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Controlling the vibrations in solids is crucial to tailor their mechanical properties and their inter-
action with light. Thermal vibrations represent a source of noise and dephasing for many physical
processes at the quantum level. One strategy to avoid these vibrations is to structure a solid such
that it possesses a phononic stop band, i.e., a frequency range over which there are no available
mechanical modes. Here, we demonstrate the complete absence of mechanical vibrations at room
temperature over a broad spectral window, with a 5.3 GHz wide band gap centered at 8.4 GHz in
a patterned silicon nanostructure membrane measured using Brillouin light scattering spectroscopy.
By constructing a line-defect waveguide, we directly measure GHz localized modes at room temper-
ature. Our experimental results of thermally excited guided mechanical modes at GHz frequencies
provides an efficient platform for photon-phonon integration with applications in optomechanics and
signal processing transduction.

Nanostructured materials offer the possibility to manipulate
the mechanical vibrations of a solid over a specified spectral
bandwidth. This in turn enables the control of light-matter in-
teractions in the visible and near-infrared regimes for optome-
chanical applications ranging from high-resolution accelerome-
ters [1] to mass and force sensors [2, 3], in addition to providing
fundamental insight into phenomena such as quantum ground-
state cooling [4, 5]. By periodically distributing the mass within
a system, it is possible to engineer its mechanical modes [6, 7]
and open frequency windows over which the destructive interfer-
ence of scattered waves forbids any phonon propagation [8, 9].
This approach enables engineering of the thermal conductance
of the structure [10] and allows for the routing of phonons at
the mesoscale [11, 12]. Although full-gap GHz phononic crystals
are widely used in optomechanical systems to create phononic
shields [13], waveguides [14, 15], and cavities [16, 17], clear
and direct experimental evidence of a complete omnidirectional
phononic band gap at hypersonic (GHz) frequencies is still lack-
ing. Existing experimental work is generally limited to MHz fre-
quencies, using piezoelectric materials to drive the system [18–
20], requiring varying interdigitated electrodes to probe differ-
ent frequencies and propagation directions. In the GHz regime,
only partial and narrow mechanical band gaps (with up to 8%
gap to mid-gap ratio) have been shown using assembled plat-
forms such as colloidal crystals [21] or two-dimensional phononic
crystal membranes [22]. Furthermore, the control and guiding
of mechanical waves at GHz frequencies has been difficult to
achieve or measure, relying on complex optomechanical systems
[14, 15], or nonlinear stimulated phenomena [23].

Here, we report direct experimental evidence of a wide full
phononic gap with a central frequency at 8.4 GHz and a spec-
tral width of 5.3 GHz (a gap to mid-gap ratio of 64%) in a
free-standing patterned silicon membrane phononic crystal. Ad-
ditionally, we create a line-defect waveguide with the same ge-
ometry in which we directly measure two guided modes at 5.7
and 7.1 GHz within the band gap at room temperature. We
demonstrate the spectral tunability of the mechanical gap from
approximately 4 to 12 GHz, which subsequently enables spec-
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tral tunability of the guided modes. All the structures mea-
sured here are fabricated on a silicon-on-insulator (SOI) plat-
form, which readily enables integration with electronic and pho-
tonic circuits. Figure 1(a) shows a scanning electron micrograph
(SEM) of the fabricated pattern composed of a triangular ar-
ray of “shamrocks” [24, 25], formed by three tangential cir-
cles with nominal parameters of thickness t = 220 nm, period
a = 330 nm, and radius r = 0.22a, as detailed in the inset of
Fig. 1(a) and Fig. S1 in the supplementary information (SI).
We calculate the mechanical dispersion relation of the struc-
ture by solving the full three-dimensional elastic wave equation
using finite-element (FEM) simulations performed with COM-
SOL Multiphysics [26]. Figure 1(b) plots the symmetric (blue)
and asymmetric (red) acoustic modes with respect to the mid-
plane of the silicon slab, calculated over the entire first Brillouin
zone (BZ) of the crystal. We use the geometrical parameters ex-
tracted from SEM images to more accurately simulate the real
shape of the fabricated crystal (see Fig. S3 in SI for a statistical
analysis). We also take into account the anisotropy of the sili-
con stiffness tensor and its particular orientation with respect
to the fabricated samples, as detailed in Fig. 1(a). Due to this
mechanical anisotropy, the irreducible BZ is determined by the
first quarter of the hexagon highlighted on the bottom part of
Fig. 1(b) (see section S3 in SI). A full mechanical gap opens
between the 6th and 7th bands, from 6.7 GHz up to 11.4 GHz
(gap to mid-gap ratio of 52 %) which results in the complete
depletion of the phonon density of states (DOS) over this fre-
quency range, as shown in Fig. 1(c). The particular shape of
the shamrock crystal, which is comprised of large masses con-
nected by small necks, enables a distribution of the mass within
the unit cell that results in this broad mechanical gap. A direct
link exists between the spectral width of the gap and the nar-
row necks (shorter distance between shamrocks): a larger radius
leads to narrower connected neck regions, which subsequently
widens the gap [27].

