A configuration of N points x1, . . . , xN in X is called a Fekete configuration for (L, φ)
if it maximizes the pointwise norm | det(si(xj))|φ. It is easy to check that the definition
of a Fekete configuration does not depend on the particular choice of the basis s1, . . . , sN
for H0(L). The compactness of X ensures the existence of Fekete configurations (but in
general there need not be a unique one).

It is interesting to study the distribution of Fekete points with respect to high powers Lk

of the line bundle L, where Lk is endowed with the product metric kφ. The model example
is the complex projective space X = CPn with the hyperplane bundle L = O(1), endowed
with the Fubini-Study metric. The k’th power of L is denoted O(k), and the holomorphic
sections to O(k) can be identified with the homogeneous polynomials of degree k in n+ 1

Key words and phrases. Beurling-Landau density, Fekete points, Holomorphic line bundles.
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2 NIR LEV AND JOAQUIM ORTEGA-CERDÀ

variables. This is in fact the prime example, and it covers in particular the classical theory
of weighted orthogonal multivariate polynomials.

For each k = 1, 2, 3, . . . let Fk be a Fekete configuration for (Lk, kφ). The goal is to
provide information on the distribution of Fekete points Fk in geometrical terms of the
line bundle (L, φ), showing that they are “equidistributed” on X. We will consider the
case when L is an ample line bundle with a smooth positive metric φ. The problem has
already been solved by Berman, Boucksom and Witt [BBWN11] in an even more general
context, when L is a big line bundle with an arbitrary continuous metric on a compact
subset K ⊂ X. The redeeming feature of our approach is that our new proof provides a
quantitative version of the equidistribution.

Theorem 1. If the line bundle (L, φ) is positive then

#(Fk ∩B(x, r))

#Fk
=
(

1 +O
((
r
√
k
)− 1

2n+1

)) ∫
B(x,r)

(i∂∂̄φ)n∫
X

(i∂∂̄φ)n

for 0 < r ≤ diam(X), uniformly in x ∈ X.

Here ∂∂̄φ is the curvature form of the metric φ, which is a globally defined (1, 1)-form
on X, and (i∂∂̄φ)n is the corresponding volume form on X. By B(x, r) we mean the ball
of radius r centered at the point x in X. To define the balls we endow the manifold X
with an arbitrary hermitian metric, and use the associated distance function.

The result shows, in particular, that the weak limit as k →∞ of the probability measures

(1) µk =
1

#Fk

∑
λ∈Fk

δλ

is the measure (i∂∂̄φ)n normalized to have total mass 1. This is a special case of the main
theorem proved in [BBWN11] in the setting of positive line bundles.

Theorem 1 allows to get an even more precise result quantifying the convergence. We can
estimate the distance of the Fekete measure µk to its limit ν in the Kantorovich-Wasserstein
metric W , which metrizes the weak convergence of measures (see Section 7).

Corollary 1. If the line bundle (L, φ) is positive then

k−1/2 . W (µk, ν) . k−1/(4n+4)

as k →∞.

1.2. The scheme that we propose to study this problem is similar to the one initiated
in [MOC10] where the Fekete points are related to another array of points, the sampling
and interpolation points. This has been pursued further in the one-dimensional setting
[AOC12] or even in the real setting of compact Riemannian manifolds, see [OCP12].

For each k = 1, 2, 3, . . . let Λk be a finite set of points in X. We assume that {Λk} is a
separated array, which means that the distance between any two distinct points in Λk is
bounded below by a positive constant times k−1/2. We say that {Λk} is a sampling array
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EQUIDISTRIBUTION ESTIMATES FOR FEKETE POINTS ON COMPLEX MANIFOLDS 3

for (L, φ) if there are constants 0 < A,B <∞ such that, for each large enough k and any
section s ∈ H0(Lk) we have

Ak−n
∑
λ∈Λk

|s(λ)|2 ≤
∫
X

∣∣s(x)
∣∣2 ≤ Bk−n

∑
λ∈Λk

|s(λ)|2.

We say that {Λk} is an interpolation array for (L, φ) if there is a constant 0 < C < ∞
such that, for each large enough k and any set of values {vλ}λ∈Λk , where each vλ is an
element of the fiber of λ in Lk, there is a section s ∈ H0(Lk) such that s(λ) = vλ (λ ∈ Λk)
and ∫

X

∣∣s(x)
∣∣2 ≤ Ck−n

∑
λ∈Λk

|vλ|2.

In order to integrate over X in these definitions we endow X with an arbitrary volume
form. It is easy to see that the definitions of the sampling and interpolation arrays do not
depend on the particular choice of the volume form on X.

We can use a classical technique due to Landau [Lan67] to get necessary geometric
conditions for an array of points to be sampling or interpolation. The use of Landau’s
concentration operator, which measures the local dimension of the sections of the line
bundle, to obtain necessary density conditions for sampling arrays was suggested earlier
by Berndtsson [Ber03] and Lindholm [Lin01] in the context of holomorphic line bundles.
We have opted to present this proof in detail because we need a more precise estimate to
get the quantitative equidistribution of the Fekete points.

Let ν−Λ (R) (respectively ν+
Λ (R)) denote the infimum (respectively supremum) of the ratio

(2)
k−n#(Λk ∩B(x, r))∫

B(x,r)
(i∂∂̄φ)n

over all x ∈ X, and all k, r such that R√
k
≤ r ≤ diam(X). As before, to define the balls

B(x, r) we have fixed an arbitrary hermitian metric on the manifold X.

Theorem 2. Let the line bundle (L, φ) be positive, and Λ = {Λk} be a separated array.

(i) If Λ is a sampling array then

ν−Λ (R) >
1

πnn!
−O(R−1), R→∞.

(ii) If Λ is an interpolation array then

ν+
Λ (R) <

1

πnn!
+O(R−1), R→∞.

Our result on the distribution of Fekete points (Theorem 1 above) is obtained by a
combination of Theorem 2 with the observation that Fekete points are “almost” sampling
and interpolation (see Section 4).
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4 NIR LEV AND JOAQUIM ORTEGA-CERDÀ

1.3. We believe that the sampling and interpolation arrays on holomorphic line bundles
are a subject of interest independently of its application to Fekete points, so we proceed
to a more detailed study of them. Theorem 2 yields necessary conditions in terms of the
lower and upper Beurling-Landau densities, defined by

D−(Λ) = lim inf
R→∞

ν−Λ (R), and D+(Λ) = lim sup
R→∞

ν+
Λ (R).

Corollary 2. Let the line bundle (L, φ) be positive and Λ = {Λk} be a separated array. If
Λ is a sampling array then

D−(Λ) ≥ 1

πnn!
,

while if Λ is an interpolation array then

D+(Λ) ≤ 1

πnn!
.

When the complex manifold X is one-dimensional, i.e. we are dealing with a compact
Riemann surface, we have a more precise result. In this case there is a complete geometric
characterization of the sampling and interpolation arrays in terms of the above densities.

Theorem 3. Let (L, φ) be a positive line bundle over a compact Riemann surface X, and
let Λ = {Λk} be a separated array. Then Λ is a sampling array if and only if

D−(Λ) >
1

π
,

while it is an interpolation array if and only if

D+(Λ) <
1

π
.

We remark that the assumption that {Λk} is separated is not essential, and similar results
hold in the general case. This can be done with standard techniques, see e.g. [Mar07], so
we will not go into these details in the paper.

1.4. As pointed out in [MOC10], not only the sampling and interpolation arrays can
be used to obtain information on Fekete points, but also the converse direction is useful.
Fekete points provide a construction of an “almost” sampling and interpolation array, with
the critical density. In particular this shows that the density threshold in Corollary 2 is
sharp (see Corollary 4 in Section 7).

In this context a natural question is whether the Fekete points, or possibly some other
array of points, is simultaneously sampling and interpolation for (L, φ). In the case when
the manifold X is one-dimensional, this question is settled in the negative by Theorem 3
above. For n > 1 we do not have strict density conditions, and Corollary 2 does not exclude
the existence of simultaneously sampling and interpolation arrays. Nevertheless, we will
show that such arrays do not exist, even in the more general setting when the metric φ is
semi-positive and has at least one point with a strictly positive curvature.
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EQUIDISTRIBUTION ESTIMATES FOR FEKETE POINTS ON COMPLEX MANIFOLDS 5

Theorem 4. Let L be a holomorphic line bundle over a compact projective manifold X,
and φ be a semi-positive smooth hermitian metric on L. If there is a point in X where φ has
a strictly positive curvature, then there are no arrays which are simultaneously sampling
and interpolation for (L, φ).

Here we need to assume that the manifold X is projective. When the line bundle
is positive this is automatically the case, according to the Kodaira embedding theorem
[Kod54].

The non-existence of simultaneously sampling and interpolation sequences is a recent
result in the classical Bargmann-Fock space [AFK11, GM11]. To prove Theorem 4 we
use the fact that near a point of positive curvature, the sections of high powers of the
line bundle resemble closely the functions in the Bargmann-Fock space. Also our proof of
Theorem 3 is guided with the same principle.

1.5. The plan of the paper is the following. In Sections 2 and 3 we provide the basic
properties of the Fekete points, and of the Hilbert space of holomorphic sections that will
be the main tool to study them. In Section 4 we introduce the sampling and interpolation
arrays and discuss their relationship with the Fekete points. In Section 5 we study Landau’s
concentration operator, that will allow us to measure the local dimension of the space of
sections essentially concentrated in a given ball, and use this local dimension to estimate
the number of points in an interpolation or sampling array. In Section 6 we estimate the
density of the interpolation and sampling arrays in terms of the volume form associated
to the curvature of the line bundle. In Section 7 this is used to estimate from above and
below the number of Fekete points that lie in a given ball. This provides an upper bound
for the Kantorovich-Wasserstein distance between the Fekete measure (1) and its limiting
measure.

Next we proceed to a more detailed study of the sampling and interpolation arrays. In
Section 8 we prove that in a big line bundle with a semipositive metric, whenever there
is a point of positive curvature there are no arrays that are simultaneously sampling and
interpolation. Finally in Section 9 we obtain a geometric characterization of sampling and
interpolation arrays for positive line bundles over compact manifolds of dimension one.

Acknowledgement. Part of this work was done while Nir Lev was staying at the Centre
de Recerca Matemàtica (CRM) in Barcelona, and he would like to express his gratitude to
the institute for the hospitality and support during his stay.

2. Preliminaries

In this section we recall some basic properties of holomorphic line bundles over complex
manifolds. For these and other elementary facts on this subject, stated below without
proofs, the reader may consult [Ber10].

2.1. Line bundles. Below X will be a compact complex manifold of dimension n, endowed
with a smooth hermitian metric ω. The metric ω induces a distance function d(x, y) on
X, which will be used to define the balls B(x, r) = {y ∈ X : d(x, y) < r}. The hermitian
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6 NIR LEV AND JOAQUIM ORTEGA-CERDÀ

metric ω also induced a volume form V on X, which will be used to integrate over X. We
emphasize that the choice of the metric ω is arbitrary, and the results will not depend on
the particular choice made.

By L we denote a holomorphic line bundle over the manifold X. We assume that L is
endowed with a smooth hermitian metric φ, which is a smoothly varying norm on each
fiber. It has to be understood as a collection of functions φi defined on trivializing open
sets Ui which cover X, and satisfying the compatibility conditions

φi − φj = log |gij|2,
where gij are the transition functions of the line bundle L on Ui ∩ Uj. If s is a section to
L represented by a collection of local functions si such that si = gijsj, then

|s(x)|2 = |si(x)|2e−φi(x).

