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Chapter 1

Preface

The Combinatoric, Coding and Security Group (CCSG) is a research group
in the Department of Information and Communications Engineering (DEIC)
at the Universitat Autònoma de Barcelona (UAB).

The research group CCSG has been uninterruptedly working since 1987
in several projects and research activities on Information Theory, Commu-
nications, Coding Theory, Source Coding, Cryptography, Electronic Voting,
Network Coding, etc. The members of the group have been producing mainly
results on optimal coding. Specifically, the research has been focused on
uniformly-packed codes; perfect codes in the Hamming space; perfect codes in
distance-regular graphs; the classification of optimal codes of a given length;
and codes which are close to optimal codes by some properties, for example,
Reed-Muller codes, Preparata codes, Kerdock codes and Hadamard codes.

Part of the research developed by CCSG deals with Z2Z4-linear codes.
There are no symbolic software to work with these codes, so the members of
CCSG have been developing this new package that supports the basic facil-
ities for Z2Z4-additive codes. Specifically, this Magma package generalizes
most of the known functions for codes over the ring Z4, which are subgroups
of Zn4 , to Z2Z4-additive codes, which are subgroups of Zγ2 × Zδ4, maintain-
ing all the functionality for codes over Z4 and adding new functions which,
not only generalize the previous ones, but introduce new variants when it is
needed. A beta version of this new package for Z2Z4-additive codes and this
manual with the description of all functions can be downloaded from the web
page http://ccsg.uab.cat. For any comment or further information about
this package, you can send an e-mail to support-ccsg@deic.uab.cat.

The authors would like to thank Lorena Ronquillo, Jaume Pernas, Roger
Ten-Valls, and Cristina Diéguez for their contributions developing some parts
of this Magma package.
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Chapter 2

Z2Z4-additive codes

2.1 Introduction

Magma currently supports the basic facilities for linear codes over integer
residue rings and galois rings [7, Chapter 119], including cyclic codes and
the complete weight enumerator calculation. Moreover, some functions are
available for the special case of linear codes over Z4 (also called Z4-codes or
quaternary linear codes), which are subgroups of Zn4 .

Linear codes over Z4 have been studied and became significant since, after
applying the Gray map from Z4 to binary pairs, we obtain binary nonlinear
codes better than any known binary linear code with the same parameters.
More specifically, Hammons et. al. [11] show how to construct well known
binary nonlinear codes like Kerdock codes and Delsarte-Goethals codes by
applying the Gray map to linear codes over Z4. Further, they solve an
old open problem on coding theory about that the weight enumerators of
the nonlinear Kerdock and Preparata codes satisfy the MacWilliams identi-
ties. Later, several other binary nonlinear codes constructed using the Gray
map on linear codes over Z4, and with the same parameters as some well
known families of binary linear codes (for example, extended Hamming codes,
Hadamard codes, and Reed-Muller codes) have been studied and classified
[5, 13, 15, 18, 19, 22].

Magma also supports functions for additive codes over a finite field,
which are a generalization of the linear codes over a finite field [7, Chapter
120] in a Hamming scheme. According to a more general definition of additive
codes given by Delsarte in 1973 [8, 9], the additive codes are subgroups of the
underlying abelian group in a translation association scheme. In the special
case of a binary Hamming scheme, that is, when the underlying abelian group
is of size 2nbin , the only structures for the abelian group are those of the form
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Zα2 × Zβ4 , with α + 2β = nbin. Therefore, the codes that are subgroups of
Zα2 ×Zβ4 are also called additive codes. In order to distinguish them from the
additive codes over a finite field, we call them Z2Z4-additive codes.

Z2Z4-additive codes are subgroups of Zα2 × Zβ4 , so they can be seen as
a generalization of binary and quaternary linear codes. Note that when
α = 0, these codes are the linear codes over Z4, and when β = 0, they
are the binary linear codes. As for linear codes over Z4, after applying
the Gray map to the Z4 coordinates of a Z2Z4-additive code, we obtain
binary nonlinear codes. The binary image of a Z2Z4-additive code under
the extended Gray map is called Z2Z4-linear code. There are Z2Z4-linear
codes in several important classes of binary codes. For example, Z2Z4-linear
perfect single error-correcting codes (or 1-perfect codes) are found in [21]
and fully characterized in [4]. Also, in subsequent papers [5, 17, 16], Z2Z4-
linear extended 1-perfect and Hadamard codes are studied and classified.
Therefore, Z2Z4-additive codes have allowed to classify more binary nonlinear
codes, giving them an structure as linear codes over Z4 or Z2Z4-additive
codes.

Part of the research developed by the Combinatorics, Coding and Security
Group (CCSG) deals with linear codes over Z4, as well as Z2Z4-additive
codes. Since there are no symbolic software to work with Z2Z4-additive codes,
the members of CCSG have been developing this new package that supports
the basic facilities for Z2Z4-additive codes. Specifically, this Magma package
generalizes most of the known functions for codes over the ring Z4 to Z2Z4-
additive codes, maintaining all the functionality for codes over Z4 and adding
new functions which, not only generalize the previous ones, but introduce new
variants when it is needed.

Let C be an Z2Z4-additive code. Since C is a subgroup of Zα2 × Zβ4 ,
it is isomorphic to an abelian structure Zγ2 × Zδ4. Therefore, we have that
|C| = 2γ4δ and the number of codewords of order two in C is 2γ+δ. Let X
(respectively Y ) be the set of Z2 (respectively Z4) coordinate positions, so
|X| = α and |Y | = β. Unless otherwise stated, the set X corresponds to
the first α coordinates and Y corresponds to the last β coordinates. Call
CX (respectively CY ) the punctured code of C by deleting the coordinates
outside X (respectively Y ). Let Cb be the Z2Z4-additive subcode of C which
contains all order two codewords and let κ be the dimension of (Cb)X , which
is a binary linear code. For the case α = 0, we will write κ = 0. Considering
all these parameters, we will say that C is of type (α, β; γ, δ;κ). Note that
the quaternary linear code CY is of type (0, β; γY , δ; 0), where 0 ≤ γY ≤ γ,
and the binary linear code CX is a code of length α and dimension γX , or
equivalently of type (α, 0; γX , 0; γX), where κ ≤ γX ≤ γ.
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Moreover, since the Z2Z4-additive codes are subgroups of Zα2 × Zβ4 and
have an abelian structure Zγ2 ×Zδ4, every codeword is uniquely expressible in
the form

γ∑
i=1

λiui +

γ+δ∑
j=γ+1

µjvj,

where λi ∈ Z2 for 1 ≤ i ≤ γ, µj ∈ Z4 for γ + 1 ≤ j ≤ γ + δ and ui, vj are

vectors in Zα2 × Zβ4 of order two and order four, respectively. The vectors
ui, vj give us a generator matrix of size (γ + δ)× (α + β) of the form(

B1 2B3

B2 Q

)
, (2.1)

where B1, B2, B3 are matrices over Z2 of size γ ×α, δ×α and γ × β, respec-
tively; and Q is a matrix over Z4 of size δ × β with quaternary row vectors
of order four.

In this chapter, the term “code” will refer to a Z2Z4-additive code, unless
otherwise specified. In order to be able to use the functions for quaternary
linear codes, from now on the Z2Z4-additive codes will be represented as
quaternary linear codes changing the ones by twos in the first α binary co-
ordinates, so they will be subgroups of Zα+β4 . However, these codes are not
equivalent to the quaternary linear codes, since the inner product defined in
Zα2 ×Zβ4 gives us that the dual code of a Z2Z4-additive code is not equivalent
to the dual code of the corresponding quaternary linear code.

Finally, as a general reference on Z2Z4-additive codes, the reader is re-
ferred to [6], where most of the concepts on Z2Z4-additive codes implemented
with the following functions are described in detail.

Note: All the names of the functions in this Magma package contain
Z2Z4 to distinguish them from the ones that have the same name and are for
linear codes over finite rings. In this manual, the functions that do not con-
tain Z2Z4 are not implemented here because they are functions that already
exist for codes over finite rings and can be also applied to Z2Z4-additive
codes.

Note: Since the Z2Z4-additive codes will be represented as quaternary
linear codes, it is necessary to remember that for modules defined over rings
with zero divisors, it is not possible to talk about the concept of dimension
(the modules are not free) [7, p. 5521]. However, in Magma each code over
such a ring has a unique generator matrix corresponding to the Howell form
[12, 23]. The number of rows k in this generator matrix will be called the
pseudo-dimension of the code. It should be noted that this pseudo-dimension
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is not invariant between equivalent codes, and so does not provide structural
information like the dimension of a code over a finite field.

Note: In order to use the functions in Subsection 2.5.4, it is neces-
sary to use Magma version 2.22 or later. It is also possible installing the
package “Codes over Z4”, which can be downloaded from the web page
http://ccsg.uab.cat. The functions in this package expand the current
functionality for codes over Z4 in Magma. Specifically, there are functions
to construct some families of codes over Z4, efficient functions for computing
the rank and dimension of the kernel of any code over Z4, as well as general
functions for computing coset representatives for a subcode in a code over
Z4. There are also functions for computing the permutation automorphism
group for Hadamard and extended perfect codes over Z4, and their orders.
Functions related to the information space, information sets, syndrome space
and coset leaders for codes over Z4 can also be found. Finally, functions to
decode codes over Z4 by using different methods are also provided.

2.2 Construction of Z2Z4-Additive Codes

2.2.1 General Z2Z4-Additive Codes

Z2Z4AdditiveCode(L : parameters)

Alpha RngIntElt Default: 0
OverZ2 BoolElt Default: false

Create a Z2Z4-additive code C given as a record with two fields:

• Alpha: The length of the binary part of the Z2Z4-additive code.

• Code: The quaternary linear code equal to the Z2Z4-additive code,
where the ones in the first Alpha coordinates are represented by
twos.

The corresponding quaternary linear code of C is obtained using the
function LinearCode() as a subspace of V = Zn4 generated by L, where:

1. L is a sequence of elements of V ,

2. or, L is a subspace of V ,

3. or, L is a m× n matrix A over the ring Z4,

4. or, L is a quaternary linear code,

5. or, L is a binary linear code.
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The parameter Alpha specifies the length of the binary part of the code.
When L is a binary linear code, the default value is the length of the
code, otherwise the default value is 0.

The parameter OverZ2 specifies whether the first Alpha coordinates of
each element in L are represented as elements in Z2 = {0, 1} or, otherwise,
they are represented as elements in {0, 2} ⊂ Z4. The default value is
false. If OverZ2 is true and Alpha > 0, then the first Alpha coordinates
of each element in L must be 0 or 1. Otherwise, if OverZ2 is false and
Alpha > 0, then the first Alpha coordinates of each element in L must
be 0 or 2.

Example H2E1
We define a Z2Z4-additive code by giving a sequence of elements of V , or equivalently a
m× n matrix over Z4, and the length of the binary part of the code.

> Z4 := IntegerRing(4);

> V := RSpace(Z4, 5);

> C1 := Z2Z4AdditiveCode([V![2,2,1,1,3],V![0,2,1,2,1],

V![2,2,2,2,2],V![2,0,1,1,1]] : Alpha:=2);

> C1;

rec<Z2Z4Code |

Code := ((5, 4^2 2^2)) Linear Code over IntegerRing(4)

Generator matrix:

[2 0 0 0 2]

[0 2 0 0 2]

[0 0 1 0 3]

[0 0 0 1 0],

Alpha := 2

>

> A := Matrix(Z4, [[2,2,1,1,3],[0,2,1,2,1],[2,2,2,2,2],[2,0,1,1,1]]);

> C2 := Z2Z4AdditiveCode(A : Alpha:=2);

> C2;

rec<Z2Z4Code |

Code := ((5, 4^2 2^2)) Linear Code over IntegerRing(4)

Generator matrix:

[2 0 0 0 2]

[0 2 0 0 2]

[0 0 1 0 3]

[0 0 0 1 0],

Alpha := 2

>

> Z2Z4Equal(C1, C2);

true
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Alternatively, we also define the same Z2Z4-additive codes by giving the first Alpha coor-
dinates of each vector as elements in {0, 1} instead of in {0, 2}, changing the twos by ones
and adding the parameter OverZ2.