We use Brillouin light-scattering spectroscopy [28, 29] to re-
construct the mechanical dispersion relation of the system. For
simplicity, we probe the band structure along the ΓKMΓ path,
highlighted at the bottom of Fig. 1(b), as the edges of the
gap do not change in frequency with respect to the irreducible
BZ (see section S2 in SI). When incident light with frequency

νi and wavevector ~ki reaches the surface of the sample with
a certain angle, θ, as illustrated in Fig. 2(a), part of it is lin-
early scattered while another small part is nonlinearly scattered
in all directions by thermally activated acoustic phonons. This
scattering process occurs either by the elasto-optic [30] or the
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Figure 1: Shamrock phononic insulator. (a) Scanning-electron micrograph (tilted-top view) of the fabricated structure on
a silicon-on-insulator substrate with a thickness of t = 220 nm. The inset schematically illustrates the geometrical parameters of
the unit cell (highlighted in red) with lattice constant a = 330 nm, hole radius r = 0.22a, and the distance between the center of
the shamrock and the center of each circle f = 2r/

√
3. (b) Simulated 3D mechanical dispersion relation of the crystal over the first

Brillouin zone. Blue and red curves indicate the symmetric and asymmetric modes with respect to the middle plane of the silicon
slab at t/2. (c) Calculated phononic density of states (DOS) of the structure. The light-blue region highlights the full mechanical
gap spanning 6.7 GHz to 11.4 GHz.

moving-boundary (MB) [31] mechanism. The former is a volu-
metric effect caused by the acoustic modulation of the dielectric
constant ε inside the material, while the latter is a surface effect
induced by the movement of phonons that creates corrugation
at the interface. The interplay between these two effects can
result in the enhancement [32] or the cancellation [33] of the
scattering process. Given the high refractive-index contrast be-
tween silicon and the surrounding air, and the small volume of
interaction, determined by the direction of the incident beam
and the thickness of the suspended structure, the scattering pro-
cess here is dominated by the MB mechanism (see S4 in the SI).

Our experiment collects the backscattered signal, ~ks. For this
configuration, the phase-matching condition for the mechanical
wavevector ~q‖, which lies parallel to the surface, is determined
by

q‖ = 2ki sin θ =
4π

λi
sin θ, (1)

where ki = 2π/λi. Therefore, it is possible to probe differ-
ent mechanical wavevectors by changing the angle of incidence
of light θ, illustrated in Fig. 2(a), and subsequently map the
dispersion relation of the acoustic phonons. All measurements
were taken by focusing a green laser (λi = 532 nm) that is p-
polarized with respect to the sagittal plane formed by the angle
θ (see Fig. S6 in SI). The scattered light that was analyzed is
also the p-polarized component. Although in-plane and out-of-
plane mechanical modes in bulk materials and membranes can
be selectively detected using light polarization [34], mechanical
modes in phononic crystals are generally mixed. Therefore, we
do not obtain different information by considering different po-
larizations of incident and analyzed light. Figure 2(b) plots the
mechanical spectrum measured with incident angle θ = 32.5◦,
which corresponds to the high-symmetry point K in recipro-
cal space. The central peak highlighted in green corresponds
to the elastic (Rayleigh) scattered signal. Positive and nega-
tive frequencies correspond with anti-Stokes and Stokes con-
tributions respectively, which are equally likely in a stochastic
process such as spontaneous Brillouin scattering [30, 35]. All

the peaks observed in the spectrum correspond to vibrational
modes of the system and their amplitudes depend on the scat-
tering efficiency of each mode with the incident laser light [36],
which is proportional to the displacement of the boundaries, as
previously mentioned and detailed in section S4 of the SI. We
obtain the phonon frequencies by fitting each of the observed
peaks to Lorentzian line shapes and extracting the mean value
between the resonant frequencies of the Stokes and anti-Stokes
components. Figure 2(c) plots the mechanical dispersion rela-
tion along the ΓKMΓ path. The intensity color scale represents
the normalized coupling coefficients for the MB perturbation.