We also have an associated scalar product, defined in a similar way by

〈u(x), v(x)〉 = ui(x)vi(x)e−φi(x).

If φ is the hermitian metric on L, then ∂∂̄φ is a globally defined (1, 1)-form on X, which
is called the curvature form of the metric φ. The line bundle L with the metric φ is called
positive if i∂∂̄φ is a positive form. Equivalently, L with the metric φ is positive if the
representative of φ with respect to any local trivialization is a strictly plurisubharmonic
function. We remark that in the case when φ is positive, the curvature form ∂∂̄φ may
be used to define a natural metric on X, which in turn induces a distance function and a
volume form on X. However, we find it convenient to work with an arbitrary metric ω,
which is not necessarily related to the curvature form.

We will use the notation . to indicate an implicit multiplicative constant which may
depend only on the hermitian manifold (X,ω) and the hermitian line bundle (L, φ).

The space of global holomorphic sections to L will be denoted H0(L). This is a finite-
dimensional space, satisfying the estimate

dimH0(Lk) . kn.

While the latter estimate holds for an arbitrary line bundle on a compact manifold, in the
case when the line bundle L is big there is also a similar estimate from below, i.e.

(3) kn . dimH0(Lk) . kn.

In particular this holds whenever the line bundle L is positive.
If L is a line bundle over X and M is a line bundle over Y , we denote by L �M the

line bundle over the product manifold X × Y defined as L�M = π∗X(L)⊗ π∗Y (M), where
πX : X×Y → X is the projection onto the first factor and πY : X×Y → Y is the projection
onto the second.

2.2. Bergman kernel. The space H0(L) admits a Hilbert space structure when endowed
with the scalar product

〈u, v〉 =

∫
X

〈u(x), v(x)〉, u, v ∈ H0(L),
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EQUIDISTRIBUTION ESTIMATES FOR FEKETE POINTS ON COMPLEX MANIFOLDS 7

where the integration is taken with respect to the volume form V .
The Bergman kernel Π(x, y) associated to this space is a section to the line bundle L� L̄

over the manifold X ×X, defined by

(4) Π(x, y) =
N∑
j=1

sj(x)⊗ sj(y),

where s1, . . . , sN is an orthonormal basis for H0(L). It is easy to check that this definition
does not depend on the particular choice of the orthonormal basis s1, . . . , sN . The Bergman
kernel Π(x, y) is in a sense the reproducing kernel for the space H0(L), satisfying the
reproducing formula

s(x) =

∫
X

〈
s(y),Π(x, y)

〉
dV (y)

for s ∈ H0(L). The pointwise norm of the Bergman kernel is symmetric,

(5) |Π(x, y)| = |Π(y, x)|.
The function |Π(x, x)| is called the Bergman function of H0(L). It can be expressed as

(6) |Π(x, x)| =
N∑
j=1

∣∣sj(x)
∣∣2,

and it satisfies

(7) |Π(x, x)| =
∫
X

|Π(x, y)|2 dV (y).

Lemma 1. Let y ∈ X. There is a section Φy ∈ H0(L) such that∣∣Φy(x)
∣∣ =

∣∣Π(x, y)
∣∣, x ∈ X.

Proof. Let s1, . . . , sN be an orthonormal basis for H0(L). Fix a frame e(x) in a neighbor-
hood U of the point y, then in this neighborhood each sj is represented by a holomorphic
function fj such that sj(x) = fj(x)e(x). Define

Φy(x) := |e(y)|
n∑
j=1

fj(y)sj(x),

then Φy is a holomorphic section to L, and we have∣∣Φy(x)
∣∣ =

∣∣∣∣( N∑
j=1

fj(y)sj(x)
)
⊗ e(y)

∣∣∣∣ =

∣∣∣∣ N∑
j=1

sj(x)⊗ sj(y)

∣∣∣∣ =
∣∣Π(x, y)

∣∣. �

We denote by Πk(x, y) the Bergman kernel for the k’th power Lk of the line bundle L
(where Lk is endowed with the product metric kφ). The behavior of Πk(x, y) as k →∞ is
of special importance. In the case when the line bundle (L, φ) is positive, it is known (see
e.g. [Ber03, Lin01]) that

(8) kn . |Πk(x, x)| . kn,
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8 NIR LEV AND JOAQUIM ORTEGA-CERDÀ

and

(9) |Πk(x, y)| . kn exp
(
− c
√
k d(x, y)

)
,

where c = c(X,ω, L, φ) is an appropriate positive constant.

2.3. Sub-mean value property. Let s ∈ H0(Lk). If z ∈ X and 0 < δ < 1, then

(10)
∣∣s(z)

∣∣2 . δ−2nkn
∫
B(z,δ/

√
k)

∣∣s(x)
∣∣2.

This can be deduced easily from the compactness of X and the corresponding fact in Cn,
which may be found for example in [Lin01, Lemma 7].

As a consequence we have the following Plancherel-Pólya type inequality.

Lemma 2. Let {xj} be a set of points in X such that d(xi, xj) ≥ δ/
√
k, where 0 < δ < 1.

Then

k−n
∑
j

∣∣s(xj)∣∣2 . δ−2n

∫
X

∣∣s(x)
∣∣2

for any s ∈ H0(Lk).

3. Fekete points and their properties

3.1. Let N = dimH0(L), and s1, . . . , sN be a basis for H0(L). A configuration of N
points x1, . . . , xN in X is called a Fekete configuration if it maximizes the pointwise norm
of the Vandermonde-type determinant

det(si(xj)), 1 ≤ i, j ≤ N,

which is a holomorphic section to the line bundle L�N over the manifold XN (endowed
with the metric inherited from L).

If ej(x) is a frame in a neighborhood Uj of the point xj, then the sections si(x) are
represented on each Uj by scalar functions fij such that si(x) = fij(x)ej(x). Similarly, the
metric φ is represented on Uj by a smooth real-valued function φj such that |si(x)|2 =
|fij(x)|2e−φj(x). A Fekete configuration thus maximizes the quantity

(11) e−φ1(x1) · · · e−φN (xN )
∣∣ det

(
fij(xj)

)∣∣2.
By the compactness of X, Fekete configurations exist, but in general there need not

be a unique one. One may check that the norm | det(si(xj))|φ at a Fekete configuration
x1, . . . , xN is always non-zero. It is also easy to check that the definition of a Fekete
configuration does not depend on the particular choice of the basis s1, . . . , sN of H0(L).

The function (11) is a Vandermonde-type determinant that vanishes when two points
are equal. It is exactly the familiar Vandermonde determinant in the special case when
the sections si are the monomials in dimension one, and the weight φ is constant. This
suggests what it is actually happening – the Fekete points repel each other and tend to be
in a sense “maximally spread”.
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EQUIDISTRIBUTION ESTIMATES FOR FEKETE POINTS ON COMPLEX MANIFOLDS 9

3.2. The main property of the Fekete points x1, . . . , xN that will be used is the existence of
“Lagrange sections” with a uniformly bounded norm. Namely, we have sections l1, . . . , lN
in H0(L) such that

(12) |lj(xi)| = δij, 1 ≤ i, j ≤ N,

and moreover, they satisfy the additional condition

(13) sup
x∈X

∣∣lj(x)
∣∣ = 1, 1 ≤ j ≤ N.

To construct these sections we denote by M the matrix
(
e−

1
2
φj(xj)fij(xj)

)
, and define

lj(x) :=
1

det(M)

N∑
i=1

(−1)i+jMijsi(x),

where Mij is the determinant of the submatrix obtained from M by removing the i-th row
and j-th column. Clearly lj ∈ H0(L), and it is not difficult to check that conditions (12)
and (13) above hold, where (13) is a consequence of the extremal property of the Fekete
configuration x1, . . . , xN .

We also observe that the system {lj(x)} forms a basis of H0(L). Indeed, the condition
(12) implies that the lj(x) are linearly independent, and since they form a system with N
elements, N = dimH0(L), they span the whole H0(L). An element s ∈ H0(L) thus has a
unique expansion

s(x) =
N∑
j=1

cjlj(x),

and the coefficients cj are given by

cj =
〈
s(xj), lj(xj)

〉
, 1 ≤ j ≤ N,

which again follows from (12).

3.3. One consequence of the construction above is that Fekete points form a separated
array.

Lemma 3. Let Fk be a Fekete configuration for (Lk, kφ). Then

(14) d(x, y) &
1√
k
, x, y ∈ Fk, x 6= y.

Proof. Indeed, if this is not the case, there are points xk, yk ∈ Fk,
√
k d(xk, yk) → 0 but

xk 6= yk, for infinitely many k’s. By compactness we may assume that xk, yk converge to
some point x ∈ X. We choose local coordinates z in a neighborhood of x, and a local
trivialization of the line bundle L in this neighborhood. The metric on L is represented by
a smooth function φ(z), and the metric on Lk is given by kφ(z).
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10 NIR LEV AND JOAQUIM ORTEGA-CERDÀ

For each k, we have a “Lagrange section” vanishing on xk and having norm one on yk.
Let it be given by a holomorphic function fk(z) with respect to the local trivialization.
Thus ∣∣fk(z)

∣∣2e−kφ(z) =

{
0, z = z(xk)

1, z = z(yk)

and |fk(z)|2e−kφ(z) ≤ 1 for all other z.
On the other hand, the distance function d is equivalent to the euclidean distance with

respect to the local coordinates. Hence,
√
k
∣∣z(xk)− z(yk)

∣∣ −→ 0 (k →∞).

This implies that the norm of the gradient of |f |2e−kφ must be, at some point zk, larger

that
√
k times a magnitude tending to infinity. However, Lemma 4 below shows that the

last conclusion is not possible, and this contradiction concludes the proof of Lemma 3. �

Lemma 4. Let φ(z) be a smooth, real-valued function in a neighborhood of the point
w ∈ Cn. Then there are constants C and k0 such that the following holds. Let k ≥ k0, and
f(z) be a holomorphic function in a neighborhood of the compact set

Uk(w) =
{
z ∈ Cn : |zj − wj| ≤ 1/

√
k (j = 1, . . . , n)

}
.

Then for each 1 ≤ j ≤ n we have∣∣∣∣ ∂∂zj
[∣∣f ∣∣2e−kφ](w)

∣∣∣∣ ≤ C
√
k sup
Uk(w)

∣∣f ∣∣2e−kφ.
This is proved in dimension one in [AOC12]. The multi-dimensional version above can

be proved in a similar way.
If the line bundle (L, φ) is positive, the separation condition (14) of the Fekete array is

sharp in a sense. The following is true.

Lemma 5. If (L, φ) is positive then there is R > 0 not depending on k, with the following

property: if Fk is a Fekete configuration for (Lk, kφ), then any ball B(x,R/
√
k), x ∈ X,

contains at least one point of Fk.

This result may be deduced from Theorem 2 and Lemma 6 below. However, as it will
not be used later on, we do not present the details of the proof. We merely state it to show
that the Fekete points Fk are roughly spread away from each other at a distance 1/

√
k.