> C1b := Z2Z4AdditiveCode([V![1,1,1,1,3],V![0,1,1,2,1],V![1,1,2,2,2],

V![1,0,1,1,1]] : Alpha:=2, OverZ2:=true);

> Ab := Matrix(Z4, [[1,1,1,1,3],[0,1,1,2,1],[1,1,2,2,2],[1,0,1,1,1]]);

> C2b := Z2Z4AdditiveCode(Ab : Alpha:=2, OverZ2:=true);

> Z2Z4Equal(C1, C1b) and Z2Z4Equal(C2, C2b);

true

Example H2E2
Any quaternary linear code and any binary linear code is also a Z2Z4-additive code, since
the Z2Z4-additive codes can be seen as a generalization of the quaternary linear codes,
when α = 0, and a generalization of the binary linear codes, when β = 0.

> B := RandomLinearCode(GF(2), 7, 3);

> B;

[7, 3, 1] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 0 1]

[0 1 1 1 0 1 1]

[0 0 0 0 1 0 0]

> B_add := Z2Z4AdditiveCode(B);

> B_add;

rec<Z2Z4Code |

Code := ((7, 4^0 2^3)) Linear Code over IntegerRing(4)

Generator matrix:

[2 0 0 2 0 0 2]

[0 2 2 2 0 2 2]

[0 0 0 0 2 0 0],

Alpha := 7

>

> Q := RandomLinearCode(IntegerRing(4), 5, 2);

> Q;

((5, 4^1 2^1)) Linear Code over IntegerRing(4)

Generator matrix:

[2 0 0 2 0]

[0 1 0 1 1]

> Q_add := Z2Z4AdditiveCode(Q);

> Q_add;

rec<Z2Z4Code |

Code := ((5, 4^1 2^1)) Linear Code over IntegerRing(4)

Generator matrix:

[2 0 0 2 0]
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[0 1 0 1 1],

Alpha := 0

>

2.2.2 Some Trivial Z2Z4-Additive Codes

Z2Z4AdditiveZeroCode(α,β)

Given two non-negative integers α and β, return the Z2Z4-additive code
of type (α, β; 0, 0; 0) consisting of only the zero codeword.

Z2Z4AdditiveRepetitionCode(α,β)

Given two non-negative integers α and β, return the Z2Z4-additive code
of type (α, β; 1, 0; 1) generated by the vector (1, . . . , 1|2, . . . , 2).

Z2Z4AdditiveUniverseCode(α,β)

Given two non-negative integers α and β, return the generic Z2Z4-additive
code of type (α, β;α, β;α) consisting of all possible codewords.

RandomZ2Z4AdditiveCode(α,β,γ,δ,κ)

Given two, three, four or five non-negative integers α, β, γ, δ, κ, return a
random Z2Z4-additive code of type (α, β; γ, δ;κ). Note that there exists
a Z2Z4-additive code of type (α, β; γ, δ;κ) if and only if α, β, γ, δ, κ ≥ 0,
α + β > 0, κ ≤ min(α, γ) and 0 < δ + γ ≤ β + κ. When there are less
than five integers, they correspond to the first ones in the above order
and the rest are computed randomly.

Example H2E3
The zero Z2Z4-additive code of type (α, β; 0, 0; 0) is contained in every Z2Z4-additive
code of type (α, β; γ, δ;κ), and similarly every Z2Z4-additive code of type (α, β; γ, δ;κ) is
contained in the universe Z2Z4-additive code of type (α, β;α, β;α).

> a := 2; b := 3;

> U := Z2Z4AdditiveUniverseCode(a, b);

> Z := Z2Z4AdditiveZeroCode(a, b);

> R := RandomZ2Z4AdditiveCode(a, b);

> Z2Z4Subset(Z, R) and Z2Z4Subset(R, U);

true
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2.2.3 Families of Z2Z4-Additive Codes

Z2Z4HadamardCode(δ, m : parameters)

OverZ4 BoolElt Default: false

The function returns a Z2Z4-additive Hadamard code of type
(α, β; γ, δ;κ). The parameter OverZ4 specifies whether the code is over
Z4, that is α = 0, or, otherwise, α 6= 0. The default value is false.
When OverZ4 is true, given an integer m ≥ 1 and an integer δ such
that 1 ≤ δ ≤ b(m+1)/2c, return a Z2Z4-additive Hadamard code of type
(0, β; γ, δ; 0), where β = 2m−1 and γ = m+1−2δ. When OverZ4 is false,
given an integer m ≥ 1 and an integer δ such that 0 ≤ δ ≤ bm/2c, return
a Z2Z4-additive Hadamard code of type (α, β; γ, δ; γ), where α = 2m−δ,
β = 2m−1 − 2m−δ−1 and γ = m + 1 − 2δ. Moreover, return a generator
matrix with γ + δ rows constructed in a recursive way, where the ones in
the first α coordinates are represented by twos.

A Z2Z4-additive Hadamard code of type (α, β; γ, δ;κ) is a Z2Z4-additive
code such that, after the Gray map, give a binary (not necessarily linear)
code with the same parameters as the binary Hadamard code of length
2m.

Z2Z4ExtendedPerfectCode(δ, m : parameters)

OverZ4 BoolElt Default: false

The function returns a Z2Z4-additive extended perfect code of type
(α, β; γ, δ;κ). The parameter OverZ4 specifies whether the code is over
Z4, that is α = 0, or, otherwise, α 6= 0. The default value is false.
When OverZ4 is true, given an integer m ≥ 1 and an integer δ such that
1 ≤ δ ≤ b(m+ 1)/2c, return a Z2Z4-additive extended perfect code, such
that its additive dual code is of type (0, β; γ, δ; 0), where β = 2m−1 and
γ = m + 1− 2δ. When OverZ4 is false, given an integer m ≥ 1 and an
integer δ such that 0 ≤ δ ≤ bm/2c, return a Z2Z4-additive extended per-
fect code, such that its additive dual code is of type (α, β; γ, δ; γ), where
α = 2m−δ, β = 2m−1 − 2m−δ−1 and γ = m + 1 − 2δ. Moreover, return a
parity check matrix with γ+δ rows constructed in a recursive way, where
the ones in the first α coordinates are represented by twos.

A Z2Z4-additive extended perfect code of type (α, β; γ, δ;κ) is a Z2Z4-
additive code such that, after the Gray map, give a binary (not necessarily
linear) code with the same parameters as the binary extended perfect code
of length 2m.
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Example H2E4
Some Z2Z4-additive codes whose images under the Gray map are binary codes having the
same parameters as some well-known families of binary linear codes are explored.

First, a Z2Z4-additive Hadamard code C with α = 0 and another one with α 6= 0 are
defined. The matrix Gc is the quaternary matrix used to generate C where the ones in
the first α coordinates are represented by twos.

> C, Gc := Z2Z4HadamardCode(3, 5 : OverZ4 := true);

> C‘Alpha;

0

> (C‘Code eq HadamardCodeZ4(3, 5)) and (C‘Code eq LinearCode(Gc));

true

> HasZ2Z4LinearGrayMapImage(C);

false

> n := Z2Z4BinaryLength(C);

32

> (Z2Z4MinimumLeeDistance(C) eq n/2) and (Z2Z4Cardinal(C) eq 2*n);

true

> C, Gc := Z2Z4HadamardCode(2, 5);

> C‘Alpha;

8

> Z2Z4Equal(C, Z2Z4AdditiveCode(LinearCode(Gc) : Alpha := C‘Alpha));

true

> HasZ2Z4LinearGrayMapImage(C);

false

> n := Z2Z4BinaryLength(C);

32

> (Z2Z4MinimumLeeDistance(C) eq n/2) and (Z2Z4Cardinal(C) eq 2*n);

true

Then, a Z2Z4-additive extended perfect code D with α 6= 0 is defined such that its additive
dual code is of type (25−2, 25−1−25−2−1; 5 + 1−2 ·2, 3; 25−2) = (8, 12; 2, 2; 2). The matrix
Gd is the quaternary matrix which is used to generate the additive dual code of D where
the ones in the first α coordinates are represented by twos.

> C, Gc := Z2Z4HadamardCode(2, 5);

> D, Gd := Z2Z4ExtendedPerfectCode(2, 5);

> Z2Z4Equal(D, Z2Z4Dual(C));

true

> Gc eq Gd;

true

> n := Z2Z4BinaryLength(D);

> Z2Z4Cardinal(D) eq 2^(n-1-Log(2,n));

true

> Z2Z4MinimumLeeDistance(D) eq 4;

true
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2.3 Invariants of a Z2Z4-Additive Code

2.3.1 Basic Numerical Invariants

Z2Z4Length(C)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), return the length
n = α + β, and the sequence [α, β] with the number of coordinates over
Z2 and the number of coordinates over Z4, respectively.

Z2Z4BinaryLength(C)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), return the binary
length nbin = α+ 2β of C, which corresponds to the length of the binary
code Cbin = Φ(C), where Φ is the Gray map defined in Subsection 2.5.1.

Z2Z4PseudoDimension(C)

Z2Z4NumberOfGenerators(C)

Z2Z4Ngens(C)

The number of generators (which equals the pseudo-dimension k) of the
Z2Z4-additive code C as a quaternary linear code.

Z2Z4Type(C)

Given a Z2Z4-additive code C, return a sequence with the parameters
[α, β, γ, δ, κ], that is, the type of the code.

Z2Z4Cardinal(C)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), return the number
of codewords belonging to C, that is 2γ4δ.

Z2Z4InformationRate(C)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), return the informa-
tion rate of C, that is the ratio (γ + 2δ)/(α + 2β).

Example H2E5
Given a Z2Z4-additive code C, we compute its type, the number of codewords and its
information rate.

> V := RSpace(IntegerRing(4), 6);

> C := Z2Z4AdditiveCode([V![2,2,1,1,3,1],V![2,2,2,2,2,2],V![0,0,1,1,1,3]] :

Alpha:=2);

> Z2Z4Type(C);

[ 2, 4, 2, 1, 1 ]

> Z2Z4Cardinal(C);

16

> Z2Z4InformationRate(C);

0.400000000000000000000000000000
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2.3.2 The Code Space

Z2Z4Generic(C)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), return the generic
Z2Z4-additive code of type (α, β;α, β;α) in which C is contained.

Z2Z4Name(C,i)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ) and a positive integer
i, return the i-th generator of C as a quaternary linear code, where the
ones in the first α coordinates are represented by twos.

Z2Z4Set(C)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), return the set con-
taining all its codewords, where the ones in the first α coordinates are
represented by twos.

Z2Z4Generators(C)

The generators for the Z2Z4-additive code C of type (α, β; γ, δ;κ) as a
quaternary linear code, returned as a set of elements of C‘Code, where
the ones in the first α coordinates are represented by twos.

Z2Z4GeneratorMatrix(C)

The unique generator matrix for the Z2Z4-additive code C of type
(α, β; γ, δ;κ) as a quaternary linear code, corresponding to the Howell
form (see [12, 23]). The ones in the first α coordinates are represented by
twos.

Z2Z4OrderTwoGenerators(C)

The γ generators of the Z2Z4-additive code C of type (α, β; γ, δ;κ), re-
turned as a set of elements of C‘Code, where the ones in the first α
coordinates are represented by twos.

Z2Z4OrderFourGenerators(C)

The δ generators of the Z2Z4-additive code C of type (α, β; γ, δ;κ), re-
turned as a set of elements of C‘Code, where the ones in the first α
coordinates are represented by twos.

Z2Z4OrderTwoSubcodeGenerators(C)

The γ + δ generators of the Z2Z4-additive subcode Cb which contains all
order two codewords of the Z2Z4-additive code C of type (α, β; γ, δ;κ),
returned as a set of elements of Cb‘Code, where the ones in the first α
coordinates are represented by twos.
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Z2Z4MinRowsGeneratorMatrix(C)

A generator matrix of the form (2.1) for the Z2Z4-additive code C of
type (α, β; γ, δ;κ), with the minimum number of rows, that is with γ + δ
rows: γ rows of order two and δ rows of order four. It also returns the
parameters γ and δ. The ones in the first α coordinates are represented
by twos.