The sidewalls of our structures are angled at 4◦ relative to
vertical, which is taken into account in our band structure cal-
culation, as shown in the inset of Fig. 2(c). This breaks the up-
down symmetry and the mechanical modes of the real structure
therefore can not be classified by their symmetry with respect
to the mid plane of the slab as done previously in Fig. 1(b). For
this reason, all bands in Fig. 2(c) are indicated with the same
color and only change in intensity to indicate the scattering effi-
ciency of each mode and wavevector. We observe that this small
correction to the vertical profile causes a displacement of about
1 GHz in the bands below the band gap which becomes evident
upon comparing Fig. 2(c) and Fig. 1(c). Additionally, the gap
to mid-gap ratio increases from 52 % in Fig. 1(b) and 1(c), to
64 % in Fig. 2(c). The black dots in Fig. 2(c) are the measured
frequencies of the peaks as the incident angle is varied. The ver-
tical dotted line indicates the position of frequencies obtained
for the spectrum shown in Fig. 2(b).

To resolve the full mechanical dispersion relation, we map
the highest-symmetry directions of the Brillouin zone: ΓK,
KM , and ΓM . The ΓK path is measured by varying the an-
gle of incidence θ from zero to 32.5◦, as depicted in Fig. 2(d)
where the green arrow represents the incident laser. Here, the
value of the maximum angle θ is calculated from the relation
|ΓK| = 4π

3a
= 4π

λi
sin θ. To map the ΓM direction, we rotate the

sample 30 degrees to align the ΓM path with the horizontal
direction as indicated in Fig. 2(f) and, from that position, we
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Figure 2: Brillouin light scattering spectroscopy. (a) Schematic illustration of Brillouin scattering with the phase-matching

condition for the backward configuration used in the experiments. Here, ~ki and ~ks represent the incident and the scattered light,
respectively, and ~q‖ is the parallel mechanic wavevector. The magnitude of ~q‖ depends on the incident angle, where q‖ = 2ki sin θ.
(b) Measured Brillouin scattering spectrum for an incident angle of θ = 32.5◦ with p-polarized light. The green central peak stems
from elastic Rayleigh scattering. Negative and positive frequency peaks on either side of this large central peak correspond to
Stokes and anti-Stokes contributions, respectively. The light-blue regions highlight the mechanical gap. (c) Calculated dispersion
relation based on the geometrical parameters obtained from SEM images of the fabricated samples that include a 4◦ sidewall angle
correction in the vertical profile (inset). The black dots represent the measured frequencies of vibrational modes for different angles
and the vertical dotted line indicates the frequencies obtained from the measured spectrum shown in (b). The intensity color scale
represents the normalized coupling coefficients for the MB perturbation. (d), (e) and (f) indicate the direction in which the sample
is physically rotated to scan along the highest-symmetry directions ΓK, KM , and ΓM , respectively. The green arrows indicate the
direction of the incident laser light while the other colored arrows correspond to the rotation direction during measurements, which
represent (and are color-consistent with) the highest-symmetry direction indicated in (c).

rotate the angle θ. Here, the maximum angle is indicated by
|ΓM | = 2π√

3a
= 4π

λi
sin θ. Mapping the KM path requires the si-

multaneous variation of two specific angles α and θ to measure
the intersecting point of the blue segment and the horizontal di-
rection, as depicted in Fig. 2(e). The calculated and measured
frequencies are in good agreement and we attribute the residual
frequency mismatch to fabrication fluctuations and the non-
vertical sidewalls. Some modes in Fig. 2(c) are undetectable in
the experiment as their displacement is predominantly in-plane
and therefore do not scatter enough light to be detected. The
light-blue region in Fig. 2(c) highlights the mechanical gap of
this particular crystal. Within this frequency window, no me-
chanical modes were measured for any angle of incidence in
any high-symmetry direction, covering a broad spectral range
of 5.3 GHz centered at 8.4 GHz, which corresponds to a gap
to mid-gap ratio of 64%. This crystal has the largest measured
mechanical gap in the hypersonic regime to date. We also ex-
plore the possibility to spectrally tune the gap as a function of
the geometry by variation of the lattice constant a. The band
gap evolution calculated from FEM and measured spectra for
crystals with periods of 220 nm, 330 nm and 440 nm, can be
found in section S5 of SI. We confirm the spectral tunability of
the gap from 4 to 12 GHz. Subsequently, tuning of phononic
guided modes is also possible.