4. Sampling and Interpolation arrays

4.1. In this section we relate the Fekete arrays to the sampling and interpolation arrays.
We will show that if the line bundle (L, φ) is positive, then by a “small perturbation” of
the Fekete array one obtains a sampling or interpolation array for (L, φ).
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Definition 1. Let k be a positive integer, and Λk be a finite set of points in X. We say
that Λk is a sampling set at level k with sampling constants A,B if the inequalities

(15) Ak−n
∑
λ∈Λk

|s(λ)|2 ≤
∫
X

∣∣s(x)
∣∣2 ≤ Bk−n

∑
λ∈Λk

|s(λ)|2

hold for any section s ∈ H0(Lk). We say that Λk is an interpolation set at level k with
interpolation constant C if for any set of values {vλ}λ∈Λk , where each vλ is an element of
the fiber of λ in Lk, there is a section s ∈ H0(Lk) such that s(λ) = vλ (λ ∈ Λk) and

(16)

∫
X

∣∣s(x)
∣∣2 ≤ Ck−n

∑
λ∈Λk

|vλ|2.

Definition 2. Let Λ = {Λk} be an array of points, i.e. a sequence of finite sets Λk in
X. We call Λ a sampling array if there are k0 and positive constants A,B not depending
on k, such that Λk is a sampling set at each level k ≥ k0 with sampling constants A,B.
Analogously, Λ is an interpolation array if there are k0 and a positive constants C not
depending on k, such that Λk is an interpolation set at each level k ≥ k0 with interpolation
constant C.

Lemma 6. Suppose that (L, φ) is positive. Let k be a positive integer, and ε be a number
satisfying 1/k . ε . 1. If we define

Λk := F(1+ε)k

then Λk is a sampling set at level k with sampling constants A,B such that 1 . A < B .
ε−2n. On the other hand, if

Λk := F(1−ε)k

then it is an interpolation set at level k with interpolation constant C satisfying C . ε−2n.

We must provide a clarification concerning the statement of the theorem: we have written
F(1±ε)k as if the numbers (1±ε)k were integers. In practice, the reader should replace these
numbers by an integer approximation. The same is true in other parts of the paper below,
where we shall keep using such notation.

It follows from Lemma 6 that by a “small perturbation” of the Fekete array one obtains
a sampling or interpolation array for (L, φ).

Corollary 3. Let (L, φ) be positive, and ε > 0 be fixed. Then

(i) {F(1+ε)k} is a sampling array for (L, φ);

(ii) {F(1−ε)k} is an interpolation array for (L, φ).

The rest of this section is devoted to the proof of Lemma 6.

4.2. We start with the interpolation part of Lemma 6. We fix k and ε satisfying 1/k .
ε . 1 and define the set Λk = F(1−ε)k. We will prove that Λk is an interpolation set at
level k with interpolation constant C satisfying C . ε−2n.

Denote by {xj} the elements of the finite set Λk. Since the points {xj} form a Fekete
configuration for the line bundle L(1−ε)k, they have associated Lagrange sections lj (see
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Section 3). The sections lj are suitable for solving the interpolation problem with nodes
xj, but we also need an estimate for the L2 norm of the solution. For this reason we need
to improve the localization of lj around the point xj. We therefore define the auxiliary
sections

Qj(x) := lj(x)⊗

[
Φ

(ε/2)k
xj (x)

|Π(ε/2)k(xj, xj)|

]2

∈ H0(Lk),

where Φ
(ε/2)k
y denotes a holomorphic section to L(ε/2)k such that

(17) |Φ(ε/2)k
y (x)| = |Π(ε/2)k(x, y)|, x ∈ X.

The existence of such a section is guaranteed by Lemma 1.
We have thus constructed sections Qj in H0(Lk) which are associated to the points {xj}.

Similar to the Lagrange sections, the sections Qj satisfy

(18) |Qj(xi)| = δij,

as follows from (7) and (12). We will also need the additional estimates

(19) sup
j

∫
X

|Qj(x)| . (εk)−n,

and

(20) sup
x∈X

∑
j

|Qj(x)| . ε−n,

that will be proved now. The inequality (19) follows directly from (7), (8) and (13). To
prove (20) we recall that Fekete points are separated (Lemma 3), and hence

d(xi, xj) &
1√

(1− ε)k
&

δ√
(ε/2)k

with δ =
√
ε. Thus an application of the Plancherel-Pólya inequality (Lemma 2) to the

section Φ
(ε/2)k
x and to the set of points {xj} yields∑

j

|Qj(x)| . (εk)−2n
∑
j

|Φ(ε/2)k
x (xj)|2 . ε−2nk−n

∫
X

|Φ(ε/2)k
x |2 . ε−n,

where in these inequalities we have used (5), (7), (8) and (17).
We are now ready to solve the interpolation problem with estimate. Suppose that we

are given a set of values {vj}, where each vj is an element of the fiber of xj in Lk. We
will construct a solution Q(x) to the interpolation problem, i.e. a section Q ∈ H0(Lk) such
that Q(xj) = vj for all j. The solution is defined as a linear combination of the Qj,

Q(x) =
∑
j

cjQj(x),

with the coefficients cj given by cj = 〈vj, Qj(xj)〉. This choice of coefficients and the
property (18) imply that Q(x) is indeed a solution to the interpolation problem.
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It remains to show that the solution Q(x) is bounded in L2 with the estimate

(21)

∫
X

∣∣Q(x)
∣∣2 . ε−2nk−n

∑
j

|vj|2.

Indeed, by the Cauchy-Schwartz inequality and (20) we have

(22) |Q(x)|2 ≤
(∑

j

|cj|2|Qj(x)|
)(∑

j

|Qj(x)|
)
. ε−n

∑
j

|cj|2|Qj(x)|.

Integrating over X and using (19) yields∫
X

|Q(x)|2 . ε−n
∑
j

|cj|2
∫
X

|Qj(x)| . ε−2nk−n
∑
j

|cj|2,

and since |cj| = |vj| this gives (21).
This complete the proof of the interpolation part of Lemma 6.

4.3. We continue to the proof of the sampling part of Lemma 6. In this case we are
dealing with the set Λk = F(1+ε)k, and must prove that it is a sampling set at level k with
sampling constants A,B such that 1 . A < B . ε−2n.

Again we denote by {xj} the elements of Λk. We will prove the sampling inequality

(23) k−n
∑
j

|s(xj)|2 .
∫
X

∣∣s(x)
∣∣2 . ε−2nk−n

∑
j

|s(xj)|2

for any section s ∈ H0(Lk). The left hand side of (23) is a consequence of the Plancherel-
Pólya inequality (Lemma 2) and the separation condition

d(xi, xj) &
1√

(1 + ε)k
&

1√
k

ensured by Lemma 3.
The proof of the right hand side of (23) is similar to the interpolation part. Define

Px(y) := s(y)⊗

[
Φ

(ε/2)k
x (y)

|Π(ε/2)k(x, x)|

]2

∈ H0(L(1+ε)k).

The space H0(L(1+ε)k) has a basis of Lagrange sections lj associated to the Fekete points
{xj}, so we may expand Px in terms of this basis. We get

Px(y) =
∑
j

〈
Px(xj), lj(xj)

〉
lj(y).

In particular, if y = x this implies

|s(x)| = |Px(x)| ≤
∑
j

|Px(xj)| =
∑
j

|s(xj)| |Qj(x)|,
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where now we define

Qj(x) :=

[
Φ

(ε/2)k
xj (x)

|Π(ε/2)k(x, x)|

]2

.

The estimates (19), (20) are valid in this case as well, and can be proved in the same way.
We may therefore continue as in (22). We obtain

(24) |s(x)|2 ≤
(∑

j

|s(xj)|2|Qj(x)|
)(∑

j

|Qj(x)|
)
. ε−n

∑
j

|s(xj)|2|Qj(x)|,

and integrating over X yields the right hand side of (23).
We have thus proved also the sampling part of Lemma 6, so the lemma is completely

proved.

Remark 1. In the proof of Lemma 6 we have not used any off-diagonal estimate such as
(9) for the Bergman kernel, but only the asymptotic estimate (8) on the diagonal combined
with the L2 equality (7) (this is in contrast to [AOC12], for example).

5. Landau’s inequalities

5.1. In this section we use Landau’s method [Lan67] to obtain estimates for the number
of points of a separated sampling or interpolation array in a ball.

Let us say that a finite set of points Λk is δ-separated at level k if

(25) d(x, y) ≥ δ√
k
, x, y ∈ Λk, x 6= y.

Our goal is to prove the following two statements.

Lemma 7. Let Λk be a δ-separated sampling set at level k with sampling constants A,B.
Then for any z ∈ X and r > 0,

(26) #
(

Λk ∩B
(
z, r+δ√

k

))
≥
∫

Ω

|Πk(x, x)| −M
∫∫

Ω×Ωc

∣∣Πk(x, y)
∣∣2,

where Ω = B(z, r√
k
), and the constant M is bounded by the sampling constant B times a

constant which may depend on δ but does not depend on k, z, r.

Lemma 8. Similarly, if Λk is a δ-separated interpolation set at level k with interpolation
constant C, then for any z ∈ X and r > 0,

(27) #
(

Λk ∩B
(
z, r−δ√

k

))
≤
∫

Ω

|Πk(x, x)|+M

∫∫
Ω×Ωc

∣∣Πk(x, y)
∣∣2,

where again Ω = B(z, r√
k
), and the constant M is bounded by the interpolation constant C

times a constant which may depend on δ but does not depend on k, z, r.
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5.2. Let Ω be a measurable subset of X. We denote by TΩ the linear operator on H0(L)
defined by

TΩ(s) = P (s · 1Ω), s ∈ H0(L),

where P denotes the orthogonal projection from the Hilbert space of all L2 sections onto
its finite-dimensional subspace H0(L). It is easy to see that〈

TΩs, s
〉

=

∫
Ω

|s|2, s ∈ H0(L),

hence TΩ is self-adjoint, non-negative and ‖TΩ‖ ≤ 1. We may therefore find an orthonormal
basis {sj} of H0(L) consisting of eigensections,

TΩ(sj) = λj(Ω)sj.

The eigenvalues λj(Ω) lie between 0 and 1, and we order them in a non-increasing order,

λ1(Ω) ≥ λ2(Ω) ≥ λ3(Ω) ≥ · · · ≥ 0.

By using (6) with the basis of eigensections {sj} we can compute the trace of TΩ,

(28)
∑
j≥1

λj(Ω) =
∑
j≥1

〈
TΩsj, sj

〉
=
∑
j≥1

∫
Ω

∣∣sj(x)
∣∣2 =

∫
Ω

|Π(x, x)|.

Similarly, (4) allows us to compute the Hilbert-Schmidt norm of TΩ (the trace of T 2
Ω) in

terms of the Bergman kernel. Indeed,∣∣Π(x, y)
∣∣2 =

∑
j≥1

∑
k≥1

〈
sj(x), sk(x)

〉〈
sj(y), sk(y)

〉
,

hence integrating over Ω× Ω gives

(29)
∑
j≥1

λ2
j(Ω) =

∑
j,k

∣∣〈TΩsj, sk〉
∣∣2 =

∑
j,k

∣∣∣∣ ∫
Ω

〈sj, sk〉
∣∣∣∣2 =

∫∫
Ω×Ω

∣∣Π(x, y)
∣∣2.

Using (28) and (29) one may obtain some information on the distribution of the eigen-
values. This is done in the following lemma.