2.3.3 Conversion Functions

The Z2Z4-additive codes are internally represented as quaternary linear
codes, with their first α coordinates represented as elements in {0, 2} over
Z4 instead of elements in {0, 1} over Z2. This section provides functions
to convert the outputs given as a sequence, set or matrix of vectors over
Zα+β4 to a sequence or a set of tuples in the cartesian product set Zα2 ×Zβ4 ,
changing the twos over Z4 in the first α coordinates to ones over Z2.

FromZ4toZ2Z4(L,α)

Given a sequence L of vectors over Zα+β4 and an integer α, return the
conversion of these vectors to a sequence of tuples in the cartesian product
set Zα2 ×Zβ4 , changing the twos over Z4 in the first α coordinates to ones
over Z2. It is checked whether the elements in the first α coordinates are
in {0, 2}.

FromZ4toZ2Z4(S,α)

Given a set S of vectors over Zα+β4 and an integer α, return the conversion
of these vectors to a set of tuples in the cartesian product set Zα2 × Zβ4 ,
changing the twos over Z4 in the first α coordinates to ones over Z2. It
is checked whether the elements in the first α coordinates are in {0, 2}.

FromZ4toZ2Z4(M,α)

Given a matrix M over Z4 with α + β columns and an integer α, return
the conversion from M to a sequence of tuples in the cartesian product
set Zα2 ×Zβ4 , changing the twos over Z4 in the first α coordinates to ones
over Z2. It is checked whether the elements in the first α coordinates are
in {0, 2}.

2.3.4 The Dual Space

The inner product in Zα2 × Zβ4 is defined uniquely by

〈u, v〉 = 2(
α∑
i=1

uivi) +

α+β∑
j=α+1

ujvj ∈ Z4, (2.2)
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where u, v ∈ Zα2 × Zβ4 . Note that when α = 0 the inner product is the usual
one for vectors over Z4, and when β = 0 it is twice the usual one for vectors
over Z2.

The additive orthogonal code of a Z2Z4-additive code C, denoted by C⊥,
is defined in the standard way

C⊥ = {v ∈ Zα2 × Zβ4 | 〈u, v〉 = 0 for all u ∈ C}.

We will also call C⊥ the additive dual code of C. Note that the additive dual
code C⊥ is also a Z2Z4-additive code, that is a subgroup of Zα2 × Zβ4 .

Z2Z4Dual(C)

Given a Z2Z4-additive code C, return the additive dual code of C.

Z2Z4DualType(C)

Given a Z2Z4-additive code C, return a sequence with the parameters
[α, β, γ′, δ′, κ′], that is the type of the additive dual code of C. If C is of
type (α, β; γ, δ;κ), then its additive dual code is of type (α, β;α + γ −
2κ, β − γ − δ + κ;α− κ).

Z2Z4ParityCheckMatrix(C)

The unique parity-check matrix for the Z2Z4-additive code C of type
(α, β; γ, δ;κ), that is the unique generator matrix for the additive dual
code of C as a quaternary linear code, corresponding to the Howell form
(see [12, 23]). The ones in the first α coordinates are represented by twos.

Z2Z4MinRowsParityCheckMatrix(C)

A parity-check matrix of the form (2.1) for the Z2Z4-additive code C of
type (α, β; γ, δ;κ), that is a generator matrix for the additive dual code
of C, with the minimum number of rows, that is with γ + δ rows: γ rows
of order two and δ rows of order four. The ones in the first α coordinates
are represented by twos.

2.4 The Standard Form

A Z2Z4-additive code is in standard form if its generator matrix is of the
form:  Iκ Tb 2T2 0 0

0 0 2T1 2Iγ−κ 0
0 Sb Sq R Iδ

 ,

where Tb, T1, T2, R, Sb are matrices over Z2 and Sq is a matrix over Z4. Any
Z2Z4-additive code C is permutation-equivalent to a Z2Z4-additive code CSF
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which is in standard form (see [6]). Two Z2Z4-additive codes which differ
only by a coordinate permutation are said to be permutation-equivalent.

Z2Z4StandardForm(C)

Given any Z2Z4-additive code C, return a permutation-equivalent Z2Z4-
additive code CSF in standard form, together with the corresponding
isomorphism from C to CSF , the generator matrix in standard form, and
the coordinate permutation used to define the isomorphism.

IsZ2Z4StandardFormMatrix(M,[α,β,γ,δ,κ])

Return true if and only if the matrix M over Z4, where the ones in the
first α coordinates are represented by twos, is a generator matrix of a
Z2Z4-additive code of type (α, β; γ, δ;κ) in standard form.

Example H2E6
We compute the standard form of a certain Z2Z4-additive code. Note that the number of
rows in the general matrix of the standard code may be less than the number of rows in
the matrix of the original code.

> V := RSpace(IntegerRing(4), 8);

> C := Z2Z4AdditiveCode([V![0,0,2,1,1,1,2,1],V![0,0,0,2,0,1,3,1],

V![0,0,0,0,2,1,3,1],V![0,2,2,0,0,2,2,0],

V![2,2,0,0,1,2,0,2]] : Alpha:=3);

> C;

rec<recformat<Code: CodeLinRng, Alpha: RngIntElt> |

Code := ((8, 4^3 2^2)) Linear Code over IntegerRing(4)

Generator matrix:

[2 0 0 1 0 0 1 2]

[0 2 0 1 1 0 1 2]

[0 0 2 1 1 0 1 0]

[0 0 0 2 0 0 0 0]

[0 0 0 0 2 0 0 0]

[0 0 0 0 0 1 1 1]

[0 0 0 0 0 0 2 0],

Alpha := 3>

> C_SF, f, G_SF, p := Z2Z4StandardForm(C);

> G_SF;

[2 0 2 2 0 0 0 0]

[0 0 0 0 2 0 0 0]

[0 2 2 2 0 1 0 0]

[0 2 0 2 1 0 1 0]

[0 2 0 3 1 0 0 1]

> IsZ2Z4StandardFormMatrix(G_SF, Z2Z4Type(C));

true

> Z2Z4Equal(C, C_SF);

false
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> Z2Z4Equal(C_SF, Z2Z4AdditiveCode(G_SF : Alpha := C‘Alpha));

true

> C‘Code^p eq C_SF‘Code;

true

> {f(c) : c in C‘Code} eq Set(C_SF‘Code);

true

> {c^p : c in C‘Code} eq Set(C_SF‘Code);

true

2.5 Derived Binary and Quaternary Codes

2.5.1 The Gray Map

The Z2Z4-additive codes are subgroups C of Zα2 ×Zβ4 and the corresponding
binary codes are Cbin = Φ(C), where Φ is the following extension of the usual
Gray map: Φ : Zα2 × Zβ4 −→ Znbin2 , where nbin = α + 2β, given by

Φ(x, y) = (x, φ(y1), . . . , φ(yβ)) ∀x ∈ Zα2 , ∀y = (y1, . . . , yβ) ∈ Zβ4 ;

where φ : Z4 −→ Z2
2 is the usual Gray map, that is,

φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1), φ(3) = (1, 0).

This Gray map is an isometry which transforms Lee distances defined in
codes C over Zα2 × Zβ4 to Hamming distances defined in the binary codes
Cbin = Φ(C) (see Subsection 2.6.4). Note that the length of the binary code
Cbin is nbin = α + 2β.

Z2Z4GrayMap(C)

Given a Z2Z4-additive code C, return the Gray map for C. This is the
map Φ from C to Φ(C), as defined above.

Z2Z4GrayMapImage(C)

Given a Z2Z4-additive code C, return the image of C under the Gray
map as a sequence of vectors in Zα+2β

2 . As the resulting image may not
be a binary linear code, a sequence of vectors is returned rather than a
code.

HasZ2Z4LinearGrayMapImage(C)

Given a Z2Z4-additive code C, return true if and only if the image of
C under the Gray map is a binary linear code. If so, the function also
returns the image B as a binary linear code, together with the bijection
Φ : C → B.
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Example H2E7
Given a Z2Z4-additive code, we compute its image under the Gray map. This image is
not always a binary linear code.

> V := RSpace(IntegerRing(4), 4);

> C := Z2Z4AdditiveCode([V![2,0,0,2],V![0,1,0,3],V![0,0,1,3]] : Alpha:=1);

> C;

rec<Z2Z4Code |

Code := ((4, 4^2 2^1)) Linear Code over IntegerRing(4)

Generator matrix:

[2 0 0 2]

[0 1 0 3]

[0 0 1 3],

Alpha := 1

>

> HasZ2Z4LinearGrayMapImage(C);

false

> Cb := Z2Z4GrayMapImage(C);

> #Cb;

32

> V := RSpace(IntegerRing(4), 6);

> D := Z2Z4AdditiveCode([V![2,2,1,1,3,1],V![2,2,2,2,2,2],V![0,0,1,1,1,3]] :

Alpha:=2);

> D;

rec<Z2Z4Code |

Code := ((6, 4^1 2^2)) Linear Code over IntegerRing(4)

Generator matrix:

[2 2 0 0 0 0]

[0 0 1 1 1 3]

[0 0 0 0 2 2],

Alpha := 2

>

> f := Z2Z4GrayMap(D);

> D‘Code.1;

(2 2 0 0 0 0)

> f(D‘Code.1);

(1 1 0 0 0 0 0 0 0 0)

> D‘Code.2;

(0 0 1 1 1 3)

> f(D‘Code.2);

(0 0 0 1 0 1 0 1 1 0)

> D‘Code.3;

(0 0 0 0 2 2)

> f(D‘Code.3);

(0 0 0 0 0 0 1 1 1 1)

> l, B, f := HasZ2Z4LinearGrayMapImage(D);

> l;

true
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> B;

(10, 16, 2) Linear Code over IntegerRing(2)

Generator matrix:

[1 1 0 0 0 0 0 0 0 0]

[0 0 1 0 1 0 0 1 1 0]

[0 0 0 1 0 1 0 1 1 0]

[0 0 0 0 0 0 1 1 1 1]

> f(D‘Code.1) in B;

true

> f(D‘Code.2) in B;

true

> f(D‘Code.3) in B;

true

> Length(B) eq Z2Z4BinaryLength(D);

true

2.5.2 From Linear to Z2Z4-Additive Codes

Z2Z4AdditiveFromBinaryLinearCode(C)

Given a binary linear code C of length n, return the same code as a
Z2Z4-additive code, so with α = n and β = 0.

Z2Z4AdditiveFromQuaternaryLinearCode(C)

Given a quaternary linear code C of length n, return the same code as a
Z2Z4-additive code, so with α = 0 and β = n.

Example H2E8
We convert a binary linear code and a quaternary linear code to a Z2Z4-additive code.

> B := RandomLinearCode(GF(2), 7, 3);

> Q := RandomLinearCode(IntegerRing(4), 5, 2);

> B_add := Z2Z4AdditiveFromBinaryLinearCode(B);

> B_add;

rec<Z2Z4Code |

Code := ((7, 4^0 2^3)) Linear Code over IntegerRing(4)

Generator matrix:

[2 0 2 0 0 2 2]

[0 2 0 0 0 0 0]

[0 0 0 2 0 2 0],

Alpha := 7

>

> Q_add := Z2Z4AdditiveFromQuaternaryLinearCode(Q);

> Q_add;

rec<Z2Z4Code |
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Code := ((5, 4^2 2^0)) Linear Code over IntegerRing(4)

Generator matrix:

[1 0 0 3 3]

[0 1 0 3 3],

Alpha := 0

>

> IsZ2Z4AdditiveCode(B_add) and IsZ2Z4AdditiveCode(Q_add);

true

2.5.3 Subcodes CX and CY

Z2Z4LinearBinaryCode(C)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), return the binary
linear code CX of length α which is the punctured code of C by deleting
the coordinates outside X, where X is the set of the first α coordinates.

Z2Z4LinearQuaternaryCode(C)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), return the quaternary
linear code CY of length β which is the punctured code of C by deleting
the coordinates outside Y , where Y is the set of the last β coordinates.

Example H2E9
Given a Z2Z4-additive code C, we compute the corresponding binary linear code CX and
the corresponding quaternary linear code CY .