Finally, we demonstrate the possibility to create phononic
waveguides with the phononic insulator presented here. For
this, we design and fabricate a waveguide surrounded on both
sides by shamrock phononic crystals with inverted symmetry

as shown in the SEM image in Fig. 3(a). This structure has a
periodicity of a = 440 nm, a waveguide width of w = 184 nm,
and the same fill fraction and thickness as the previous struc-
tures (r/a = 0.22, t = 220 nm). The mirror symmetry of the
crystal with respect to the defect line is crucial for proper band
engineering of the guided mechanical modes. The two panels in
Fig. 3(b) show the Brillouin spectra measured on the waveg-
uide (top), and on the surrounding phononic crystal (bottom),
as specified in the insets, taken at the same incident angle of
23.8◦. The blue region indicates the phononic band gap of the
structure. The two peaks measured within this gap in the top
panel of Fig. 3(b) at 5.7 GHz and 7.1 GHz are clear experimen-
tal evidence of mechanical vibrations localized in the phononic
waveguide. In order to detect these localized modes, it is nec-
essary to focus the light on the waveguide with a long-working
distance microscope objective to reduce the spot size of the inci-
dent light down to 1.2 µm. In doing so, we reduce the contribu-
tion of the Brillouin scattered signal from the crystal while in-
creasing the contribution from the waveguide. For the measure-
ments of these waveguide structures, the background is higher
due to a greater collection of reflected and linearly scattered
light relative to that of the 3 cm lens used in Fig. 2. Figure
3(c) plots the dispersion relation of the waveguide accounting
for the 4◦ correction of the vertical sidewalls. As in Fig. 2c,
the color intensity of the bands corresponds to the normalized
coupling coefficient for the MB perturbation. The fully shaded
regions above and below the gap correspond to the bulk crys-
tal modes and define the band gap edges of the structure. The
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Figure 3: Hypersonic phononic waveguide (a) SEM image of a shamrock phononic waveguide with a lattice period of a =
440 nm and waveguide width of w = 184 nm. The thickness and radius of the structure are the same as in previous structures (t =
220 nm, r = 0.22a). (b) Measured Brillouin scattering spectra in the waveguide (top) and surrounding phononic crystal (bottom)
as is illustrated in the insets, for an incident light angle of 23.8◦. The spectral width of the measured gap is indicated by the blue
regions. Two peaks whose frequencies correspond with the guided modes of the system appear inside the gap in the spectrum of the
waveguide (top). (c) Calculated dispersion relation of the waveguide. The intensity color scale represents the normalized coupling
coefficient for the MB perturbation. The horizontal and vertical dotted lines indicate the mechanical band edges and phononic
wave vector, respectively, while the black dots represent the frequencies of peaks 1 and 2, all for the top waveguide spectrum shown
in (b). The insets in (c) display the mode profiles for the indicated bands where the color represents the normalized out-of-plane
displacement.

calculated dispersion relation exhibits nine guided modes but
only two (indicated with associated mode profiles) have suf-
ficient mechanical out-of-plane displacement to potentially be
detected in experiment. The horizontal dashed lines highlight
the edges of the band gap measured in Fig. 3(b) and the black
dots correspond to the frequencies of the guided modes mea-
sured at different angles. The angle θ = 23.8◦ corresponds to a
normalized wavevector of 1.34 (replacing q‖ = nπ/a in Eq. 1
and solving n), or kx/(π/a) = 0.66 over the first periodic zone of
the waveguide. The two black dots (1 and 2) coincide with the
measured frequencies and wavevector in Fig. 3(b). We assume
that measured peaks around 7 GHz corresponds with the darker
flat mode around 7.7 GHz and not with the lighter curve that
it is spectrally closer to. There is a difference of approximately
700 MHz for this band while the other peaks agree very closely
with the calculated band. The detection of these two modes is
a clear fingerprint of the existence of localized modes along the
Shamrock waveguide.