Lemma 9. Let 0 < γ < 1 and denote by n(Ω, γ) the number of eigenvalues λj(Ω) which
are strictly greater than γ. Then we have the lower bound

(30) n(Ω, γ) ≥
∫

Ω

|Π(x, x)| − 1

1− γ

∫∫
Ω×Ωc

|Π(x, y)|2,

and the upper bound

(31) n(Ω, γ) ≤
∫

Ω

|Π(x, x)|+ 1

γ

∫∫
Ω×Ωc

|Π(x, y)|2.
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Proof. We have

1(γ,1](x) ≥ x− x(1− x)

1− γ
(0 ≤ x ≤ 1),

hence

n(Ω, γ) =
∑
j

1(γ,1]

(
λj(Ω)

)
≥
∑
j

λj(Ω)− 1

1− γ
∑
j

(
λj(Ω)− λ2

j(Ω)
)
.

Using (28),(29) and (7) this implies

n(Ω, γ) ≥
∫

Ω

|Π(x, x)| − 1

1− γ

[ ∫
Ω

|Π(x, x)| −
∫∫
Ω×Ω

∣∣Π(x, y)
∣∣2]

=

∫
Ω

|Π(x, x)| − 1

1− γ

[ ∫∫
Ω×X

∣∣Π(x, y)
∣∣2 − ∫∫

Ω×Ω

∣∣Π(x, y)
∣∣2]

which proves (i). To prove (ii) one may argue similarly using the inequality

1(γ,1](x) ≤ x+
x(1− x)

γ
(0 ≤ x ≤ 1). �

5.3. Now consider powers Lk of the line bundle L. We obtain an operator T
(k)
Ω acting on

H0(Lk) with corresponding eigenvalues

λ
(k)
1 (Ω) ≥ λ

(k)
2 (Ω) ≥ · · · ≥ 0,

and we let nk(Ω, γ) denote the number of eigenvalues strictly greater than γ (0 < γ < 1).

Lemma 10. Let Λk be a δ-separated sampling set at level k with sampling constants A,B.
Then for any z ∈ X and r > 0,

#
(

Λk ∩B
(
z, r+δ√

k

))
≥ nk

(
B
(
z, r√

k

)
, γ
)

where γ is some constant lying between 0 and 1, such that 1/(1 − γ) is bounded by the
sampling constant B times a constant which may depend on δ but does not depend on
k, z, r.

Proof. Let {sj} be the orthonormal basis of H0(Lk) which is associated to the eigenvalues

λ
(k)
j (Ω), where Ω = B

(
z, r√

k

)
. Let N := #

(
Λk ∩B(z, r+δ/2√

k
)
)
. We may restrict to the case

when N is strictly smaller than dimH0(Lk), since otherwise the inequality holds trivially.
In this case, we may choose a linear combination

s =
N+1∑
j=1

cjsj

of the first N + 1 eigensections, such that

s(λ) = 0, λ ∈ Λk ∩B
(
x, r+δ/2√

k

)
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and the cj are not all zero. Since Λk is a sampling set, we have

‖s‖2 ≤ Bk−n
∑
λ∈Λk

|s(λ)|2 = Bk−n
∑

λ∈Λk\B
(
x,
r+δ/2√

k

) |s(λ)|2.

Using the inequality (10) and the fact that B(λ, δ/2√
k
) are disjoint balls, we get

‖s‖2 ≤ KB
∑
λ

∫
B
(
λ,
δ/2√
k

) |s|2 ≤ KB

∫
X\Ω
|s|2,

where the constant K may depend on δ but does not depend on k, z, r. This implies

λN+1(Ω) ‖s‖2 = λN+1

N+1∑
1

|cj|2 ≤
N+1∑

1

λj|cj|2 =
〈
T

(k)
Ω s, s

〉
=

∫
Ω

|s|2 ≤ γ‖s‖2,

where γ := 1− (KB)−1. This shows that λN+1(Ω) ≤ γ and hence nk(Ω, γ) ≤ N . �

Lemma 11. Let Λk be a δ-separated interpolation set at level k with interpolation constant
C. Then for any z ∈ X and r > 0,

#
(

Λk ∩B
(
z, r−δ√

k

))
≤ nk

(
B
(
z, r√

k

)
, γ
)

where γ is some constant lying between 0 and 1, such that 1/γ is bounded by the interpo-
lation constant C times a constant which may depend on δ but does not depend on k, z, r.

Proof. Let W denote the orthogonal complement in H0(Lk) of the subspace of sections
vanishing on Λk. Since Λk is an interpolation set at level k, for any set of values {vλ}λ∈Λk ,
where each vλ is an element of the fiber of λ in Lk, there is a section s ∈ H0(Lk) such that
s(λ) = vλ (λ ∈ Λk) and

(32) ‖s‖2 ≤ Ck−n
∑
λ∈Λk

|s(λ)|2.

By taking the orthogonal projection of s onto W we obtain another solution to the in-
terpolation problem, which in addition belongs to W (the projection neither changes the
values of s on Λk nor increases its norm).

On the other hand, a section in W is uniquely determined by its values on Λk, as follows
from the definition of W . Hence if s is an arbitrary section in W , then it is the unique
interpolant in W to the values {s(λ)}λ∈Λk . This implies that (32) holds for any s ∈ W .

Now let us denote by x1, . . . , xN the elements of Λk ∩B
(
z, r−δ√

k

)
. For each 1 ≤ j ≤ N we

can find sj ∈ W such that |sj(xj)| = 1 and sj vanishes on Λk \{xj}. Certainly, the sj form
a linearly independent set of vectors. We denote by F the N -dimensional linear subspace
spanned by the sections s1, . . . , sN .

Now take any s ∈ F , then we have

‖s‖2 ≤ Ck−n
∑
λ∈Λk

|s(λ)|2 = Ck−n
∑

λ∈Λk∩B
(
x,
r−δ/2√

k

) |s(λ)|2 < KC

∫
Ω

|s|2,
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where Ω = B
(
z, r√

k

)
, and the constant K may depend on δ but does not depend on k, z, r.

The last inequality holds by (10) and the fact that B(λ, δ/2√
k
) are disjoint balls. Hence

〈T (k)
Ω s, s〉
‖s‖2

=

∫
Ω
|s|2

‖s‖2
>

1

KC
=: γ,

for any section s in the N -dimensional linear subspace F . By the min-max theorem this
implies that λN(Ω) > γ and hence nk(Ω, γ) ≥ N . �

6. Curvature and density

In the previous section we have used Landau’s method to estimate the number of points
of a sampling or interpolation set in a ball, where the estimate obtained was given in terms
of the Bergman kernel Πk(x, y). In the present section we will prove Theorem 2 by relating
the latter estimate to geometric properties of the positive line bundle (L, φ), namely, to
the volume form associated with the curvature of the line bundle.

6.1. Given a point x ∈ X, let ξ1, . . . , ξn be a basis for the holomorphic cotangent space at
x, orthonormal with respect to the hermitian metric ω on X. With respect to this basis,
the form ∂∂̄φ is given at the point x by

∂∂̄φ =
∑
j,k

φj,k ξj ∧ ξ̄k,

where (φj,k) is a hermitian n × n matrix. The eigenvalues λ1(x), . . . , λn(x) of this matrix
are called the eigenvalues of the curvature form ∂∂̄φ with respect to the hermitian metric
ω.

Recall that the line bundle L with the metric φ is said to be positive if i∂∂̄φ is a positive
form. This is equivalent to all of the eigenvalues λ1(x), . . . , λn(x) being strictly positive,
for every x ∈ X.

If the form i∂∂̄φ is positive, then the (n, n)-form (i∂∂̄φ)n is a volume form on X. Our
goal is to provide geometrical information on a sampling or interpolation array Λ = {Λk},
by relating the mass distribution of the measure

k−n
∑
λ∈Λk

δλ

to the volume distribution of (i∂∂̄φ)n in a quantitative manner. We emphasize that the
volume form (i∂∂̄φ)n is a characteristic of the hermitian metric φ on the line bundle only,
and does not depend on the arbitrary hermitian metric ω that we have chosen on the
manifold X. However, the curvature volume form (i∂∂̄φ)n is related to the volume form
V associated with ω through the eigenvalues, and we have

(33) (i∂∂̄φ)n = n!λ1(x) · · ·λn(x) dV (x).

The eigenvalues of the curvature form are related also to the asymptotics of the Bergman
function |Πk(x, x)|. When the line bundle is positive, it was proven in [Tia90], see [Zel98]
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that

(34) |Πk(x, x)| = π−nλ1(x) · · ·λn(x)kn +O(kn−1).

This a more precise result than (8). In fact, this is only the first term in a complete
asymptotic expansion obtained in [Zel98] into a power series in k (see also [BBS08] for a
different proof).

6.2. The main ingredient which we need for the proof of Theorem 2 is to show that the
“error terms” in Landau’s inequalities (26) and (27) are indeed small with respect to the
main term. This is done in the following lemma.

Lemma 12. Let the line bundle (L, φ) be positive. If Ω = B(z, r√
k
), z ∈ X, then∫∫

Ω×Ωc

∣∣Πk(x, y)
∣∣2 . r2n−1.

For the proof we will use the asymptotic off-diagonal estimate (9) for the Bergman kernel,
which holds when the line bundle (L, φ) is positive. In fact, we do not need the precise
exponential decay given by (9). It will be enough to use the fact that

(35) |Πk(x, y)| ≤ knϕ(
√
k d(x, y)),

where ϕ is a smooth decreasing function on [0,∞) such that

(36) ϕ(u) = O(u−α) as u→∞, for some α > n+ 1
2
.

Proof of Lemma 12. We partition Ω into “dyadic shells” defined by

Ωj :=

{
x ∈ X :

(
1− 2−j+1

) r√
k
≤ d(x, z) <

(
1− 2−j

) r√
k

}
(j ≥ 1).

If x ∈ Ωj and y ∈ Ωc then d(x, y) > 2−j r√
k
, and thus we have∫∫

Ω×Ωc

∣∣Πk(x, y)
∣∣2 ≤ ∞∑

j=1

∫∫
Ωj×B(x,2−j r√

k
)c

∣∣Πk(x, y)
∣∣2.

To estimate the right hand side we use (35). For any A > 0 we have∫
B
(
x, A√

K

)c ∣∣Πk(x, y)
∣∣2dV (y) =

=

∫ ∞
0

V

({
y :
∣∣Πk(x, y)

∣∣ > λ
}
\B
(
x,

A√
k

))
2λ dλ

≤
∫ knϕ(0)

0

V

({
y : ϕ

(√
k d(x, y)

)
≥ k−n λ

}
\B
(
x,

A√
k

))
2λ dλ.
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Since ϕ is decreasing we may apply the change of variable λ = knϕ(u), and we get

=

∫ ∞
0

V

(
B

(
x,

u√
k

)
\B
(
x,

A√
k

))
(2knϕ(u)) |knϕ′(u)| du

.
∫ ∞
A

(
u√
k

)2n

(2knϕ(u)) |knϕ′(u)| du

. kn
∫ ∞
A

u2n ϕ(u) |ϕ′(u)| du.

We also use an estimate for the volume of shells, namely

(37) V
(
B(x, ρ+ δ) \B(x, ρ)

)
. ρ2n−1 δ (0 < δ < ρ),

which can be proved using the exponential map. In particular, this implies

V (Ωj) . 2−j
r2n

kn
.