> V := RSpace(IntegerRing(4), 4);

> C := Z2Z4AdditiveCode([V![2,0,0,2],V![0,1,0,3],V![0,0,1,3]] : Alpha:=1);

> CX := Z2Z4LinearBinaryCode(C);

> CX;

(1, 2, 1) Cyclic Linear Code over IntegerRing(2)

Generator matrix:

[1]

> CY := Z2Z4LinearQuaternaryCode(C);

> CY;

((3, 4^2 2^1)) Cyclic Linear Code over IntegerRing(4)

Generator matrix:

[1 0 1]

[0 1 1]

[0 0 2]

> _, n := Z2Z4Length(C);

> alpha := n[1]; beta := n[2];

> alpha; beta;

1

3

> Length(CX) eq alpha and Length(CY) eq beta;

true
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2.5.4 Span and Kernel Codes

Z2Z4SpanZ2Code(C)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), return SC =
Φ−1(Sbin) as a Z2Z4-additive code, and Sbin = 〈Cbin〉, that is the linear
span of Cbin, as a binary linear code of length α+ 2β, where Cbin = Φ(C)
and Φ is the Gray map.

Z2Z4KernelZ2Code(C)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), return its kernel KC

as a Z2Z4-additive subcode of C, and Kbin = Φ(KC) as a binary linear
subcode of Cbin of length α + 2β, where Cbin = Φ(C) and Φ is the Gray
map.

The kernel KC contains the codewords v such that 2v∗u ∈ C for all u ∈ C,
where ∗ denotes the component-wise product. Equivalently, the kernel
Kbin = Φ(KC) contains the codewords c ∈ Cbin such that c+Cbin = Cbin,
where Cbin = Φ(C) and Φ is the Gray map.

Z2Z4KernelCosetRepresentatives(C)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), return the coset
representatives [c1, . . . , ct] as a sequence of codewords of C, such that
C = KC ∪

⋃t
i=1

(
KC + ci

)
, where KC is the kernel of C as a Z2Z4-

additive subcode. It also returns the coset representatives of the corre-
sponding binary code Cbin = Φ(C) as a sequence of binary codewords
[Φ(c1), . . . ,Φ(ct)], such that Cbin = Kbin ∪

⋃t
i=1

(
Kbin + Φ(ci)

)
, where

Kbin = Φ(KC) and Φ is the Gray map.

Z2Z4DimensionOfSpanZ2(C)

Z2Z4RankZ2(C)

Given a Z2Z4-additive code C, return the dimension of the linear span
of Cbin, that is, the dimension of 〈Cbin〉, where Cbin = Φ(C) and Φ is the
Gray map.

Z2Z4DimensionOfKernelZ2(C)

Given a Z2Z4-additive code C, return the dimension of the Gray map
image of its Z2Z4-additive kernel KC , that is the dimension of Kbin =
Φ(KC), where Φ is the Gray map. Note that Kbin is always a binary
linear code.

Example H2E10

> M1 := Matrix(Integers(4), [[0,2,2,1,3,1],[0,0,0,2,2,2]]);

> C1 := Z2Z4AdditiveCode(M1 : Alpha:=3);
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> HasZ2Z4LinearGrayMapImage(C1);

true [9, 2, 5] Linear Code over GF(2)

Generator matrix:

[0 1 1 0 1 1 0 0 1]

[0 0 0 1 1 1 1 1 1]

Mapping from: ((6, 4^1 2^0)) Linear Code over IntegerRing(4) to [9, 2, 5] Linear

Code over GF(2) given by a rule

> Z2Z4DimensionOfSpanZ2(C1) eq Z2Z4DimensionOfKernelZ2(C1);

true

> S, Sb := Z2Z4SpanZ2Code(C1);

> K, Kb := Z2Z4KernelZ2Code(C1);

> Z2Z4Equal(K, C1) and Z2Z4Equal(C1, S);

true

> Kb eq Sb;

true

> M2 := Matrix(Integers(4),[[2,0,0,0,0,0,0,0,0,0,0,2],

[0,2,0,0,0,0,0,0,0,0,0,2],

[0,0,2,0,0,0,0,0,0,0,0,2],

[0,0,0,2,0,0,0,0,0,0,0,2],

[0,0,0,0,2,0,0,0,0,0,0,0],

[0,0,0,0,0,2,0,0,0,0,0,2],

[0,0,0,0,0,0,1,0,0,0,0,1],

[0,0,0,0,0,0,0,1,0,1,0,0],

[0,0,0,0,0,0,0,0,1,0,0,1],

[0,0,0,0,0,0,0,0,0,2,0,2],

[0,0,0,0,0,0,0,0,0,0,1,2]]);

> C2 := Z2Z4AdditiveCode(M2 : Alpha:=6);

> HasZ2Z4LinearGrayMapImage(C2);

false

> Z2Z4DimensionOfSpanZ2(C2) eq Z2Z4DimensionOfKernelZ2(C2);

false

> S, Sb := Z2Z4SpanZ2Code(C2);

> K, Kb := Z2Z4KernelZ2Code(C2);

> Z2Z4Subset(K, C2) and Z2Z4Subset(C2, S);

true

> Kb subset Sb;

true

2.6 Operations on Codewords

A Z2Z4-additive code C of type (α, β; γ, δ;κ) is represented in Magma as
a record with two fields: Alpha, the length of the binary part of the Z2Z4-
additive code; and Code, the quaternary linear code (or equivalently, the
subspace of V = Zα+β4 ) equal to the Z2Z4-additive code, where the ones in
the first α coordinates are represented by twos (see Subsection 2.2.1).
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In this section, in order to use the same functions as for quaternary linear
codes, notice that we will write C‘Code instead of C. Also notice that all
codewords, which are elements in Zα2 × Zβ4 , are represented as elements in
V = Zα+β4 by changing the ones in the first α coordinates by twos.

2.6.1 Construction of a Codeword

C‘Code ! [ a1, . . . , an ]

elt< C‘Code | a1, . . . , an >

Given a Z2Z4-additive code C, which is represented in Magma as a
subspace of V = Zn4 (n = α + β), and elements a1, . . . , an belonging to
Z4, construct the codeword (a1, . . . , an) of C. It is checked whether the
vector (a1, . . . , an) is an element of C‘Code.

C‘Code ! u

Given a Z2Z4-additive code C, which is represented in Magma as a
subspace of V = Zα+β4 , and an element u belonging to V , create the
codeword of C corresponding to u. The function will fail if u does not
belong to C.

C‘Code ! 0

The zero word of the Z2Z4-additive code C.

Z2Z4Random(C)

A random codeword of the Z2Z4-additive code C, which is a vector in
V = Zα+β4 where the ones in the first α coordinates are represented by
twos.

Example H2E11
We create some elements of a Z2Z4-additive code.

> V := RSpace(IntegerRing(4), 4);

> C := Z2Z4AdditiveCode([V![2,0,0,2],V![0,1,0,3],V![0,0,1,3]] : Alpha:=1);

> C‘Code![2,0,0,2];

(2 0 0 2)

> elt<C‘Code | 2,1,1,0>;

(2 1 1 0)

> Z2Z4Random(C);

(2 0 1 1)

If the given vector does not lie in the given Z2Z4-additive code, then an error will result.

> C‘Code![2,1,0,0];

>> C‘Code![2,1,0,0];

^

Runtime error in ’!’: Result is not in the given structure

25



2.6.2 Operations on Codewords and Vectors

u + v

Sum of the codewords u and v, where u and v belong to the same Z2Z4-
additive code C.

- u

Additive inverse of the codeword u belonging to the Z2Z4-additive code
C.

u - v

Difference of the codewords u and v, where u and v belong to the same
Z2Z4-additive code C.

a * u

Given an element a belonging to Z4, and a codeword u belonging to the
Z2Z4-additive code C, return the codeword a · u.

Normalize(u)

Given an element u belonging to a Z2Z4-additive code, which is repre-
sented in Magma as a subspace of V = Zα+β4 , return the normalization
of u, which is the unique vector v such that v = a · u for some scalar a in
Z4 such that the first non-zero entry of v is the canonical associate in Z4

of the first non-zero entry of u (v is zero if u is zero).

Z2Z4InnerProduct(u, v, α)

The inner product 〈u, v〉 in Zα2 × Zβ4 defined in Subsection 2.3.4. The
vectors u and v are represented as vectors in V = Zα+β4 , that is the
parent vector space of the Z2Z4-additive code C.

Support(w)

Given a codeword w belonging to the Z2Z4-additive code C, which is
represented in Magma as a subspace of V = Zα+β4 , return its support as
a subset of the integer set {1, . . . , α + β}. The support of w consists of
the coordinates at which w has non-zero entries.

Z2Z4Coordinates(C, u)

Given a Z2Z4-additive code C and a codeword u of C, return the
coordinates of u with respect to C. The coordinates of u are re-
turned as a sequence Q = [a1, . . . , ak] of elements from Z4 so that
u = a1 · C `Code.1 + · · ·+ ak · C `Code.k.

Rotate(u, k)

Given a vector u, return the vector obtained from u by cyclically shifting
its components to the right by k coordinate positions.
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Rotate(∼u, k)

Given a vector u, destructively rotate u by k coordinate positions.

Parent(w)

Given a codeword w belonging to the Z2Z4-additive code C, return the
ambient space V = Zα+β4 of C.

Example H2E12
Given a Z2Z4-additive code, we explore various operations on its codewords.

> V := RSpace(IntegerRing(4), 4);

> C := Z2Z4AdditiveCode([V![2,0,0,2],V![0,1,0,3],V![0,0,1,3]] : Alpha:=1);

> u := C‘Code.1;

> v := C‘Code.2;

> u; v;

(2 0 0 2)

(0 1 0 3)

> u+v;

(2 1 0 1)

> 2*v;

(0 2 0 2)

> u+v in C‘Code;

true

> Z2Z4InnerProduct(u, v, 1);

2

> Support(u);

{ 1, 4 }

> Z2Z4Coordinates(C, u+2*v);

[ 1, 2, 0 ]

> Parent(u);

Full RSpace of degree 4 over IntegerRing(4)

2.6.3 Operations on Vectors and Matrices

Z2Z4Mult(u, A, α)

Given a vector u belonging to Zα2 ×Zβ4 represented as an element in Zα+β4 ,
where the ones in the first α coordinates are represented by twos; and a
matrix A over Z4 having α+ β rows and the entries in the first α rows in
{0, 2}; return the vector u ∗ A.

Z2Z4Mult(A, B, α)

Given a m×(α+β) matrix A where the rows belong to Zα2×Z
β
4 represented

as Zα+β4 , that is, having the entries in the first α columns in {0, 2}; and
a (α + β) × p matrix B over Z4 having the entries in the first α rows in
{0, 2}, return the m × p matrix A ∗ B having in the i-th row the vector
Z2Z4Mult(ui, B), where ui is the i-th row of A.
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Example H2E13
Given a Z2Z4-additive code, an information vector is encoded by using the generator
matrix, it is checked that the syndrome of the obtained codeword is zero, then some errors
are introduced to give the vector u, and finally the syndrome of u is computed by using
the parity check matrix.

> V := RSpace(IntegerRing(4), 6);

> C := Z2Z4AdditiveCode([V![2,0,0,2,0,2],

V![0,2,0,3,1,1],

V![0,0,1,3,0,2]] : Alpha:=2);

> G := Z2Z4MinRowsGeneratorMatrix(C);

> i := RSpace(IntegerRing(4),3)![2,1,3];

> c := Z2Z4Mult(i, G, Z2Z4Type(C)[3]);

> c;

(2 0 3 1 2 2)

> c in C‘Code;

true

> Z2Z4Mult(i, G, Z2Z4Type(C)[3]) eq i*G;

false

> H := Z2Z4MinRowsParityCheckMatrix(C);

> Z2Z4Mult(c, Transpose(H), C‘Alpha);

(0 0 0)

> Z2Z4Mult(c, Transpose(H), C‘Alpha) eq c*Transpose(H);

false

> u := c;

> u[2] := u[2] + 2;

> u[4] := u[4] + 3;

> Z2Z4Mult(u, Transpose(H), C‘Alpha);

(2 2 1)

> Z2Z4Mult(u, Transpose(H), C‘Alpha) eq u*Transpose(H);

false

2.6.4 Distance and Weight

Weight(v)

The Hamming weight of the codeword v, i.e., the number of non-zero
components of v.