In summary, we provide direct experimental evidence of the
complete absence of mechanical vibrations at room tempera-
ture within a full phononic band gap that is 5.3 GHz wide with
a central frequency of 8.4 GHz, measured using Brillouin light
scattering. This measured mechanical gap is significantly wider
than previous demonstrations in literature, especially at this
frequency regime. Our approach incorporates a geometrical pat-

tern that distributes the mass within the unit cell, forming mass
clusters connected by narrow necks that result in the destruc-
tive interference of phonon waves, giving rise to these wide me-
chanical gaps. We achieve control over the width and frequency
of the gap by fine-tuning of the geometrical parameters of the
structure, enabling spectral tunability of the gap from 4 GHz to
12 GHz. This tunability is extended to the guided modes of a
line-defect waveguide, enabling engineering of the frequency and
number of localized modes within the structure. This is the first
demonstration of mechanical guided modes at hypersonic fre-
quencies in the GHz regime using line-defect waveguides, mea-
sured at room temperature without any external excitation. The
structures are fabricated on the standard SOI platform which
enables facile integration into existing photonic systems. The
hypersonic insulator presented here also is a photonic insula-
tor for Transverse-Electric (TE) modes at telecom wavelengths
[24, 25] and can be used to simultaneously engineer phononic
and photonic transport enhancing the optomechanical coupling
between THz photons and GHz phonons. This makes the crys-
tal an ideal transducer in photonic circuits with potential appli-
cations in high-speed signal processing [37]. Furthermore, this
platform can be used in applications and physical processes in
which a wide mechanical band gap is required to isolate the
system from thermal damping, such as in quantum cavity op-
tomechanics or organic molecular systems [38].
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SUPPLEMENTARY INFORMATION

S1. CRYSTAL DESIGN, FABRICATION AND CHARACTERIZATION

Shamrock design

The periodic pattern of the phononic crystal consists of three tangential circles of radius r = 0.22a, where a is the period of the
structure, shifted by a distance f = 2r/

√
3 (Fig. S1) from the common center and arranged to form what we call a shamrock [1].

Three small semicircles of radius f − r have been added in the junctions to smooth out any sharp corners in the geometry and
create a structure that can be fabricated.

r

ff-r

f
f

r

Figure S1: Shamrock geometry Three adjacent circles of radius r form the replication pattern of the shamrock phononic crystal.

Fabrication

All the structures studied here were fabricated in chips cleaved from a commercial 12-inch silicon-on-insulator (SOI) wafer, which
has a nominal 220 nm thick device layer and a 2 µm buried oxide. The lithography, dry-etching, and release etch of the suspended
membrane is carried out as detailed in [2] with some minor changes. Since we do not need to make as small features, we spin-coat
a thicker (180 nm) softmask (chemically semi-amplified resist, CSAR6200.09), which enables us to reduce the periodic sidewall
roughness (scallops). We define the patterns with a 100 keV 100 MHz JEOL-9500FSZ electron-beam writer with a current 200
pA and a dose density of 2.5 aC/nm2 in the center, boosted by 10 % in the corners to compensate long-range proximity effects
across the large crystals [3]. We consider the variance of the long-range effects, β = 30µm, and the relative weight compared to the
forward scattering, η = 0.5. We further modify the cyclic dry-etching process CORE [4], with 3 changes from the process in Ref.
[2]. Specifically, we increase the number of cycles to 14 and reduce the time of the E-step (etch) to 45 s. to reduce the size of the
scallops. In order to reduce sidewall erosion, we increase the time of the O-step (passivation) to 5 s. The structures are released by
a 2.8 µm isotropic underetch of the buried oxide [2].

Figure S2 shows the fabricated samples with periods a of 220, 330 and 440 nanometers with the same radius r = 0.22a. All the
crystals have a full area of 50x50 µm.

220 nm

(a) (b) (c)

440 nm330 nm

Figure S2: Fabricated samples Scanning-electron micrographs of the shamrock phononic crystals with period a of (a) 220 nm,
(b) 330 nm, and (c) 440 nm.