Combining all the estimates above yields∫∫
Ω×Ωc

∣∣Πk(x, y)
∣∣2 . ∞∑

j=1

(
2−j

r2n

kn

)
kn
∫ ∞

2−jr

u2n ϕ(u) |ϕ′(u)| du

= r2n

∫ ∞
0

[ ∞∑
j=1

2−j1[2−jr,∞)(u)

]
u2n ϕ(u) |ϕ′(u)| du

≤ r2n

∫ ∞
0

(
2u/r)u2n ϕ(u) |ϕ′(u)| du

. r2n−1

∫ ∞
0

u2n ϕ(u)2 du,

where the integration by parts used is justified by (36). Since the last integral converges,
again due to (36), this proves the lemma. �

6.3. We can now finish the proof of Theorem 2. It is an immediate consequence of the
following result.

Lemma 13. Let (L, φ) be positive. If Λk be a δ-separated sampling set at level k with
sampling constants A,B, then for any z ∈ X and r > 0,

(38)
k−n#(Λk ∩ Ω)∫

Ω
(i∂∂̄φ)n

>
1

πnn!
− M

r
,

where Ω = B(z, r√
k
), and the constant M is bounded by the sampling constant B times a

constant which may depend on δ but does not depend on k, z, r.
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Similarly, if Λk is a δ-separated interpolation set at level k with interpolation constant
C, then for any z ∈ X and r > 0,

(39)
k−n#(Λk ∩ Ω)

)∫
Ω

(i∂∂̄φ)n
<

1

πnn!
+
M

r
,

where again Ω = B(z, r√
k
), and the constant M is bounded by the interpolation constant C

times a constant which may depend on δ but does not depend on k, z, r.

Proof. Assume first that Λk is a δ-separated sampling set at level k. Let Ω = B
(
z, r√

k

)
.

The separation condition together with (37) imply that the number of points of Λk in the
shell B

(
z, r+δ√

k

)
\B
(
z, r√

k

)
is less than M1r

2n−1. Hence by (26) and Lemma 12 we obtain

#(Λk ∩ Ω) ≥
∫

Ω

|Πk(x, x)| −M2r
2n−1.

Using (33) and (34) this implies

#(Λk ∩ Ω) ≥ kn

πnn!

∫
Ω

(i∂∂̄φ)n −M2r
2n−1 −M3k

n−1V (Ω).

Since V (Ω) . r2n/kn and r/
√
k ≤ diam(X) it follows that

#(Λk ∩ Ω) ≥ kn

πnn!

∫
Ω

(i∂∂̄φ)n −M4r
2n−1,

and since kn
∫

Ω
(i∂∂̄φ)n is of order r2n this proves the claimed inequality. In the second

case, when Λk is a δ-separated interpolation set at level k, the result is proved in a similar
way using (27) instead of (26). �

This concludes the proof of Theorem 2.

Remark 2. One may also define sampling and interpolation arrays with respect to the Lp

norm on the line bundle (1 ≤ p ≤ ∞). The necessary density conditions given in Corollary
2 could be extended to this setting as well. This is rather standard and we do not discuss
the details, see e.g. [Mar07].

7. Equidistribution of Fekete points

In this section we use the previous results to estimate from above and below the number
of Fekete points that lie in a ball. This allows us then to obtain an upper bound for
the Kantorovich-Wasserstein distance between the Fekete measure (1) and its limiting
measure. We also use the Fekete points to construct a sampling or interpolation array with
density arbitrarily close to the critical one, showing that the necessary density conditions
in Corollary 2 are sharp.
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7.1. We start with the proof of Theorem 1. As before, we denote by Fk a Fekete config-
uration for (Lk, kφ).

Proof of Theorem 1. Let Ω = B
(
x, r√

k

)
, where r > 0 is a large number, and k is such

that r/
√
k ≤ diam(X). Lemma 6 says that if ε is a sufficiently small number satisfying

ε & 1/k, then Fk is a sampling set at level k/(1 + ε) with sampling constants A,B such
that B . ε−2n. Also, by Lemma 3 there is δ > 0 not depending on k, such that Fk is a
δ-separated set at level k/(1 + ε). Hence by (38) we conclude that

#(Fk ∩ Ω) ≥ 1

πnn!

(
k

1 + ε

)n ∫
Ω

(i∂∂̄φ)n −O(ε−2nr2n−1)

=
kn

πnn!

∫
Ω

(i∂∂̄φ)n −O(ε r2n)−O(ε−2nr2n−1).

We choose ε = ε(r) such that the two error terms coincide, that is, ε = (1/r)
1

2n+1 , and

remark that the condition ε & 1/k is indeed satisfied by this choice, since r/
√
k ≤ diam(X).

Hence

#(Fk ∩ Ω) ≥ (1−O(ε))
kn

πnn!

∫
Ω

(i∂∂̄φ)n.

Applying similar considerations using (39) we also get a similar upper bound. Thus

(40) #(Fk ∩ Ω) = (1 +O(ε))
kn

πnn!

∫
Ω

(i∂∂̄φ)n.

We also have from (6), (33) and (34) that

(41) #Fk = dimH0(Lk) =

∫
X

|Πk(x, x)| = (1 +O(k−1))
kn

πnn!

∫
X

(i∂∂̄φ)n.

Combining (40) with (41) and again using ε & 1/k this proves the theorem. �

7.2. The estimate (40) obtained for the number of Fekete points in a ball shows, in
particular, that a Fekete array {Fk} for the positive line bundle has the critical density,

D−({Fk}) = D+({Fk}) =
1

πnn!
.

It is easy to check that the density of the perturbed array {F(1±ε)k} will be equal to the
critical value multiplied by (1 ± ε)n. Combining this with Corollary 3 shows that the
density threshold in Corollary 2 is sharp.

Corollary 4. Let (L, φ) be positive. Then

(i) For any ε > 0 there is a sampling array Λ with D+(Λ) < 1
πnn!

+ ε.

(ii) For any ε > 0 there is an interpolation array Λ with D−(Λ) > 1
πnn!
− ε.
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7.3. Given two probability measures µ and ν on a metric space X, one defines the
Kantorovich-Wasserstein distance between them as

W (µ, ν) = inf

{∫∫
X×X

dist(x, y) dp(x, y)

}
where the infimum is taken over all Borel probability measures p on X×X with marginals
p(·, X) = µ and p(X, ·) = ν. This metric plays a key role in transportation problems, see
for instance [Vil09], where one could also find the equivalent dual definition

(42) W (µ, ν) = sup

{∣∣∣∫
X

fd(µ− ν)
∣∣∣ : f ∈ Lip1,1(X)

}
,

where Lip1,1(X) is the collection of all functions f on X satisfying |f(x)− f(y)| ≤ d(x, y).
In our setting we have two probability measures, the first one is the Fekete measure µk

defined in (1), and the second one is the measure (i∂∂̄φ)n normalized to have total mass 1,
which we denote by ν. It is known, see [Blü90] for instance, that on a Riemannian manifold
if µk(B(x, r)) → ν(B(x, r)) for all balls, as guaranteed by Theorem 1, then µk converges
weakly to ν as k → ∞, where the latter means that

∫
fdµk →

∫
fdν for any continuous

function f on X.
The Kantorovich-Wasserstein distance metrizes the weak convergence of measures. Here

we will prove Corollary 1 which estimates the rate of convergence in the Kantorovich-
Wasserstein distance. In the proof we will use Theorem 1, which already contains a quan-
titative statement about the convergence.

To prove the lower bound for the Kantorovich-Wasserstein distance we consider the
function fk(x) = dist(x,Fk). Then clearly fk ∈ Lip1,1(X), and moreover fk vanishes on
Fk. Hence by (42),

W (µk, ν) ≥
∣∣∣ ∫

X

fk(dµk − dν)
∣∣∣ =

∫
X

fkdν.

The function fk is bounded below by δ > 0 outside the balls B(λ, δ), λ ∈ Fk, and so∫
X

fkdν ≥ δ · ν
(
X \

⋃
x∈Fk

B(x, δ)
)
≥ δ(1− Cδ2n#Fk).

We choose δ = δ(k) such that Cδ2n#Fk = 1/2. Since #Fk ' kn by (3), this implies

W (µk, ν) & k−1/2.

For the upper estimate we will use the following result.

Lemma 14. [Blü90] Let X be a compact Riemannian manifold of dimension d, with as-
sociated volume measure V . If f is a continuous function on X, µ, ν are two measures on
X, and r > 0, then the following estimate holds,

(43)

∣∣∣ ∫
X

f(dν − dµ)
∣∣∣ ≤ ‖f − fr‖‖ν − µ+ V ‖+ Cr2‖f‖(1 + ‖ν − µ+ V ‖)

+ Cr−d‖f‖
∫
X

|ν(B(x, r))− µ(B(x, r))|dV (x),
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where C is a positive constant depending only on the manifold X, and

fr(x) =
1

V (B(x, r))

∫
B(x,r)

f(y) dV (y), x ∈ X.

Here ‖f‖ denotes the supremum norm on X, while ‖µ‖ is the total variation norm. In
our setting X is a hermitian manifold of complex dimension n. If f ∈ Lip1,1(X) then
‖f − fr‖ ≤ r, and by subtracting a convenient constant from f (which is innocuous
in our setting since both µk and ν are probability measures) we may also assume that
‖f‖ ≤ diam(X). Theorem 1 then guarantees that

|µk(B(x, r))− ν(B(x, r))| . r2n
(
r
√
k
)− 1

2n+1 ,

so by Lemma 14 we get∣∣∣ ∫
X

f(dν − dµ)
∣∣∣ ≤ Cr + Cr2 + Cr−2nr2n

(
r
√
k
)− 1

2n+1 .

If we choose r = k−1/(4n+4) we obtain the upper bound in Corollary 1.

8. Simultaneously Sampling and Interpolation arrays

8.1. In this section we assume that X is a projective manifold, but we work with a metric
φ on the line bundle L which is only semi-positive. We will show that, if there is a point
in X where φ has a strictly positive curvature, then the sections of high powers of the line
bundle resemble closely the functions in the Bargmann-Fock space. This observation will
allow us to establish Theorem 4, showing that in this case there are no arrays which are
simultaneously sampling and interpolation for (L, φ). The non-existence of simultaneously
sampling and interpolation sequences is a recent result in the classical Bargmann-Fock
space [AFK11, GM11].

Actually we could have replaced the assumption that X is projective by the apparently
weaker condition that X is a Kähler manifold. However, the solution of Siu [Siu84] to
the Grauert-Riemenschneieder conjecture shows that, under the hypothesis that L is semi-
positive with a point where it has a strictly positive curvature, the base manifold X is
Moishezon, and being also Kähler it is automatically projective [Mŏı66].

The proof of Siu also shows that under the hypothesis of the theorem, L is big and thus
there is a strictly positive singular metric φs on L that is in L1

loc and smooth on all points
of X outside a proper analytic set E, see [MM07, Theorem 2.3.30].

8.2. We fix a point x0 ∈ X \ E where the original metric on L had positive curvature.

Definition 3. We say that we have normalized coordinates in a neighborhood of x0 ∈ X\E
if we have a coordinate chart that is mapped to a neighborhood of 0 in Cn and a local
holomorphic frame eL(z) such that the following conditions hold:

• The curvature form of the line bundle at x0 is given by Θ(0) =
∑n

j=1 dzj ∧ dz̄j;
• h(0) = 1 and ∂h

∂zj
(0) = ∂2h

∂zj∂zk
(0) = 0;

where above h(z) = |eL(z)|2, and Θ(z) = −∂∂̄ log h(z) is the curvature form.



C
R

M
P

re
p
ri

nt
S
er

ie
s

nu
m

b
er

11
22

EQUIDISTRIBUTION ESTIMATES FOR FEKETE POINTS ON COMPLEX MANIFOLDS 25

This can always be arranged if the curvature of h is smooth and positive at the point
x0, by choosing appropriate coordinates and a convenient local frame. Observe that in
normalized coordinates

(44) h(z) = e−|z|
2+o(|z|2).