Distance(u, v)

The Hamming distance between the codewords u and v, where u and
v belong to the same Z2Z4-additive code C. This is defined to be the
Hamming weight of u− v.
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Z2Z4LeeWeight(v, α)

The Lee weight of the codeword v, i.e., the Hamming weight of the bi-
nary part (that is, the first α coordinates) of v plus the Lee weight of
the quaternary part (that is, the rest of the coordinates) of v (see [6]).
Equivalently, it corresponds to the number of non-zero components of
Φ(v), where Φ is the Gray map defined in Subsection 2.5.1.

Z2Z4LeeDistance(u, v, α)

The Lee distance between the codewords u and v, where u and v belong
to the same Z2Z4-additive code C. This is defined to be the Lee weight
of u− v.

Example H2E14
We calculate the Hamming weight and distance of some vectors in V = Zα+β4 , as well as
the Lee weight and distance of these vectors. Note that when α = 0, the functions for the
Lee weight and distance return the same as that the corresponding functions for vectors
over Z4.

> V := RSpace(IntegerRing(4),4);

> u := V![2,1,2,3];

> v := V![0,0,2,1];

> Distance(u, v);

3

> Distance(u, v) eq Weight(u-v);

true

> Z2Z4LeeDistance(u, v, 1);

4

> Z2Z4LeeDistance(u, v, 1) eq Z2Z4LeeWeight(u-v, 1);

true

> Z2Z4LeeDistance(u, v, 0) eq LeeDistance(u, v);

true

> Z2Z4LeeWeight(u, 0) eq LeeWeight(u);

true

2.6.5 Accessing Components of a Codeword

u[i]

Given a codeword u belonging to the Z2Z4-additive code C, which is
represented in Magma as a subspace of V = Zα+β4 , return the i-th com-
ponent of u (as an element of Z4).
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u[i] := x;

Given an element u belonging to a Z2Z4-additive subcode C of the full Z4-
space V = Zα+β4 , a positive integer i, 1 ≤ i ≤ α+ β, and an element x of
Z4, this function returns a vector in V which is u with its i-th component
redefined to be x. It is not checked whether the elements in the first α
coordinates are in {0, 2}.

2.7 Boolean Predicates

Again notice that sometimes in order to use the same functions as for qua-
ternary linear codes, we will write C‘Code instead of C. Also, all codewords,
which are elements in Zα2 × Zβ4 , are represented as elements in V = Zα+β4 by
changing the ones in the first α coordinates by twos.

2.7.1 Membership and Equality

u in C‘Code

Return true if and only if the vector u of V = Zα+β4 belongs to the
Z2Z4-additive code C of type (α, β; γ, δ;κ).

u notin C‘Code

Return true if and only if the vector u of V = Zα+β4 does not belong to
the Z2Z4-additive code C of type (α, β; γ, δ;κ).

Z2Z4Subset(C, D)

Return true if and only if the Z2Z4-additive code C is a subcode of the
Z2Z4-additive code D.

Z2Z4NotSubset(C, D)

Return true if and only if the Z2Z4-additive code C is not a subcode of
the Z2Z4-additive code D.

Z2Z4Equal(C, D)

Return true if and only if the Z2Z4-additive codes C and D are equal.

Z2Z4NotEqual(C, D)

Return true if and only if the Z2Z4-additive codes C and D are not equal.

IsZero(u)

Return true if and only if the codeword u is the zero vector.
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2.7.2 Properties

IsZ2Z4AdditiveCode(C)

Return true if and only if C is a Z2Z4-additive code.

IsZ2Z4SelfDual(C)

Return true if and only if the Z2Z4-additive code C is additive self-dual,
i.e., C equals the additive dual of C.

IsZ2Z4SelfOrthogonal(C)

Return true if and only if the Z2Z4-additive code C is additive self-
orthogonal, that is, return whether C is contained in the additive dual of
C.

Example H2E15
We consider a Z2Z4-additive code and examine some of its properties.

> V := RSpace(IntegerRing(4), 5);

> C := Z2Z4AdditiveCode([V![2,2,2,0,0],V![0,0,0,2,0],V![0,2,1,0,1]] : Alpha:=2);

> C;

rec<Z2Z4Code |

Code := ((5, 4^1 2^2)) Linear Code over IntegerRing(4)

Generator matrix:

[2 0 1 0 3]

[0 2 1 0 1]

[0 0 2 0 2]

[0 0 0 2 0],

Alpha := 2

>

> IsZ2Z4SelfOrthogonal(C);

true

> IsZ2Z4SelfDual(C);

true

> Z2Z4Equal(C, Z2Z4Dual(C));

true

2.8 The Weight Distribution

Given a Z2Z4-additive code, we recall that the Lee weight of a codeword v is
the Hamming weight of the binary part of v (that is, the first α coordinates)
plus the Lee weight of the quaternary part of v (that is, the rest of the
coordinates) (see [6]). Equivalently, it corresponds to the Hamming weight
of Φ(v), where Φ is the Gray map defined in Subsection 2.5.1.

In the case of a Z2Z4-additive code, Lee weight and Lee distance dis-
tributions are equivalent (in particular, minimum Lee weight and minimum
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Lee distance are equivalent). There are two different methods available to
compute the minimum Lee weight. One of them is by using brute force,
which is equivalent to compute the whole Lee weight distribution of the
code. The other one is by using the representation of the code as the union
of cosets of the kernel defined in Subsection 2.5.4, and the known Brouwer-
Zimmermann’s algorithm applied to linear subcodes given by the cosets of
the kernel.

2.8.1 The Minimum Weight

Z2Z4MinimumLeeWeight(C : parameters)

Z2Z4MinimumLeeDistance(C : parameters)

Method MonStgElt Default: “Auto”

Given a Z2Z4-additive code C, return the minimum Lee weight of the
codewords belonging to the code C, which is also the minimum Lee dis-
tance between any two codewords.

Sometimes a brute force calculation of the entire Lee weight distribution
can be a faster way to get the minimum Lee weight for small codes. When
the parameter Method is set to the default "Auto", then the method is
internally chosen. The user can specify which method they want using
setting it to either "Distribution" or "KernelCoset".

Z2Z4MinimumWord(C)

Method MonStgElt Default: “Auto”

Given a Z2Z4-additive code C, return one codeword of the code C having
minimum Lee weight.

Sometimes a brute force calculation of the entire Lee weight distribution
can be a faster way to get one codeword of minimum Lee weight for small
codes. When the parameter Method is set to the default "Auto", then
the method is internally chosen. The user can specify which method they
want using setting it to either "Distribution" or "KernelCoset".

Z2Z4MinimumWords(C : parameters)

NumWords RngIntElt Default:
Method MonStgElt Default: “Auto”

Given a Z2Z4-additive code C, return the set of all codewords of C having
minimum Lee weight. If NumWords is set to a non-negative integer, then
the algorithm will terminate after at least that total of codewords have
been found.
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In some cases (such as small codes) a brute force enumeration may be a
faster way to collect the words of minimum Lee weight. When the param-
eter Method is set to the default "Auto", then the method is internally
chosen. The user can specify which method they want using setting it to
either "Distribution" or "KernelCoset".

Example H2E16
We compute the minimum Lee weight of two Z2Z4-additive codes by using different meth-
ods. We show that if the code is small, a brute force calculation can be faster than using
the method based on the computation of the cosets of the kernel.

> C := Z2Z4ExtendedPerfectCode(2, 5);

> Z2Z4Cardinal(C);

67108864

> time Z2Z4MinimumLeeWeight(C : Method := "Distribution");

4

Time: 1585.100

> time Z2Z4MinimumLeeWeight(C : Method := "KernelCosets");

4

Time: 0.140

> C := Z2Z4HadamardCode(3, 11);

> Z2Z4Cardinal(C);

4096

> time Z2Z4MinimumLeeWeight(C : Method := "Distribution");

1024

Time: 2.270

> time Z2Z4MinimumLeeWeight(C : Method := "KernelCosets");

1024

Time: 6.060

Then, we check some relations given by the functions related to the minimum Lee weight.

> C := Z2Z4HadamardCode(2, 5);

> Z2Z4MinimumLeeWeight(C) eq Z2Z4LeeWeight(Z2Z4MinimumWord(C), C‘Alpha);

true

> Z2Z4MinimumWord(C) in Z2Z4MinimumWords(C);

true

> Z2Z4LeeWeightDistribution(C);

[ <0, 1>, <16, 62>, <32, 1> ]

> Z2Z4MinimumWords(C) eq Z2Z4MinimumWords(C : NumWords := 62);

true
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2.8.2 The Weight Distribution

Z2Z4LeeWeightDistribution(C)

Method MonStgElt Default: “Auto”

Determine the Lee weight distribution for the Z2Z4-additive code C. The
distribution is returned in the form of a sequence of tuples, where the
i-th tuple contains the i-th weight, wi say, and the number of codewords
having Lee weight wi.

When the parameter Method is set to the default "Auto", then the method
is internally chosen. The user can specify which method they want using
setting it to either "Distribution" or "KernelCoset". In the first case,
a brute force enumeration is used. In the second case, the representa-
tion of the code as the union of cosets of the kernel and the function
WeightDistribution to compute the weight distribution of a coset of a
binary linear code are used.

Z2Z4DualLeeWeightDistribution(C)

Method MonStgElt Default: “Auto”

The Lee weight distribution of the additive dual code of C (see
Z2Z4LeeWeightDistribution).

Z2Z4ExternalDistance(C)

Method MonStgElt Default: “Auto”

Determine the external distance for the Z2Z4-additive code C. The ex-
ternal distance of a code is the number of different nonzero Lee weights
of the dual code of C.

When the parameter Method is set to the default "Auto", then the method
is internally chosen. The user can specify which method they want using
setting it to either "Distribution" or "KernelCoset". In the first case,
to compute the Lee weight distribution a brute force enumeration is used.
In the second case, the representation of the code as the union of cosets of
the kernel and the function WeightDistribution to compute the weight
distribution of a coset of a binary linear code are used.

Example H2E17

> C := Z2Z4HadamardCode(2, 5);

> Z2Z4LeeWeightDistribution(C);

[ <0, 1>, <16, 62>, <32, 1> ]

> Z2Z4MinimumLeeWeight(C) eq Z2Z4LeeWeightDistribution(C)[2][1];

true

> Z2Z4DualLeeWeightDistribution(C) eq Z2Z4LeeWeightDistribution(Z2Z4Dual(C));
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true

> Z2Z4ExternalDistance(C) eq #Z2Z4DualLeeWeightDistribution(C)-1;

true

2.9 Constructing New Codes from Old

2.9.1 Construction of Subcodes

Z2Z4OrderTwoSubcode(C)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), return the Z2Z4-
additive subcode Cb which contains all order two codewords of C.

Z2Z4Subcode(C, t1, t2)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ) and two integers,
t1 and t2, such that 1 ≤ t1 ≤ γ and 1 ≤ t2 ≤ δ, return a Z2Z4-
additive subcode of C of type (α, β; t1, t2;κ′), where κ′ ≤ κ. This Z2Z4-
additive subcode is generated by the first t1 rows of order two and the
first t2 rows of order four in the generator matrix given by the function
Z2Z4MinRowsGeneratorMatrix(C).

Z2Z4Subcode(C, S1, S2)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ) and two sets of in-
tegers, S1 and S2, such that each of their elements lies in the range
[1, γ] and [1, δ], respectively, return a Z2Z4-additive subcode of C of
type (α, β; |S1|, |S2|;κ′), where κ′ ≤ κ. This Z2Z4-additive subcode is
generated by the rows of order two and four whose positions appear in
S1 and S2, respectively, in the generator matrix given by the function
Z2Z4MinRowsGeneratorMatrix(C).

Example H2E18
Given a Z2Z4-additive code, we compute some subcodes of this code.