Contour fitting and statistical analysis

The average shape of the fabricated shamrock holes is obtained from an ensemble of 56 holes extracted from the same SEM
image. Each contour comes from a binarized version of the original SEM image adjusted to obtain the most accurate result as
shown Fig. S3(a). Figure S3(b) plots the ensemble of all contours (red dots) and its mean value (blue dots). The shape of the
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individual fitted shamrocks are very similar which is a qualitative measure of the fabrication tolerance. To quantify the degree of
imperfection, we compare the mean value and standard deviation of the ensemble averaged area of the shamrocks with the nominal
value. Fig. S3(c) plots the histogram distribution of the areas in nm2 of each individual shamrock (in red), and the mean value (in
blue). The gray line in Fig. S3(c) indicates the nominal area of the designed geometry. The difference between the average area,
5.12× 104nm2, and the nominal area, 4.91× 104nm2, is attributed to the not fully resolved corners of the shamrock, as displayed
in the inset of the figure. This clearly shows the significance of avoiding sharp corners in the unit cell geometry, which requires a
much accurate fabrication process. Although geometric inspection using SEM images has its limitations, this simple analysis shows
the high quality of the fabrication process used here and also the simplicity and robustness of the pattern selected to create the
periodicity.
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Figure S3: Fitting and statistical analysis (a) Fitted contours in a shamrock crystal with a period of 330 nm. (b) Superposition
of all the contours (red) and its mean value (blue points). (c) Histogram for the fitted areas and its mean, compared with the
nominal value of the designed area. There is a small difference caused by the etching in the intersection of the circles.
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S2. Band structure of the irreducible Brillouin zone

A simple periodic geometry can be created in a material using electron-beam lithography by etching circularly symmetric holes
(C1), often in a hexagonal lattice (C6v) [5], leading to crystals that belong to the planar space-group (also called wallpaper group)
p6mm. However, different (more restricted) symmetries of the pattern in the unit cell and the symmetries of the material at
the atomic scale might induce a discrete set of rotational symmetries in addition to their translation invariance. Figure S4(a-c)
illustrates how the existing symmetries of the unit cell of a triangular lattice give rise to reduced sizes of the Brillouin zone (BZ)
via some examples, where the top panel represents the real-space Wigner-Seitz cell and the bottom panel the corresponding first
BZ. The circle in Fig. S4(a) possesses full rotational symmetry (C1) and the 12 operations that map the hexagonal Wigner-Seitz
cell to itself are preserved, leading to an irreducible Brillouin zone (IBZ) (the shaded region inside ΓKM) of size 1/12, in units of
the first BZ. The equilateral triangle in S4(b) breaks the inversion symmetry (C2) and three mirror symmetries (σ̂y , σ̂y′ and σ̂y′′)
leading to an IBZ two times larger. Other geometries such as a square can preserve inversion symmetry but break a higher number
of mirror symmetries, leading to an IBZ one quarter of the first BZ in size (c). The shamrock pattern used here [1], preserves the
symmetry described in S4(b). However, if we consider the anisotropy of the silicon stiffness tensor, the mirror symmetry of the
unit cell is broken resulting in the symmetry described in S4(c). This leads to a IBZ given by the region bounded by the path
ΓKMK1M1Γ. Figure S4(d) plots the phononic dispersion relation of the system presented in Fig. 1 of the main text along this
IBZ. For simplicity, in our experiment we measure along the simplified path ΓKMΓ indicated in Fig. S4(b). This is sufficient to
characterize the full width of the phononic gap as its limiting frequencies do not change with respect to the IBZ.

Figure S4: Irreducible Brillouin Zone (IBZ). The symmetries of the unit cell pattern that map the lattice into itself are
called the point group of the crystal and define the IBZ, the minimum region in k-space that needs to be sampled to access the
full eigenspectrum ωn(k). (a) A circle preserves all mirror symmetries σxx′;x′′;yy′;y′′ , all rotational symmetries C±6;±3;±2 and the
inversion symmetry C±2 of the hexagonal Wigner-Seitz (WS) cell of a triangular lattice, leading to a IBZ delimited by ΓKM IBZ,
shaded in brown. (b) An equilateral triangle breaks the σx′;y;y′ mirror symmetries and the inversion symmetry C±2, which leads to
the shaded region. Use of time-reversal invariance finally leads to the same ΓKM IBZ. Larger IBZs occur when the pattern breaks
additional symmetries, as does (c) a square leading to an IBZ of size 1/4 in units of the 1BZ area. (d) Calculated mechanical
dispersion relation along the the borders of the irreducible Brillouin zone ΓKMK1M1Γ for the phononic crystal presented in Fig.
1a of the main text. Blue and red curves represents symmetric and asymmetric modes with respect to the mid plane of the slab.
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S3. Brillouin light scattering spectroscopy