We fix now a neighborhood B(0, δ) of the origin at Cn that is mapped by normal coor-
dinates to a neighborhood U of x0 in X.

Definition 4. We define the sets Σk ⊂ Cn as follows: σ ∈ Σk if and only if σ/
√
k is

mapped by the normal coordinates to a point in ΛK ∩ U . By definition Σk ⊂ B(0, δ
√
k).

If Λk is both an interpolation and sampling array, we will construct a sequence Σ ⊂ Cn

such that it is both interpolation and sampling for the Bargmann-Fock space.

Definition 5. Given p ∈ [1,∞) The Bargmann-Fock space BFp consists of entire functions
such that

‖f‖pp :=

∫
Cn
|f(z)|pe−p|z|2/2dm(z) < +∞.

When p =∞ the natural norm is

‖f‖∞ := sup
Cn
|f(z)|e−|z|2/2.

A sequence Σ is sampling for the Bargmann-Fock space BF2 if and only if

‖f‖2
2 .

∑
σ

|f(σ)|2e−|σ|2 . ‖f‖2
2

and it is interpolation for BF2 if given any values {vσ} there is a function f ∈ BF2 such
that f(σ) = vσ and with the estimate

‖f‖2
2 .

∑
σ

|vσ|2e−|σ|
2

,

provided that the right hand side is finite.
It is known, see [AFK11] and [GM11], that there do not exist sequences that are simul-

taneously sampling and interpolation in BF2(Cn).
The key ingredient in the construction of Σ is that the sections of high powers of the

(locally positive) line bundle behave as functions in the Bargmann-Fock space when prop-
erly rescaled. This is a well known phenomenon that can be illustrated by the fact that
the Bergman kernel universally converges to the Bergman kernel of the Bargmann-Fock
space in normal coordinates if rescaled properly, see [BSZ00]. The next theorem is another
illustration of the same fact. In order to state it we need to introduce the notion of weak
limits of sequences. If we have a collection of separated sequences Σk ⊂ Cn with a uni-
form separation constant for all k and another separated sequence Σ ⊂ Cn we say that Σk

converges weakly to Σ if the corresponding measures µk =
∑

σ∈Σk
δσk converge weakly to∑

σ∈Σ δσ. This notion was used extensively by Beurling in his study of sampling sequences
in the Paley-Wiener space and it will also be useful in our context.
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Theorem 5. Let Λk be a separated sampling array for Lk and let Σ be any weak limit of
a partial subsequence Σk, then Σ is a sampling sequence for BF2(Cn).

Let Λk be an interpolation array for Lk and let Σ be any weak limit of a partial subse-
quence of Σk, then Σ is an interpolation sequence for BF2(Cn).

Proof. Let us start by the interpolation part. Assume that Σ is the weak limit of a partial
subsequences of Σk that, with an abuse of notation, will be still denoted by Σk. Let us
take a sequence of values {vσ}σ∈Σ, vσ ∈ C, with

∑
σ∈Σ |vσ|2e−|σ|

2
< ∞. We are going to

construct a sequence of functions fk ∈ H(B(0,Mk)), with Mk →∞ such that

sup
k

∫
|z|<Mk

|fk(z)|2e−|z|2dm(z) <∞,

and for all σ ∈ Σ, limk fk(σ) = vσ. Thus by a normal family argument we conclude that
there is an interpolating function f ∈ BF2 with f(σ) = vσ. Actually we may assume
without loss of generality that, except for a finite number of points, vσ = 0. This is
harmless if

lim sup
k→∞

∫
|z|<Mk

|fk(z)|2e−|z|2dm(z) ≤ C
∑
σ

|vσ|2e−|σ|
2

with C a constant independent of the number of non-zero terms.
Since we are assuming that the metric is smooth, and we are using normalized coordi-

nates, we can use Definition 3 and find an increasing sequence Mk, limMk →∞ (but with

Mk/
√
k → 0) such that around x0, h(z)k ' e−k|z|

2
for all |z| < Mk/

√
k.

Take some given values vσ. We denote by Σ′ ⊂ Σ the finite set of points σ ∈ Σ such
that vσ 6= 0. For k big enough |σ/

√
k| < Mk for all σ ∈ Σ′. For those σ ∈ Σ′ there is an

associated λkσ ∈ Λk such that
√
kλkσ → σ because Σk → Σ weakly (here we are identifying

the points in Cn and in X by its coordinate chart). Consider the interpolation problem
with data vσe

k
L at the points λkσ, σ ∈ Σ′. By hypothesis there is a section s ∈ H0(Lk) such

that sk(λ
k
σ) = vσe

k
L(λkσ) and

‖sk‖2 ≤ C

kn

∑
σ∈Σ′

|vσ|2h(λkσ)k.

Near x0 we may write sk(z) = gk(z)ekL(z) and thus∫
|z|≤Mk/

√
k

|gk(z)|2e−k|z|2dm(z) .

. ‖sk‖2 ≤ C

kn

∑
σ∈Σ′

|vσ|2h(λkσ)k ≤ C

kn

∑
σ∈Σ′

|vσ|2e−k|λ
k
σ |2 .

The functions fk(z) = gk(
√
kz) are holomorphic in |z| < Mk and they satisfy∫

|z|<Mk

|fk(z)|2e−|z|2 ≤ C
∑
σ∈Σ′

|vσ|2e−|
√
kλkσ |2 .
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If we let k →∞ in the right hand side of the inequality we obtain:

lim sup
k→∞

∫
|z|<Mk

|fk(z)|2e−|z|2 .
∑
σ∈Σ′

|vσ|2e−|σ|
2

. �

8.3. The sampling part of Theorem 5 is slightly more involved. We need an approximation
lemma that in an informal way shows that one can approximate locally functions in the
Bargmann-Fock space by sections of Lk. More precisely, we will work with semipositive
holomorphic line bundles L over a projective manifold X that have some point where
the metric on L has strictly positive curvature. As we mentioned before, such bundles
are big line bundles and therefore they admit a strictly positive singular metric φs that
is in L1

loc and it is smooth away from an analytic exceptional set E ⊂ X, see [MM07,
Theorem 2.3.30].

Lemma 15. Let L be a semipositive holomorphic line bundle over a projective manifold
X with some point where the metric on L has positive curvature. We fix a point x0 ∈ X
where it has strictly positive curvature and that is not contained in the exceptional analytic
set E and consider normal coordinates around it and its corresponding frame e(z). Given
any function f in the Bargmann-Fock space, and any big M > 0, there is a k0 ∈ N such
that for all k ≥ k0 there are global holomorphic sections sk(z) = fk(z)ek(z) of Lk such that
in the normalized coordinates around x0:∫

|z|<M/
√
k

|f(
√
kz)− fk(z)|2e−k|z|2dz . 1

M2
‖f‖2/kn

and ∫
|z|>M/

√
k

|sk|2φ .
1

M2
‖f‖2/kn.

In particular ‖sk‖2 ' ‖f‖2/kn for all k ≥ k0.

Thus, in a sense, sk are global sections that approximate f around x.
This Lemma follows from the L2, ∂̄-estimates on line bundles for singular metrics. This

is a refinement of Hörmander’s theorem that is due to Demailly-Nadel, see [Ber10] where
a nice exposition can be found. We will use the following theorem.

Theorem 6 (Demailly-Nadel). Let X be a projective manifold. Let L be a holomorphic
line bundle over X which has a possibly singular metric φs whose curvature satisfies

i∂∂̄φs ≥ εω,

where ω is a Kähler form. Let f be an L-valued ∂̄-closed form of bidegree (n, 1). Then
there is a solution u to the equation ∂̄u = f satisfying

‖u‖2
ω,φs .

∫
X

|f |2∂∂̄φse
−φs .
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In this statement |f(x)|∂∂̄φs is the pointwise norm on (n, 1) forms induced by the singular

Hermitian metric in X. In particular if we have the estimate i∂∂̄φs ≥ Mω in the support
of f , then

(45) ‖u‖2
ω,φs .

1

M
‖f‖2

ω,φs .

We prove now the approximation lemma.

Proof of Lemma 15. Let χ be a cutoff function supported in a ball of radius M centered
at the origin and equal to 1 in B(0,M/2). We take M so big that |∇χ| ≤ 4/M. We put

χk(z) = χ(z
√
k). We define in normal coordinates gk(z) = f(

√
kz)χk(z)ek(z). The section

gk (extended by 0 outside a neighborhood of x0) defines a global (non-holomorphic) section
with the required properties. To make it holomorphic we must correct it with the equation
∂̄uk = ∂̄gk and define sk = gk−uk. We need to make sure that the correction uk is globally
small.

One technical difficulty arises: the Hörmander estimates for the ∂̄-equation deal with
(n, 1)-forms rather than (0, 1)-forms. We can always twist the line bundle L with the
canonical bundle to shift from (0, 1)-forms to (n, 1)-forms. In this case this is delicate
because while twisting the bundle we could lose its positivity since L is only semipositive
and there is no maneuvering room. For this purpose we will need to change the metric on
L to make it strictly positive while preserving the estimates in the original metric. This
can be achieved by averaging the original metric φ on L with the metric φs that is singular
and strictly positive on L. That is the reason we need to work with the more sophisticated
Demailly-Nadel estimates on singular metrics rather than the Hörmander estimates. More

precisely, let us define a new metric φ̃k on Lk as follows:

(46) φ̃k = (k −N)φ+Nφs − C,

where N and C are big constants, that do not depend on k, to be chosen. This is a well

defined singular metric on Lk since φ̃k = kφ + N(φs − φ) − C and the difference of two
metrics φs − φ is a well defined function on X.

The bundle Lk can be expressed as Lk = KX ⊗ Fk, where KX is the canonical line

bundle. If we endow Lk with the metric φ̃k and KX with the metric inherited from the
Hermitian metric on X, the curvature of Fk is

c(Fk) = c(φ̃k)− c(KX) = (k −N)c(φ) +Nc(φs)− c(KX) ≥ Nεω − c(KX),

if k > N and thus it has positive curvature taking N big enough, where by c(·) we denote
here the curvature form of the corresponding line bundle or metric specified. In fact on
the support of ∂̄gk the curvature satisfies c(Fk) & kω.

The metric φs is bounded above because it is in L1
loc and it is plurisubharmonic. Thus

we can take the constant C big enough in (46) in such a way that φ̃k ≤ kφ.

The L2 norm of ∂̄gk with the metric φ̃k is comparable to the L2 norm with respect to
the metric kφ because φs is smooth on the support of ∂̄gk, thus its norm is bounded by
k1−nM−2‖f‖2. If we solve the ∂̄ equation using the estimates provided by the Demailly



C
R

M
P

re
p
ri

nt
S
er

ie
s

nu
m

b
er

11
22

EQUIDISTRIBUTION ESTIMATES FOR FEKETE POINTS ON COMPLEX MANIFOLDS 29

Nadel theorem with data that is a (n, 1)-form with values in Fk we get a solution uk to
∂̄uk = ∂̄gk (uk is a global (n, 0)-form with values in Fk or equivalently a global section of
Lk) with L2 size controlled by a constant times k−nM−2‖f‖2 as desired. A priori the norm

control of uk is with respect to φ̃k but as φ̃k ≤ kφ we get the desired result. �

We proceed now to prove the sampling part of Theorem 5. Given any function f in the
Fock space we take a large M > 0 so that∫

|z|>M
|f |2e−|z|2 ≤ 0.1‖f‖2.