> C := RandomZ2Z4AdditiveCode(2, 4, 2, 3);

> C;

rec<Z2Z4Code |

Code := ((6, 4^3 2^2)) Linear Code over IntegerRing(4)

Generator matrix:

[2 0 0 0 0 0]

[0 2 0 0 0 1]

[0 0 1 0 1 0]

[0 0 0 1 0 0]

[0 0 0 0 2 0]

[0 0 0 0 0 2],

35



Alpha := 2

>

> Z2Z4Type(C);

[ 2, 4, 2, 3, 1 ]

> Z2Z4MinRowsGeneratorMatrix(C);

[0 0 0 0 2 0]

[2 0 0 0 0 0]

[0 0 1 0 1 0]

[0 0 0 1 0 0]

[0 2 0 0 0 1]

2 3

> C1 := Z2Z4Subcode(C,2,1);

> C1;

rec<Z2Z4Code |

Code := ((6, 4^1 2^2)) Linear Code over IntegerRing(4)

Generator matrix:

[2 0 0 0 0 0]

[0 0 1 0 1 0]

[0 0 0 0 2 0],

Alpha := 2

>

> Z2Z4Subset(C1, C);

true

> Z2Z4Type(C1);

[ 2, 4, 2, 1, 1 ]

> Z2Z4MinRowsGeneratorMatrix(C1);

[0 0 2 0 0 0]

[2 0 0 0 0 0]

[0 0 1 0 1 0]

2 1

> C2 := Z2Z4Subcode(C,{2},{1,3});

> C2;

rec<Z2Z4Code |

Code := ((6, 4^2 2^1)) Linear Code over IntegerRing(4)

Generator matrix:

[2 0 0 0 0 0]

[0 2 0 0 0 1]

[0 0 1 0 1 0]

[0 0 0 0 0 2],

Alpha := 2

>

> Z2Z4MinRowsGeneratorMatrix(C2);

[2 0 0 0 0 0]

[0 0 1 0 1 0]

[0 2 0 0 0 1]

1 2
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2.9.2 Sum and Intersection

Z2Z4Sum(C, D)

The (vector space) sum of the Z2Z4-additive codes C and D, where C
and D have the same parameters α and β, hence also the same length.

Z2Z4Intersection(C, D)

The intersection of the Z2Z4-additive codes C and D, where C and D
have the same parameters α and β, hence also the same length.

Example H2E19
We verify some simple results from the sum and intersection of Z2Z4-additive subcodes.

> V := RSpace(IntegerRing(4), 4);

> C := Z2Z4AdditiveCode([V![2,0,0,2],V![0,1,0,3],V![0,0,1,3]] : Alpha:=1);

> C1 := Z2Z4Subcode(C,1,0);

> C2 := Z2Z4Subcode(C,0,1);

> C3 := Z2Z4Subcode(C,1,1);

> Z2Z4Equal(Z2Z4Sum(C1,C2), C3);

true

> Z2Z4Equal(Z2Z4Intersection(C1,C3), C1);

true

2.9.3 Standard Constructions

Given a Z2Z4-additive code C, which is represented in Magma as a subspace
of V = Zα+β4 , any codeword u belonging to C can be written as u = (u1|u2),
where u1 ∈ Zα4 and u2 ∈ Zβ4 .

Z2Z4DirectSum(C, D)

Given Z2Z4-additive codes C and D, construct the direct sum of C and
D. The direct sum is a Z2Z4-additive code that consists of all vectors of
the form (u1, v1|u2, v2), where (u1|u2) ∈ C and (v1|v2) ∈ D.

Z2Z4Concatenation(C, D)

Given Z2Z4-additive codes C andD, return the concatenation of C andD.
If Gc = (Aα|Aβ) and Gd = (Bα|Bβ) are the generator matrices of C and
D, respectively, the concatenation of C and D is the Z2Z4-additive code
with generator matrix whose rows consist of each row (aα|aβ) of Gc con-
catenated with each row (bα|bβ) of Gd in the following way: (aα, bα|aβ, bβ).
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Z2Z4PlotkinSum(C, D)

Given Z2Z4-additive codes C and D both with the same parameters α
and β, hence also the same length, construct the Plotkin sum of C and
D. The Plotkin sum is a Z2Z4-additive code that consists of all vectors
of the form (uα, uα + vα|uβ, uβ + vβ), where (uα|uβ) ∈ C and (vα|vβ) ∈ D.

Z2Z4PunctureCode(C, i)

Given a Z2Z4-additive code C and an integer i, 1 ≤ i ≤ α+ β, construct
a new Z2Z4-additive code C ′ by deleting the i-th coordinate from each
codeword of C.

Z2Z4PunctureCode(C, S)

Given a Z2Z4-additive code C and a set S of distinct integers {i1, . . . , ir}
each of which lies in the range [1, α + β], construct a new Z2Z4-additive
code C ′ by deleting the components i1, . . . , ir from each codeword of C.

Z2Z4ShortenCode(C, i)

Given a Z2Z4-additive code C and an integer i, 1 ≤ i ≤ α+ β, construct
a new Z2Z4-additive code from C by selecting only those codewords of C
having a zero as their i-th component and deleting the i-th component
from these codewords.

Z2Z4ShortenCode(C, S)

Given a Z2Z4-additive code C and a set S of distinct integers {i1, . . . , ir}
each of which lies in the range [1, α + β], construct a new Z2Z4-additive
code from C by selecting only those codewords of C having zeros in each
of the coordinate positions i1, . . . , ir, and deleting these components.

Z2Z4ExtendCode(C)

Given a Z2Z4-additive code C form a new Z2Z4-additive code C ′ from C
by adding the appropriate extra binary coordinate to each codeword v of
C such that Φ(v) has even Hamming weight, where Φ is the Gray map
defined in Subsection 2.5.1.

Example H2E20
We combine Z2Z4-additive codes in diferent ways and look at the parameters α and β of
the new Z2Z4-additive codes.

> C1 := RandomZ2Z4AdditiveCode(2, 3);

> C2 := RandomZ2Z4AdditiveCode(1, 4);

> Z2Z4Length(C1);

5 [ 2, 3 ]

> Z2Z4Length(C2);

5 [ 1, 4 ]

38



> C3 := Z2Z4DirectSum(C1,C2);

> Z2Z4Length(C3);

10 [ 3, 7 ]

> C4 := Z2Z4Concatenation(C1,C2);

> Z2Z4Length(C4);

10 [ 3, 7 ]

> Z2Z4Subset(C4,C3);

true

> C5 := Z2Z4PunctureCode(C1,3);

> Z2Z4Length(C5);

4 [ 2, 2 ]

2.10 Coset Representatives

Z2Z4CosetRepresentatives(C)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), with ambient space
V = Zα2 × Zβ4 , return a set of coset representatives (not necessarily of
minimal weight in their cosets) for C in V as an indexed set of vectors from
V . The elements in V are represented as elements in Zα+β4 by changing the
ones in the first α coordinates by twos. The set of coset representatives
{c0, c1, . . . , ct} satisfies the conditions that c0 is the zero codeword, and
V =

⋃t
i=0

(
C + ci

)
. Note that this function is only applicable when V

and C are small.

Z2Z4CosetRepresentatives(C, S)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), and a Z2Z4-additive
subcode S of C, return a set of coset representatives (not necessarily of
minimal weight in their cosets) for S in C as an indexed set of codewords
from C. The codewords in C ⊆ Zα2 × Zβ4 are represented as elements in
Zα+β4 by changing the ones in the first α coordinates by twos. The set of
coset representatives {c0, c1, . . . , ct} satisfies the conditions that c0 is the
zero codeword, and C =

⋃t
i=0

(
S + ci

)
. Note that this function is only

applicable when S and C are small.

Example H2E21

> V := RSpace(Integers(4), 5);

> C := Z2Z4AdditiveCode([V![2,0,0,2,0],

V![2,0,1,2,3],

V![0,0,2,1,3]] : Alpha := 1);

> L := Z2Z4CosetRepresentatives(C);
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> {x : x in Set(V) | x[1] in {0,2}} eq {v+ci : v in Z2Z4Set(C), ci in L};

true

> K := Z2Z4KernelZ2Code(C);

> L := Z2Z4CosetRepresentatives(C, K);

> {C‘Code!0} join Set(Z2Z4KernelCosetRepresentatives(C)) eq L;

true

> Z2Z4Set(C) eq {v+ci : v in Z2Z4Set(K), ci in L};

true

2.11 Cyclic codes

A Z2Z4-additive code C is cyclic if for any codeword

c = (a0, . . . , aα−1 | b0, . . . , bβ−1) ∈ C ⊆ Zα2 × Zβ4 ,

its double right cyclic shift (aα−1, a0, . . . , aα−2 | bβ−1, b0, . . . , bβ−2) is also a

codeword in C. An element c = (a0, . . . , aα−1 | b0, . . . , bβ−1) ∈ Zα2 × Zβ4 can
be identified with a module element consisting of two polynomials c(x) =
(a0 + a1x+ · · ·+ aα−1x

α−1 | b0 + b1x+ · · ·+ bβ−1x
β−1) = (a(x) | b(x)) ∈ Rα,β,

where Rα,β = Z2[x]/(xα − 1) × Z4[x]/(xβ − 1). This identification gives a

one-to-one correspondence between the elements of Zα2 × Zβ4 and Rα,β. Let
C(x) be the set of all polynomials associated to the Z2Z4-additive code C.
A subset C ⊆ Zα2 ×Zβ4 is a Z2Z4-additive cyclic code if and only if the subset
C(x) ⊆ Rα,β is a Z4[x]-submodule of Rα,β. Moreover, if C is a Z2Z4-additive
cyclic code of type (α, β; γ, δ;κ) with β odd, then

C(x) = 〈(p(x) | 0), (l(x) | f(x)h(x) + 2f(x))〉,

where p(x), l(x) ∈ Z2[x]/(xα − 1), deg(l(x)) < deg(p(x)), p(x)|(xα − 1),

f(x), h(x) ∈ Z4[x]/(xβ−1) with f(x)h(x)|(xβ−1), and p(x) divides xβ−1
f(x)

l(x)

a Z2[x]. Note that if β is even, then xβ − 1 does not factorize uniquely over
Z4[x].

For more information about Z2Z4-additive cyclic codes, the reader is re-
ferred to [1, 2, 3], where these codes were introduced and have been studied
deeply.

Z2Z4CyclicCode(α, β, p, l, f, h)

Given two non-negative integers α and β, and four polynomials p(x),
l(x), f(x) and h(x), such that p(x), l(x) ∈ Z2[x] and f(x), h(x) ∈ Z4[x],
construct the Z2Z4-additive cyclic code of type (α, β; γ, δ;κ) generated
by (p(x) | 0) and (l(x) | f(x)h(x) + 2f(x)).
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Z2Z4CyclicCode(α, β, a, b)

Given two non-negative integers α and β, and two polynomials a(x) ∈
Z2[x] and b(x) ∈ Z4[x], construct the Z2Z4-additive cyclic code of type
(α, β; γ, δ;κ) generated by (a(x) | b(x)).

Z2Z4CyclicCode(α, β, G)

Given two non-negative integers α and β, and a non-empty sequence G
containing r tuples of polynomials, that is G = [< a1(x), b1(x) >, . . . , <
ar(x), br(x) >], where ai(x) ∈ Z2[x] and bi(x) ∈ Z4[x], for 1 ≤ i ≤ r,
construct the Z2Z4-additive cyclic code of type (α, β; γ, δ;κ) generated
by (a1(x) | b1(x)), . . . , (ar(x) | br(x)).

Z2Z4CyclicCode(α, u)

Given a non-negative integer α and a vector u = (uα|uβ) ∈ Zα2 × Zβ4 ,

represented as an element in V = Zα+β4 by changing the ones in the first
α coordinates by twos, construct the Z2Z4-additive cyclic code of type
(α, β; γ, δ;κ) generated by the double right cyclic shifts of the vector u.
It is checked whether the elements in the first α coordinates are in {0, 2}.

Z2Z4CyclicCode(α, G)

Given a non-negative integer α and a non-empty sequence of r vectors
G = [u1, u2, . . . , ur], where, for 1 ≤ i ≤ r, ui ∈ Zα2 × Zβ4 is represented as
an element in V = Zα+β4 by changing the ones in the first α coordinates
by twos, construct the Z2Z4-additive cyclic code of type (α, β; γ, δ;κ)
generated by the double right cyclic shifts of the vectors u1, u2, . . . , ur. It
is checked whether the elements in the first α coordinates are in {0, 2}.

RandomZ2Z4CyclicCode(α, β)

Given two non-negative integers α and β, with β odd, return a random
Z2Z4-additive cyclic code of type (α, β; γ, δ;κ) and a tuple containing the
generator polynomials < p(x), l(x), f(x), h(x) >, where p(x), l(x) ∈ Z2[x]
and f(x), h(x) ∈ Z4[x], satisfying the conditions described in Subsec-
tion 2.11.