The setup used to measure the spontaneous backward Brillouin scattering was a tandem Fabry-Perot interferometer. A 532 nm
continuous-wave solid state laser with a linewidth of 5 MHz was used for the incident and reference beam. The scattered light is
routed into a six-times pass Fabry-Perot interferometer that is comprised of two cavities in series, FP1 and FP2 in Fig. S5. This
system increases the spectral resolution and allows high stability and accurate measurements of spectra over long acquisition times.
For measurements on the crystal, the incident power was 2.5 mW using a 3 cm focal lens, with an acquisition time of 24 hours for
each measured angle. For measurements on the waveguide and the surrounding shield, the incident power was 1 mW using a long
working distance objective lens with 100x magnification, also with an acquisition time of 24 hours for each spectrum.

Figure S5: Brillouin light scattering spectroscopy. simplified scheme of the tandem Fabry-Perot interferometer used to
measure and enhance the backscattered signal. BS: beam spliter, M: mirror, P: prism, FP: Fabry-Perot cavity.
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S4. SCATTERING EFFICIENCY

The scattering efficiency quantifies how much a mechanical mode scatters the incident light. To calculate it, we need to consider
the origin of the periodic perturbation of the refractive index. It is caused by two main physical mechanisms. The most well-known
is the photoelastic effect (PE) induced by the elastic strain of the material [6], and the moving boundary effect (MB) induced by
the mechanical displacement of the surface [7]. The latter becomes important when light is on the surface, such as in our case.
Here we made a first approximation taking into account only the MB perturbation and neglecting the PE contribution, given the
small volume of interaction in our experiment. This approximation allows us to obtain the coupling coefficients in an almost fully
analytical way. According to [7], the MB coupling is given by:

κmb =

∫
A

Uz
[
∆ε12

(
E∗s,‖ · Ei,‖

)
−∆ε−1

12

(
D∗s,⊥ · D

′
i,⊥

)]
dA (S1)

where Uz is the normal displacement to the surface A as indicated in Fig. S6(a). ∆ε12 = (ε1 − ε2) and ∆ε−1
12 = (ε−1

1 − ε
−1
2 ), E and

D are electric and displacement fields, and scripts s and i denote scattered and incident fields respectively. Taking into account
the relation between the relative permittivity and the refractive index, ε = ε0n

2, we can write

∆ε12 = ε0(n2
1 − n2

2) (S2)

∆ε−1
12 =

1

ε0

(
1

n2
1

− 1

n2
2

)
. (S3)

Replacing the normal component of the displacement field by the electric field component, D = εE, we can rewrite Eq. S1 as

κmb =

∫
A

Uzε0

[(
n2
1 − n2

2

) (
E∗s,‖ · Ei,‖

)
− n4

2

(
1

n2
1

− 1

n2
2

)(
E∗s,⊥ · E

′
i,⊥

)]
dA. (S4)

The incident and scattered electric field in the sample surface can be treated as planes waves propagating in free space and can be
written as:

Ei(r, t) =
1

2
Ei(x, y)e−i(ωit−ki · z) + c.c. (S5)

Es(r, t) =
1

2
Es(x, y)e−i(ωst+ks · z) + c.c. (S6)

We need to account for the polarization of the electric field used in the experiment (TM polarization) as depicted in Fig. S6. For

the backward Brillouin scattering configuration, ~ks = −~ki and ωs = ωi ± Ω or ωs ≈ ωi given the small frequency of mechanical
modes (GHz) compared with the incident light frequency (THz). Es(x, y) = Ei(x, y) = Ei because light is propagating in free
space. Therefore the product of the incident and scattered fields can be simplified to E∗s · Ei = E2

i . Incident and scattered light
can then be treated as the same fields. As can be seen in Fig. S6(a), we have Es,‖ = −Ei,‖ and Es,⊥ = −Ei,⊥, where the parallel
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Figure S6: Optomechanical coupling mediated by the moving-boundary effect. (a) Components of the incident and
backscattered electromagnetic field (green and red respectively). Each mode of the structure leads to a particular vertical displace-
ment of the surface that determines the scattering contribution. (b) and (c) highlight the surface to be integrated in the phononic
crystal and phononic waveguide respectively.