We can construct a sequence of sections sk such that the conclusions of the approximation
lemma hold. For such sk the sampling property of Λk can be applied and we have

‖sk‖2 .
1

kn

∑
λ∈Λk

|fk(λ)|2e−kφ(λ).

Since all the fk have L2 norm very small outside the region parametrized by |z| < M/
√
k

which we denote by Uk the mean value property implies that

‖sk‖2 .
1

kn

∑
λ∈Λk∩Uk

|fk(λ)|2e−kφ(λ).

We recall that kn‖sk‖2 ' ‖f‖2, and taking weak limits of Σk, implies that

‖f‖2 .
∑
|σ|≤M

|f(σ)|2e−|σ|2 . �

9. The one-dimensional case

In this section we return to discuss positive line bundles, and focus on the case when
dim(X) = 1, i.e. we are dealing with a compact Riemann surface. In this case we have a
more precise result, namely a full characterization of the interpolation and sampling arrays
given by Theorem 3 above.

9.1. The sampling part of Theorem 3 can be reformulated as follows.

Theorem 7. Let Λ be a separated array and let L be a holomorphic line bundle over
a compact Riemann surface X endowed with a smooth positive metric φ. Then Λ is a
sampling array for the line bundle if and only if there is an ε > 0, r > 0 and k0 > 0 such
that for all k ≥ k0,

(47)
#(Λk ∩B(x, r/

√
k))∫

B(x,r/
√
k)
ik∂∂̄φ

>
1

π
+ ε ∀x ∈ X,
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Remark that the metric in X used to define the balls in the inequality (47) is irrelevant,
since the density inequality is invariant under change of metric. We will prove this invari-
ance in an arbitrary dimension. Assume that we have two different metrics that induce
two distances d1 and d2 and two volumes V1 and V2. Suppose that (47) holds for the first
metric. Denote by µk := 1

kn

∑
λ∈Λk

δλ and ν := (i∂∂̄φ)n. The hypothesis (47) (in dimension
n) can we written as

(48)

∫
B1(y,r/

√
k)

dµk(x) ≥
( 1

πnn!
+ ε
)∫

B1(y,r/
√
k)

dν.

We need some notation to check that (48) is invariant under change of metrics. Denote by

f̃r(z) :=
1

λ0(r/
√
k)

∫
B1(z,r/

√
k)

f(y)dV1(y) =
1

λ0(r/
√
k)

∫
X

f(y)1B1(y,r/
√
k)(z)dV1(y),

where λ0(r) denotes as in [Blü90] the volume of a Euclidean ball in R2n. Thus∫
X

f̃r dµk =
1

λ0(r/
√
k)

∫
X

f(y)µk(B1(y, r/
√
k))dV1(y).

For any f ≥ 0, we have by (48)∫
X

f̃r dµk ≥
( 1

πnn!
+ ε
) ∫

X

f̃r dν.

We choose f := 1B2(x,R/
√
k), then

1B2(x,(R−cr)/
√
k) ≤ fr ≤ 1B2(x,(R+cr)/

√
k),

where

fr(z) :=
1

V1(B1(z, r/
√
k))

∫
B1(z,r/

√
k)

f(y)dV1(y).

The following inequalities are now elementary:

µk
(
B2(x, (R + cr)/

√
k)
)
≥
∫
X

frdµk =

∫
X

f̃rdµk +

∫
X

(fr − f̃r)dµk ≥( 1

πnn!
+ ε
)∫

X

f̃rdν +

∫
X

(fr − f̃r)dµk =( 1

πnn!
+ ε
)∫

X

frdν +
( 1

πnn!
+ ε
)∫

X

(f̃r − fr)dν +

∫
X

(fr − f̃r)dµk ≥( 1

πnn!
+ ε
)
ν(B2(x, (R− cr)/

√
k)) +

( 1

πnn!
+ ε
)∫

X

(f̃r − fr)dν +

∫
X

(fr − f̃r)dµk.

We aim to prove that

(49) µk(B2(x, (R + cr)/
√
k)) ≥

( 1

πnn!
+
ε

2

)
ν
(
B2(x, (R + cr)/

√
k)
)
.

Clearly if R is big enough (R >> cr), then by (37):

ν
({
y :

R− rc√
k
≤ d2(y, x) ≤ R + cr√

k

})
≤ ε

4
ν
(
B2(x, (R− rc)/

√
k)
)
.
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We still need to prove that the terms
(

1
πnn!

+ε
) ∫

X
(f̃r−fr)dν+

∫
X

(fr− f̃r)dµk are negligible

when compared to ν
(
B2(x, (R− rc)/

√
k)
)
' R2n/kn as k →∞.

Observe that |fr− f̃r| ≤ K1(r/
√
k)fr, where K1(s) = supX |1−V1

(
B1(x, s)

)
/λ0(s)|. The

distortion function K1(s) = O(s2) [Blü90, Lemma 2], and thus∣∣∣∫
X

(fr − f̃r)dν
∣∣∣ ≤ K1

( r√
k

)∫
X

frdν ≤ K1

( r√
k

)
ν
(
B
(
x,
R + cr√

k

))
.

1

kn+1
.

We assume that Λ is separated, thus µk
((
x, R+cr√

k

))
. R2n

kn
, and therefore∣∣∣∫

X

(fr − f̃r)dµk
∣∣∣ ≤ K1

( r√
k

)∫
X

frdν ≤ K1

( r√
k

)
µk

(
B
(
x,
R + cr√

k

))
.

1

kn+1
,

and if we take k big enough, we have proved (49) and the invariance of the density condition
under changes of metric follows.

9.2. We proceed now to the proof of Theorem 7. We start by proving that under the
density hypothesis (47) the array Λ is sampling. We will initially prove that the array is
L∞-sampling.

Definition 6. We say that a separated array Λ = {Λk} is an L∞-sampling array if there
is k0 and a constant 0 < C < ∞ such that, for each k ≥ k0 and any section s ∈ H0(Lk)
we have

sup
x∈X

∣∣s(x)
∣∣ ≤ C sup

λ∈Λk

|s(λ)|.

If this were not true then for infinitely many k’s there will be sk ∈ H0(Lk) and points
xk ∈ X such that

sup
X
|sk| = |sk(xk)| = 1,

and
sup
λ∈Λk

|sk(λ)| = o(1).

We take normal coordinates around xk, see Definition 3, and we consider as before arrays
Λk ⊂ X and Σk ⊂ B(0,Mk) the dilated sequences in C. Since Σk are separated there is
a subsequence converging weakly to Σ that for simplicity we keep denoting by Σk. The
hypothesis implies that

#Σ ∩B(y, r0)

r2
0

≥
( 1

π
+ ε
)
,

the balls B(y, r0) are standard balls in C because we may choose a metric in X such that
when rescaling around x by the normal coordinates it converges to the Euclidean metric
in C. By a theorem of Seip, Σ is sampling for the space of functions BF∞ consisting
of entire functions such that sup |f |e−|z|2 < +∞. On the other hand we may extract a
converging subsequence of functions fk that represent the sections sk in normal coordinates
to f ∈ BF∞ such that |f(0)| = 1 and f |Σ = 0 and this is a contradiction with the fact
that Σ is sampling for BF∞.
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Once we know that Λ is L∞ sampling it is possible to argue as with the Fekete points
that {Λ(1+ε)k} is L2 sampling.

Proposition 1. If Λ = {Λk} is L∞ sampling then {Λ(1+ε)k} is L2 sampling.

Proof. We know by hypothesis that for any s ∈ H0(Lk), supX |s| ≤ C supΛk
|s(λk)|. In this

case it is elementary to check that {Λ(1+ε)k} is also L∞ sampling. For any s ∈ H0(Lk),
and y ∈ X we define the section

py(x) = s(x)⊗

[
Φ

(ε/2)k
y (x)

|Π(ε/2)k(y, y)|

]2

∈ H0(L(1+ε)k)

Let us take now y ∈ X to be a point where |s| attains its maximum. Then

(50) sup
X
|s| = |s(y)| = |py(y)| ≤ C sup

Λ(1+ε)k

|py(λ)| ≤ C sup
Λ(1+ε)k

|s(λ)|.

Moreover for any z ∈ X, since Λ is sampling,

|s(z)| = |pz(z)| . sup
Λ(1+ε)k

|s(λ)|

∣∣∣∣∣ Φ
(ε/2)k
z (λ)

|Π(ε/2)k(z, z)|

∣∣∣∣∣
2

≤
∑

Λ(1+ε)k

|s(λ)|

∣∣∣∣∣ Φ
(ε/2)k
z (λ)

|Π(ε/2)k(z, z)|

∣∣∣∣∣
2

=
∑

Λ(1+ε)k

|s(λ)|
∣∣∣∣ Π(ε/2)k(z, λ)

|Π(ε/2)k(z, z)|

∣∣∣∣2 .
Recall that |Π(ε/2)k(z, z)| ' εk. Thus if we integrate both sides, we get

(51)

∫
X

|s(z)| . 1

εk

∑
Λ(1+ε)k

|s(λ)|

If we interpolate between (50) and (51) we obtain∫
X

|s(z)|2 . 1

εk

∑
Λ(1+ε)k

|s(λ)|2,

as stated.

Finally, since the hypothesis of Theorem 7 is an open condition we can conclude that
actually {Λ(1−ε)k} is L∞-sampling and therefore Λ is L2-sampling.

We turn now to the necessity of the density condition. We assume that Λ is a sampling
array. We know already by Corollary 2 that the density of Λ is bigger or equal than a
critical level. We need a strict inequality. We prove now that if Λ is a sampling array there
is a ε > 0 such that {Λ(1−ε)k} is still and L2-sampling array.

We know by Theorem 5 than any weak limit Σ ∈ W (Λ) is a sampling sequence in
BF2(C). Thus by the description of sampling sequences for such spaces obtained in [SW92],
the lower Beurling density D−(Σ) > 1. We will prove that under this circumstances there is
a ε > 0 such that {Λ(1−2ε)k} is L∞-sampling. We argue by contradiction. Suppose not, then,
for any n there are sections sk ∈ H0(Lk) such that ‖sk‖∞ = 1 and ‖s|Λ(1−1/n)k

‖∞ = o(1)
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when k is very big. If we fix n and by passing to a subsequence in normal coordinates around
the points xk where |sk| takes its maximum value, we construct functions fn ∈ BF∞(C) of
norm one such that fn(0) = 1 and fn|Σn ≡ 0, where Σn is a weak limit of a subsequence
of Λ(1−1/n)k as k → ∞ in normal coordinates scaled appropriately. We take another
subsequence of the functions fn and of the separated sequences Σn in such a way that Σn

converge weakly to Σ, fn → f and f ∈ BF∞(C) of norm one, f(0) = 1, f |Σ ≡ 0 and
Σ ∈ W (Λ). This is a contradiction since Σ has D−(Σ) > 1.

We have proved that {Λ(1−2ε)k} is L∞-sampling. We finish the proof by observing that
by Proposition 1 this implies that {Λ(1−ε)k} is L2-sampling.