Example H2E22

> PR2<x> := PolynomialRing(Integers(2));

> PR4<y> := PolynomialRing(Integers(4));

> alpha := 15;

> beta := 7;

> p := x^5+x^3+x+1;

> l := x^4+x^3+1;
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> f := PR4!1;

> h := y^4+y^3+3*y^2+2*y+1;

> C1 := Z2Z4CyclicCode(alpha, beta, p, l, f, h);

> C2 := Z2Z4CyclicCode(alpha, beta, [<p, PR4!0>, <l, f*h + 2*f>]);

> Z2Z4Equal(C1, C2);

true

> IsZ2Z4Cyclic(C1);

true

> V := RSpace(Integers(4), alpha + beta);

> g1 := V!([2*(Coefficient(PR4!p, i)) : i in [0 .. alpha - 1]]

cat [Integers(4)!0 : j in [0 .. beta - 1]]);

> g1;

(2 2 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

> g2 := V!([2*(Coefficient(PR4!l, i)) : i in [0 .. alpha - 1]]

cat [Coefficient(f*h + 2*f, j) : j in [0 .. beta - 1]]);

> g2;

(2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 3 2 3 1 1 0 0)

> C3 := Z2Z4CyclicCode(alpha, [g1, g2]);

> Z2Z4Equal(C1, C3);

true

> C4 := Z2Z4CyclicCode(alpha, g1);

> C5 := Z2Z4CyclicCode(alpha, g2);

> Z2Z4Subset(C4, C3) and Z2Z4Subset(C5, C3);

true

> G := Z2Z4MinRowsGeneratorMatrix(C1);

> v := Eltseq(G[1]);

> v;

[ 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2 ]

> u := Rotate(v[1..alpha],3) cat Rotate(v[alpha+1..alpha+beta],3);

> u;

[ 2, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0 ]

> V ! u in C1‘Code;

true

> C6 := RandomZ2Z4CyclicCode(alpha, beta);

> IsZ2Z4AdditiveCode(C6) and IsZ2Z4Cyclic(C6);

true

> Z2Z4Type(C6)[1] eq alpha and Z2Z4Type(C6)[2] eq beta;

true

IsZ2Z4Cyclic(C)

Return true if and only if the Z2Z4-additive code C is cyclic.
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Z2Z4GeneratorPolynomials(C)

Given a Z2Z4-additive cyclic code C of type (α, β; γ, δ;κ) with
β odd, return a tuple containing the generator polynomials <
p(x), l(x), f(x), h(x) >, where p(x), l(x) ∈ Z2[x] and f(x), h(x) ∈ Z4[x],
satisfying the conditions described in Subsection 2.11 (see [3]).

Z2Z4CheckPolynomials(C)

Given a Z2Z4-additive cyclic code C of type (α, β; γ, δ;κ) with
β odd, return a tuple containing the check polynomials <
p′(x), l′(x), f ′(x), h′(x) >, where p′(x), l′(x) ∈ Z2[x] and f ′(x), h′(x) ∈
Z4[x]. These check polynomials are the generator polynomials of the
additive dual code of C, and satisfy the conditions described in Subsec-
tion 2.11 (see [2]).

Z2Z4CheckPolynomials(α, β, p, l, f, h)

Given two non-negative integers α and β, with β odd, and four poly-
nomials, p(x), l(x), f(x) and h(x), such that p(x), l(x) ∈ Z2[x] and
f(x), h(x) ∈ Z4[x], return a tuple containing the check polynomi-
als < p′(x), l′(x), f ′(x), h′(x) >, where p′(x), l′(x) ∈ Z2[x] and f ′(x),
h′(x) ∈ Z4[x], of the Z2Z4-additive cyclic code C of type (α, β; γ, δ;κ)
generated by the given polynomials. These check polynomials are the
generator polynomials of the additive dual code of C, and satisfy the
conditions described in Subsection 2.11.

Example H2E23

> PR2<x> := PolynomialRing(Integers(2));

> PR4<y> := PolynomialRing(Integers(4));

> alpha := 15;

> beta := 7;

> U := Z2Z4AdditiveUniverseCode(alpha, beta);

> Z := Z2Z4AdditiveZeroCode(alpha, beta);

> IsZ2Z4Cyclic(U);

true

> IsZ2Z4Cyclic(Z);

true

> Z2Z4GeneratorPolynomials(U);

<1, 0, 1, 1>

> Z2Z4GeneratorPolynomials(Z);

<x^15 + 1, 0, y^7 + 3, 1>

> a1 := x^6+x^4+x^2+x;

> a2 := x^5+x^4+x;

> b1 := PR4!0;
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> b2 := y^5+y^4+3*y^3+2*y^2+3*y;

> C1 := Z2Z4CyclicCode(alpha, beta, [<a1, b1>, <a2, b2>]);

> Z2Z4GeneratorPolynomials(C1);

<x^5 + x^3 + x + 1, x^4 + x^3 + 1, 1, y^4 + y^3 + 3*y^2 + 2*y + 1>

> p := x^5+x^3+x+1;

> l := x^4+x^3+1;

> f := PR4!1;

> h := y^4+y^3+3*y^2+2*y+1;

> C2 := Z2Z4CyclicCode(alpha, beta, [<p, PR4!0>, <l, f*h + 2*f>]);

> Z2Z4Equal(C1, C2);

true

> Z2Z4CheckPolynomials(C2) eq Z2Z4CheckPolynomials(alpha, beta, p, l, f, h);

true

> Z2Z4CheckPolynomials(C2) eq Z2Z4GeneratorPolynomials(Z2Z4Dual(C2));

true

2.12 Information Space and Information Sets

Z2Z4InformationSpace(C)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), return the Z4-
submodule of Zγ+δ4 isomorphic to Zγ2 × Zδ4 such that the first γ coor-
dinates are of order two, that is, the space of information vectors for C.
The function also returns the (γ + 2δ)-dimensional binary vector space,
which is the space of information vectors for the corresponding binary
code Cbin = Φ(C), where Φ is the Gray map. Finally, for the encoding
process, it also returns the corresponding isomorphisms f and fbin from
these spaces of information vectors onto C and Cbin, respectively.

Example H2E24

> C := Z2Z4HadamardCode(2, 4);

> C;

rec<recformat<Code: CodeLinRng, Alpha: RngIntElt> |

Code := ((10, 4^2 2^1)) Linear Code over IntegerRing(4)

Generator matrix:

[2 0 0 2 1 3 1 0 3 2]

[0 2 0 2 0 2 1 1 1 1]

[0 0 2 2 1 1 0 1 2 3]

[0 0 0 0 2 2 0 2 0 2]

[0 0 0 0 0 0 2 2 2 2],

Alpha := 4>

> R, V, f, fbin := Z2Z4InformationSpace(C);

> G := Z2Z4MinRowsGeneratorMatrix(C);
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> (#R eq #C‘Code) and (#V eq #C‘Code);

true

> Set([f(i) : i in R]) eq Z2Z4Set(C);

true

> Set([Z2Z4Mult(i, G, Z2Z4Type(C)[3]): i in R]) eq Z2Z4Set(C);

true

> Set([i*G : i in R]) eq Z2Z4Set(C);

false

> i := R![2,3,1];

> c := f(i);

> c;

(2 0 0 2 3 1 1 2 3 0)

> c in C‘Code;

true

> c eq Z2Z4Mult(i, G, Z2Z4Type(C)[3]);

true

> c eq i*G;

false

> ibin := V![1,1,0,0,1];

> ibin eq Z2Z4GrayMap(Z2Z4AdditiveUniverseCode(1, 2))(i);

true

> cbin := fbin(ibin);

> cbin;

(1 0 0 1 1 0 0 1 0 1 1 1 1 0 0 0)

> cbin eq Z2Z4GrayMap(C)(c);

true

Z2Z4InformationSet(C)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), return an in-
formation set I = [i1, . . . , iγ+δ] ⊆ {1, . . . , α + β} for C such that
{i1, . . . , iκ} ⊆ {1, . . . , α} and the code C punctured on {1, . . . , α +
β}\{iγ+1, . . . , iγ+δ} is of type 4δ, and the corresponding information set
Φ(I) = [i1, . . . , iκ, 2iκ+1 − 1 − α, . . . , 2iγ − 1 − α, 2iγ+1 − 1 − α, 2iγ+1 −
α, . . . , 2iγ+δ − 1 − α, 2iγ+δ − α] ⊆ {1, . . . , α + 2β} for the binary code
Cbin = Φ(C), where Φ is the Gray map. The information sets I and Φ(I)
are returned as a sequence of γ + δ and γ + 2δ integers, giving the co-
ordinate positions that correspond to the information set of C and Cbin,
respectively.

An information set I for C is an ordered set of γ+ δ coordinate positions
such that |CI | = 2γ4δ, where CI = {vI : v ∈ C} and vI is the vector
v restricted to the I coordinates. An information set J for Cbin is an
ordered set of γ + 2δ coordinate positions such that |CJ

bin| = 2γ+2δ.
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IsZ2Z4InformationSet(C, I)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ) and a sequence I ⊆
{1, . . . , α + β} or I ⊆ {1, . . . , α + 2β}, return true if and only if I ⊆
{1, . . . , α + β} is an information set for C. This function also returns
another boolean, which is true if an only if I ⊆ {1, . . . , α + 2β} is an
information set for the corresponding binary code Cbin = Φ(C), where Φ
is the Gray map.

An information set I for C is an ordered set of γ+ δ coordinate positions
such that |CI | = 2γ4δ, where CI = {vI : v ∈ C} and vI is the vector
v restricted to the I coordinates. An information set J for Cbin is an
ordered set of γ + 2δ coordinate positions such that |CJ

bin| = 2γ+2δ.

Example H2E25

> C := Z2Z4HadamardCode(2, 5);

> C;

rec<recformat<Code: CodeLinRng, Alpha: RngIntElt> |

Code := ((20, 4^2 2^2)) Linear Code over IntegerRing(4)

Generator matrix:

[2 0 0 2 0 2 2 0 1 3 1 0 3 2 3 1 3 2 1 0]

[0 2 0 2 0 2 0 2 0 2 1 1 1 1 0 2 1 1 1 1]

[0 0 2 2 0 0 2 2 1 1 0 1 2 3 1 1 0 1 2 3]

[0 0 0 0 2 2 2 2 0 0 0 0 0 0 2 2 2 2 2 2]

[0 0 0 0 0 0 0 0 2 2 0 2 0 2 2 2 0 2 0 2]

[0 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 2 2 2 2],

Alpha := 8>

> n := Z2Z4Length(C);

> gamma := Z2Z4Type(C)[3];

> delta := Z2Z4Type(C)[4];

> I, Ibin := Z2Z4InformationSet(C);

> I;

[ 1, 5, 19, 20 ]

> Ibin;

[ 1, 5, 29, 30, 31, 32 ]

> #Z2Z4PunctureCode(C, {1..n} diff Set(I))‘Code eq #C‘Code;

true

> Cbin := Z2Z4GrayMapImage(C);

> V := VectorSpace(GF(2), gamma + 2*delta);

> #{V![c[i] : i in Ibin] : c in Cbin} eq #Cbin;

true

> IsZ2Z4InformationSet(C, I);

true false

> IsZ2Z4InformationSet(C, Ibin);

false true
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> IsZ2Z4InformationSet(C, [1, 5, 9, 11]);

true false

> IsZ2Z4InformationSet(C, [1, 5, 9, 10, 13, 14]);

false true

> V := RSpace(IntegerRing(4), 5);

> D := Z2Z4AdditiveCode([V![2,0,0,2,0],V![0,2,0,2,2],V![0,0,2,2,0]] : Alpha:=5);

> IsZ2Z4InformationSet(D, [1, 3, 5]);

true true

2.13 Syndrome Space and Coset Leaders

Z2Z4SyndromeSpace(C)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), return the Z4-
submodule of Zα+β−δ−κ4 isomorphic to Zα+γ−2κ2 × Zβ−γ−δ+κ4 such that the
first α + γ − 2κ coordinates are of order two, that is, the space of syn-
drome vectors for C. The function also returns the (α + 2β − γ − 2δ)-
dimensional binary vector space, which is the space of syndrome vec-
tors for the corresponding binary code Cbin = Φ(C), where Φ is the
Gray map. Note that these spaces are computed by using the function
Z2Z4InformationSpace(C) applied to the dual code of C, produced by
function Z2Z4Dual(C).