and perpendicular components of electric field are given by Ei,‖ = Ei cos θ, and Ei,⊥ = Ei sin θ. Replacing all these expressions in
Eq. S4, we can write

κmb =

∫
A

Uzε0

[(
n2
1 − n2

2

) (
−E2

i cos2 θ
)
−
(
n2
2 − n2

1

) n2
2

n2
1

(
−E2

i sin2 θ
)]
dA. (S7)

The entire expression inside brackets can be taken out the integral. We only need to account for the change of the refractive index
with respect to the surface displacement. To do so, we always assume a positive change of the refractive index and take the absolute
value of the normal displacement Uz.

κmb = −ε0E2
i

(
n2
1 − n2

2

) [
cos2 θ +

n2
2

n2
1

sin2 θ

] ∫
A

|Uz|dA. (S8)
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Here the coupling coefficient does not depend on the incident field and it can be normalized to E2
i = 1W . Each mechanical mode

has its own scattering efficiency depending on the surface displacement Uz. The bigger the refractive index contrast, the bigger
the MB contribution. Finally, the scattering cross section needs to be accounted for. The illuminated area on the sample surface
changes with the angle, being a circle of area Ac = πb2 for θ = 0, where b is the beam diameter, and an ellipse with axes b and
l = b/cos(θ), and area Ae = πbl for a certain angle θ. Therefore, Eq. S8 needs to be divided by cos(θ) to account for the scattering
cross section. Finally, replacing n1 = nsi and n2 = 1, the coupling coefficient for the MB perturbation is given by

κmb = −ε0E2
i

(
n2
Si − 1

) [
cos θ +

1

n2
Si

tan θ sin θ

] ∫
A

|Uz|dA. (S9)

For the phononic crystal, the area integral has to be computed over the top face of the unit cell as indicated by Fig. S6(b). For the
waveguide, we are interested in the localized modes; therefore the area integral is not calculated in the unit entire cell b ut only in
the central region as indicated in Fig. S6(c). Although the expression presented here does not account for the PE contribution, it
is a good approximation to determine if a particular mechanical mode can be detected in our experimental setup. Equation S9 is
used to calculate the color intensity of bands in Fig. 2(c) and Fig. 3(c) in the main text.
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S5. SPECTRAL TUNABILITY

We explored the geometrical tunability of the gap induced by the variation of the lattice constant a (see inset of Fig. S7(a)). The
spectral evolution of the gap width as a function of period a in Fig. S7(a) was calculated with a finite element method assuming
a slab thickness of 220 nm and a unit cell fill fraction of r/a = 0.22. Here we do not account for or apply any correction to the
vertical profile of the crystal. The gap opens for a lattice unit of a = 100 nm and has a maximum of almost 6 GHz for a = 300 nm.
We confirm the mechanical spectral shift by measuring the Brillouin inelastic scattering spectrum at the high-symmetry point K
for three different structures fabricated on silicon-on-insulator with different periods of a = 220 nm, 330 nm and 440 nm, as shown
Fig. S7(b). We measure at angles which correspond to K at θ = 53.7◦, 32.5◦, and 23.8◦, respectively. The agreement between
simulations and experiment in Fig. S7 is strong evidence of the gap displacement. As mentioned previously, differences in frequency
between theory and experiment are due to unavoidable fluctuations in the fabrication process which become more significant for
smaller lattice units. The broad tunability of the mechanical gaps measured here, from 4 GHz to 12 GHz, enables a fine control of
hypersonic phonon routing and cavity optomechanics based on the shamrock geometry.
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Figure S7: Geometric tunability of the system (a) Spectral evolution of the mechanical gap as a function of the lattice
period a, considering the same unit cell fill fraction, r/a = 0.22. (b) Brillouin light scattering spectra measured for three different
crystals with periods a = 220 nm, 330 nm, and 440 nm. The light-blue regions highlight the spectral position of the mechanical
gap in each structure.
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