9.3. We provide now a characterization for the interpolation arrays.

Theorem 8. Let Λ be a separated array and let L be a holomorphic line bundle with a
smooth positive metric φ over a compact Riemann surface X. Then Λ is an interpolation
array for the line bundle if and only if there is an ε > 0, r > 0 and k0 such that for all
k ≥ k0,

(52)
#(Λk ∩B(x, r/

√
k))∫

B(x,r/
√
k)
ik∂∂̄φ

<
1

π
− ε ∀x ∈ X,

Remark that the density condition (52) is invariant under change of metric, which can
be shown in a simiar way as we did above for the condition (47). We will first check that
condition (52) implies that Λ is interpolating. We start by the following reduction.

Proposition 2. Let Λ be separated. If there is a C > 0 such that for every k ≥ k0 and
every λ ∈ Λk there is a section sλ ∈ H0(Lk) with

(i) |sλ(λ)| = 1;
(ii) supλ

∑
λ′ 6=λ |sλ(λ′)| < 1/2;

(iii) supλ′
∑

λ 6=λ′ |sλ(λ′)| < 1/2;

(iv) ‖
∑
cλsλ‖2

2 ≤ Ck−1
∑
|cλ|2;

then Λ is an interpolation array.

Proof. Let `2(Λk) be endowed with the norm ‖v‖2 := k−1
∑

Λk
|vλ|2. We consider the

following two operators. The first is the restriction operator R : H0(Lk)→ `2(Λk) defined
as R(s) = {s(λ)}. It is bounded from H0(Lk) endowed with the L2 norm by the Plancherel-
Pólya inequality (Lemma 2) since Λ is separated and its norm ‖R‖ depends only on the
separation constant of Λ.

The second operator is E : `2(Λk) → H0(Lk) defined as E({vλ}) =
∑
〈vλ, sλ(λ)〉sλ(x).

It is bounded clearly by properties (i) and (iv). If we prove that RE : `2 → `2 is invertible
with the norm of the inverse ‖(RE)−1‖ ≤ C bounded independently of k, then clearly Λ
is interpolating, because any values {vλ} are attained by the section s = E(RE)−1({vλ})
with size control.

But the conditions (i),(ii),(iii) imply that the operator RE − Id : `2(Λk) → `2(Λk) by
Schur’s Lemma has norm bounded by 1/2. Thus RE is invertible.
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To finish the proof of the sufficiency of (52) we are going to construct the sections as in
the Proposition 2. Around any given λ ∈ Λk we can consider normal coordinates. Since by
hypothesis the density is small the corresponding sequence Σk is an interpolation sequence
for the BF2 space in C. Actually since the separation constant is uniform and the density
is uniform then by a theorem of Seip and Walsten the constants of interpolation for all the
sequences Σk around any point λ ∈ Λk will be uniformly bounded, for k ≥ k0. Thus we can
construct functions fkλ such that |fkλ (0)| = 1, ‖fkλ‖ ≤ C and fkλ (σ) = 0 for all σ ∈ Σk \ 0.
Now we can construct a global section gλ ∈ H0(Lk) such that near λ, gλ(z) is very close
to fλ(z)kekL(z), where ekL(z) is the local frame around λ used for the normal coordinates.

In order to do this we define gλ = χλ,k(z)fkλ (z)ek(z) + u, where χλ,k is a cutoff function

around λ such that gλ(z) = 0 if d(z, λ) > 2C/
√
k and gλ(z) = 1 if d(z, λ) < C/

√
k and u

is the solution to the equation ∂̄u = ∂̄χλ,kf
k
λ (z)ek(z) provided by the Hörmander theorem.

This theorem ensures that ‖u‖2 ≤ ε, provided that the cutoff constant C is big enough.
This is not enough if we want the decay needed in the Proposition 2, in particular

in the items (ii),(iii) and (iv). We are again going to use the extra freedom that we
have because the hypothesis is an open condition. We could have taken fkλ such that∫
|fkλ |2e−(1−ε)|z|2 < +∞ and in this case we could have constructed gλ ∈ H0(L(1−ε)k) such

that
|gλ(λ)| = 1, ‖gλ‖2 ≤ C/k, k−1

∑
λ′ 6=λ

|gλ(λ′)|2 ≤ ε.

and we can take in the construction ε > 0 as small as we want without affecting the K.

We define sλ(x) = gλ(x)⊗
[

Φ
εk/2
λ (x)

|Π(ε/2)k(λ,λ)|

]2

and using (9) it is easy to check that

sup
X
|
∑
Λk

cλsλ(x)| . sup
Λk

|cλ| and

∫
X

|
∑
Λk

cλsλ(x)| . k−1
∑
Λk

|cλ|.

Thus by interpolation we get ‖
∑
cλsλ‖2

2 ≤ Ck−1
∑
|cλ|2 which gives (iv). Finally (ii),(iii)

can be checked in a similar way.

9.4. We turn now to the neccesity of the density condition (52). We need to check that
the density condition that we proved that was necessary in Corollary 2 is actually a strict
density condition. As a technical tool to prove the necessity of the strict inequality we
need to work with L1 interpolating arrays. The definition is the following:

Definition 7. We say that a separated array Λ = {Λk} is an L1-interpolation array if
there is k0 and a constant 0 < C < ∞ such that, for each k ≥ k0 and any set of vectors
{vλ}λ∈Λk (each vλ is an element of the fiber of λ in Lk) there is a section s ∈ H0(Lk) such
that

s(λ) = vλ, λ ∈ Λk,

and

(53)

∫
X

∣∣s(x)
∣∣ ≤ Ck−1

∑
λ∈Λk

|vλ|.
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On each level k ≥ k0, the best constant Ck such that (53) holds for all s ∈ H0(Lk)
that interpolate the prescribed values, is called the constant of interpolation at level k. Of
course Λ is an interpolation array if all the constants {Ck} are uniformly bounded. There
is an alternative way of computing Ck by duality.

Proposition 3. The constant of L1 interpolation at level k is comparable to the smallest
constant Ak such that

sup
x∈X

k−1
∣∣∣∑

Λk

〈aλ,Πk(x, λ)〉
∣∣∣ ≤ Ak sup

Λk

|aλ|,

where {aλ}λ∈Λk are arbitrary elements on the fiber of λ in Lk.

Proof. This is standard and follows from the fact that the Bergman kernel decays very fast
away from the diagonal (9). Thus the Bergman projection from sections of Lk endowed
with the Lp norm to holomorphic sections endowed with the Lp norm is bounded for all
p ∈ [1,∞], and the dual space of H0(Lk) with the L1 norm is the space H0(Lk) endowed
with the supremum norm.

It will be convenient to compare interpolating arrays in L1 and in L2 and we will use
the following proposition

Proposition 4. If Λ = {Λk} is an L1 interpolation array then {Λ(1−ε)k} is an L2 interpo-
lation array.

Proof. If Λ is an L1 interpolation array then for each λ ∈ Λ(1−2ε)k we can build a “Lagrange

type” section sλ ∈ H0(L(1−2ε)k) such that |sλ(λ)| = 1, |sλ(λ′)| = 0 for all λ′ ∈ Λ(1−2ε)k\{λ},
and ‖sλ‖L1 ≤ C/k. Then by the sub-mean value property (10) we obtain supX |sλ(x)| ≤
Ck‖sλ‖L1 ≤ C. Thus we can use the same argument as in Theorem 6 and we prove that
{Λ(1−ε)k} is an L2-interpolation array.

The proof of strict inequality (52) follows once we establish the following

Proposition 5. Assume that dim(X) = 1. Let Λ be an L2-interpolating array. There is
a ε > 0 such that {Λ(1+ε)k} is L2-interpolating.

Proof. We know by Theorem 5 than any weak limit Σ ∈ W (Λ) is an interpolating sequence
in BF2(C). Thus by the description of interpolating sequences for such spaces obtained in
[SW92] and [Sei92], the upper Beurling density D+(Σ) < 1. We will prove that under this
circumstances there is a ε > 0 such that {Λ(1+2ε)k} is L1-interpolating.

We argue by contradiction. Suppose not, then, for any n the interpolation constants at
level k, Ck for Λ(1+1/n)k blow up. Thus by the dual description of Ck given in Proposition 3
we can find sequences of vectors {aλ}λ∈Λ(1+1/n)k

such that supΛ(1+1/n)k
|aλ| = 1 and

sup
x∈X

k−1

∣∣∣∣ ∑
Λ(1+1/n)k

〈aλ,Πk(x, λ)〉
∣∣∣∣ = o(1), as k →∞.

If we fix n and by passing to a subsequence in normal coordinates around the points λ∗k
where |aλ| takes its maximum value, we can extract a subsequence of Λ(1+1/n)k as k →∞ in
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normal coordinates that scaled appropriately converges weakly to the separated sequence
Σn ⊂ C. Moreover, after taking a subsequence again, there are subsequences akλ → anσ for
all σ ∈ Σn. We are going to prove that in this case

fn(z) :=
∑
σ∈Σn

anσe
σ̄z−1/2|σ|2 ≡ 0,

with |a0| = 1, and supσ |anσ| ≤ 1.

To see this we will prove that for any ε > 0, sup|z|<1 |fn(z)|e−|z|2 ≤ ε.
Observe that since Σn is separated and |anσ| ≤ 1, the decay of the Bargmann-Fock kernel

away from the diagonal implies that for any ε > 0 it is possible to find R > 0 such that

sup
|z|<1

∣∣∣∣∣ ∑
σn∈Σn,|σ|>R

anσe
σ̄z− 1

2
|σ|2Bigg|e−

1
2
|z|2 ≤ ε

So we only need to care about the points σ ∈ Σn ∩ D(0, R). But this we can deal with
because, with certain abuse of notation,

k−1
∑

λ∈Λ(1+1/n)k∩D(λ∗k,R/
√
k)

〈aλ,Πk(x, λ)〉 −→ 1

π

∑
σ∈Σn,|σ|<R

anσe
σ̄z− 1

2
|σ|2− 1

2
|z|2

uniformly in |z| < 1 when the section is expressed in appropriately scaled normalized
coordinates around λ∗k. This property is usually called the universality of the reproducing
kernels and it is proved in [BSZ00, Theorem 3.1]. Actually in [BSZ00] it is assumed that
X is equipped with the metric induced by the curvature of the line bundle, but since the
condition (52) is invariant under change of metric we may also assume that this is the case.
The sum

k−1

∣∣∣∣∣ ∑
λ∈Λ(1+1/n)k∩D(λ∗k,R/

√
k)

〈aλ,Πk(x, λ)〉

∣∣∣∣∣ ≤ ε,

if k is big enough because the global sum for all λ ∈ Λ(1+1/n)k converges to zero and the

terms λ outside the ball D(λ∗k, R/
√
k) are small when R is big because Λ(1+1/n)k is separated

and there is a fast decay of the normalized reproducing kernel away from the diagonal (9).
Finally we have proved that fn ≡ 0 and {anσ} is uniformly bounded sequence with a0 = 1.

We can take a subsequence as n→∞ and we find Σn → Σ weakly and there is a bounded
sequence {aσ} such that f(z) =

∑
aσe

σ̄z−|σ|2/2 ≡ 0 and |a0| = 1. This is clearly not
possible since Σ ∈ W (Λ) and thus it has D+(Λ) < 1, thus Λ is interpolating for the L1

Bargmann-Fock space and this means that by duality

sup
σ
|aσ| ≤ C sup

z∈C

∣∣∣∣∑ aσe
σ̄z−|σ|2/2

∣∣∣∣e−|z|2 .
We have thus proved that {Λ(1+2ε)k} is L1-interpolation. We finish the proof by observing
that by Proposition 4 this implies that {Λ(1+ε)k} is L2-interpolation.
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