Z2Z4Syndrome(u, C)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), and a vector u from
the ambient space V = Zα2 ×Zβ4 or V2 = Zα+2β

2 , construct the syndrome of
u relative to the code C. The elements in V = Zα2 ×Zβ4 are represented as
elements in Zα+β4 by changing the ones in the first α coordinates by twos.
The syndrome is an element of the syndrome space of C, considered as
the Z4-submodule of Zα+β−δ−κ4 isomorphic to Zα+γ−2κ2 × Zβ−γ−δ+κ4 such
that the first α + γ − 2κ coordinates are of order two.

Z2Z4CosetLeaders(C)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), with ambient space
V = Zα2 ×Zβ4 , return a set of coset leaders (vectors of minimal Lee weight
in their cosets) for C in V as an indexed set of vectors from V . The
elements in V are represented as elements in Zα+β4 by changing the ones
in the first α coordinates by twos. This function also returns a map from
the syndrome space of C onto the coset leaders (mapping a syndrome into
its corresponding coset leader). Note that this function is only applicable
when V and C are small.
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Example H2E26

> C := Z2Z4ExtendedPerfectCode(2, 5);

> C;

rec<recformat<Code: CodeLinRng, Alpha: RngIntElt> |

Code := ((20, 4^2 2^2)) Linear Code over IntegerRing(4)

Generator matrix:

[2 0 0 2 0 2 2 0 1 3 1 0 3 2 3 1 3 2 1 0]

[0 2 0 2 0 2 0 2 0 2 1 1 1 1 0 2 1 1 1 1]

[0 0 2 2 0 0 2 2 1 1 0 1 2 3 1 1 0 1 2 3]

[0 0 0 0 2 2 2 2 0 0 0 0 0 0 2 2 2 2 2 2]

[0 0 0 0 0 0 0 0 2 2 0 2 0 2 2 2 0 2 0 2]

[0 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 2 2 2 2],

Alpha := 8>

> alpha := C‘Alpha;

> beta := Z2Z4Length(C) - alpha;

> R, V, f, fbin := Z2Z4InformationSpace(C);

> Rs, Vs := Z2Z4SyndromeSpace(C);

> #R * #Rs eq 2^alpha * 4^beta;

true

> #V * #Vs eq 2^alpha * 4^beta;

true

> i := R![2,0,2,0,2,0,1,3,0,0,0,1,3,0,0,0];

> c := f(i);

> c;

(0 0 2 0 2 2 0 2 3 1 0 0 0 3 0 0 0 1 0 2)

> u := c;

> u[11] := u[11] + 3;

> u;

(0 0 2 0 2 2 0 2 3 1 3 0 0 3 0 0 0 1 0 2)

> s := Z2Z4Syndrome(u, C);

> s in Rs;

true

> H := Z2Z4MinRowsParityCheckMatrix(C);

> s eq Z2Z4Mult(u, Transpose(H), alpha);

true

> s eq u*Transpose(H);

false

> L, mapCosetLeaders := Z2Z4CosetLeaders(C);

> errorVector := mapCosetLeaders(s);

> errorVector;

(0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0)

> errorVector in L;

true

> u-errorVector eq c;

true
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2.14 Decoding

This section describes functions for decoding vectors from the ambient space
of a Z2Z4-additive code, or the corresponding space over Z2 under the Gray
map, using two different algorithms: coset decoding and syndrome decoding.
The reader is referred to [10, 24] for more information on coset decoding; and
to [11, 14, 25] on syndrome decoding.

2.14.1 Coset Decoding

Z2Z4CosetDecode(C, u : parameters)

MinWeightCode RngIntElt Default : -
MinWeightKernel RngIntElt Default : -

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), and a vector u from
the ambient space V = Zα2 ×Zβ4 or V2 = Zα+2β

2 , attempt to decode u with
respect to C. The elements in V = Zα2 × Zβ4 are represented as elements
in Zα+β4 by changing the ones in the first α coordinates by twos. If the
decoding algorithm succeeds in computing a vector u′ ∈ C as the decoded
version of u ∈ V , then the function returns true, u′ and Φ(u′), where Φ
is the Gray map. If the decoding algorithm does not succeed in decoding
u, then the function returns false, the zero vector in V and the zero
vector in V2.

The coset decoding algorithm considers the binary linear code Cu = Cbin∪
(Cbin + Φ(u)), when Cbin = Φ(C) is linear. On the other hand, when Cbin
is nonlinear, we have Cbin =

⋃t
i=0(Kbin + Φ(ci)), where Kbin = Φ(KC),

KC is the kernel of C as a Z2Z4-additive subcode, [c0, c1, . . . , ct] are the
coset representatives of C with respect to KC (not necessarily of minimal
weight in their cosets) and c0 is the zero codeword. In this case, the
algorithm considers the binary linear codes K0 = Kbin ∪ (Kbin + Φ(u)),
K1 = Kbin∪ (Kbin+ Φ(c1) + Φ(u)), . . ., Kt = Kbin∪ (Kbin+ Φ(ct) + Φ(u)).
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If the parameter MinWeightCode is not assigned, then the minimum Lee
weight of C, which coincides with the minimum weight of Cbin, denoted
by d, is computed. Note that the minimum distance of Cbin coincides
with its minimum weight. If Cbin is linear and the minimum weight of
Cu is less than d, then Φ(u′) = Φ(u) + e, where e is a word of minimum
weight of Cu; otherwise, the decoding algorithm returns false. On the
other hand, if Cbin is nonlinear and the minimum weight of ∪ti=0Ki is less
than the minimum weight of Kbin, then Φ(u′) = Φ(u) + e, where e is a
word of minimum weight of ∪ti=0Ki; otherwise, the decoding algorithm
returns false. If the parameter MinWeightKernel is not assigned, then
the minimum Hamming weight of Kbin is computed.

Z2Z4CosetDecode(C, Q : parameters)

MinWeightCode RngIntElt Default : -
MinWeightKernel RngIntElt Default : -

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ) and a sequence Q
of vectors from the ambient space V = Zα2 × Zβ4 or V2 = Zα+2β

2 , at-
tempt to decode the vectors of Q with respect to C. This function is
similar to the function Z2Z4CosetDecode(C, u) except that rather than
decoding a single vector, it decodes a sequence of vectors and returns a
sequence of booleans and two sequences of decoded vectors corresponding
to the given sequence. The algorithm used and effect of the parameters
MinWeightCode and MinWeightKernel are identical to those for the func-
tion Z2Z4CosetDecode(C, u).

Example H2E27
Starting with the Z2Z4-additive Hadamard code C of type (8, 12; 2, 2; 2), a codeword c ∈ C
is selected and then perturbed to give a vector u in the ambient space of C. The vector u
is then decoded to recover c.

> C := Z2Z4HadamardCode(2, 5);

> C;

rec<recformat<Code: CodeLinRng, Alpha: RngIntElt> |

Code := ((20, 4^2 2^2)) Linear Code over IntegerRing(4)

Generator matrix:

[2 0 0 2 0 2 2 0 1 3 1 0 3 2 3 1 3 2 1 0]

[0 2 0 2 0 2 0 2 0 2 1 1 1 1 0 2 1 1 1 1]

[0 0 2 2 0 0 2 2 1 1 0 1 2 3 1 1 0 1 2 3]

[0 0 0 0 2 2 2 2 0 0 0 0 0 0 2 2 2 2 2 2]

[0 0 0 0 0 0 0 0 2 2 0 2 0 2 2 2 0 2 0 2]

[0 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 2 2 2 2],

Alpha := 8>

> alpha := C‘Alpha;

> beta := Z2Z4Length(C) - alpha;

> d := Z2Z4MinimumLeeDistance(C);
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> t := Floor((d-1)/2);

> t;

7

> c := C‘Code![0,0,2,2,0,0,2,2,1,1,0,1,2,3,1,1,0,1,2,3];

> c in C‘Code;

true

> u := c;

> u[5] := u[5] + 2;

> u[12] := u[12] + 1;

> u[13] := u[13] + 3;

> u[16] := u[16] + 2;

> u;

(0 0 2 2 2 0 2 2 1 1 0 2 1 3 1 3 0 1 2 3)

> grayMap := Z2Z4GrayMap(Z2Z4AdditiveUniverseCode(alpha, beta));

> grayMap(c-u);

(0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0)

> isDecoded, uDecoded := Z2Z4CosetDecode(C, u : MinWeightCode := d);

> isDecoded;

true

> uDecoded eq c;

true

2.14.2 Syndrome Decoding

Z2Z4SyndromeDecode(C, u)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), and a vector u from
the ambient space V = Zα2 ×Zβ4 or V2 = Zα+2β

2 , attempt to decode u with
respect to C. The elements in V = Zα2 × Zβ4 are represented as elements
in Zα+β4 by changing the ones in the first α coordinates by twos. The
decoding algorithm always succeeds in computing a vector u′ ∈ C as the
decoded version of u ∈ V , and the function returns true, u′ and Φ(u′),
where Φ is the Gray map. Although the function never returns false,
the first output parameter true is given to be consistent with the other
decoding functions.

The syndrome decoding algorithm consists of computing a table pairing
each possible syndrome s with a vector of minimum Lee weight es, called
coset leader, in the coset of C containing all vectors having syndrome s.
After receiving a vector u, its syndrome s is computed using the parity
check matrix. Then, u is decoded into the codeword c = u− es.
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Z2Z4SyndromeDecode(C, Q)

Given a Z2Z4-additive code C of type (α, β; γ, δ;κ), and a sequence Q of
vectors from the ambient space V = Zα2 × Zβ4 or V2 = Zα+2β

2 , attempt
to decode the vectors of Q with respect to C. This function is simi-
lar to the function Z2Z4SyndromeDecode(C, u) except that rather than
decoding a single vector, it decodes a sequence of vectors and returns a
sequence of booleans and two sequences of decoded vectors corresponding
to the given sequence. The algorithm used is the same as that of function
Z2Z4SyndromeDecode(C, u).

Example H2E28
The Z2Z4-additive Hadamard code C of type (4, 6; 1, 2; 1) is constructed. Next, infor-
mation bits are encoded using C and three errors are introduced to give the vector u.
Then u is decoded by calculating its syndrome and applying the map, given by the
Z2Z4CosetLeaders function, to the syndrome to recover the original vector.

> C := Z2Z4HadamardCode(2, 4);

> C;

rec<recformat<Code: CodeLinRng, Alpha: RngIntElt> |

Code := ((10, 4^2 2^1)) Linear Code over IntegerRing(4)

Generator matrix:

[2 0 0 2 1 3 1 0 3 2]

[0 2 0 2 0 2 1 1 1 1]

[0 0 2 2 1 1 0 1 2 3]

[0 0 0 0 2 2 0 2 0 2]

[0 0 0 0 0 0 2 2 2 2],

Alpha := 4>

> alpha := C‘Alpha;

> beta := Z2Z4Length(C) - alpha;

> t := Floor((Z2Z4MinimumLeeDistance(C)-1)/2);

> t;

3

> R, V, f, fbin := Z2Z4InformationSpace(C);

> i := R![2,1,0];

> c := f(i);

> c;

(2 2 0 0 1 1 0 3 2 1)

> u := c;

> u[2] := u[2] + 2;

> u[7] := u[7] + 3;

> u[9] := u[9] + 1;

> u;

(2 0 0 0 1 1 3 3 3 1)

> grayMap := Z2Z4GrayMap(Z2Z4AdditiveUniverseCode(alpha, beta));

> grayMap(c-u);

(0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0)
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> isDecoded, uDecoded := Z2Z4SyndromeDecode(C, u);

> isDecoded;

true

> uDecoded eq c;

true

> L, mapCosetLeaders := Z2Z4CosetLeaders(C);

> errorVector := mapCosetLeaders(Z2Z4Syndrome(u, C));

> errorVector;

(0 2 0 0 0 0 3 0 1 0)

> u-errorVector eq c;

true
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