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The timescale of electronic cooling is an important parameter controlling the performance of
devices based on quantum materials for optoelectronic, thermoelectric and thermal management
applications. In most conventional materials, cooling proceeds via the emission of phonons, a rela-
tively slow process that can bottleneck the carrier relaxation dynamics, thus degrading the device
performance. Here we present the theory of near-field radiative heat transfer, that occurs when a
two-dimensional electron system is coupled via the non-retarded Coulomb interaction to a three-
dimensional bulk that can behave as a very efficient electronic heat sink. We apply our theory
to study the cooling dynamics of surface states of three dimensional topological insulators, and of
graphene in proximity to small-gap bulk materials. The “Coulomb cooling” we introduce is alter-
native to the conventional phonon-mediated cooling, can be very efficient and dominate the cooling
dynamics under certain circumstances. We show that this cooling mechanism can lead to a sub-
picosecond time scale, significantly faster than the cooling dynamics normally observed in Dirac
materials.

I. INTRODUCTION

Two-dimensional (2D) Dirac materials [1–4] have been
extensively studied in the last two decades for the diverse
range of intriguing properties they harbor, which could
in turn enable a wealth of novel practical applications [5–
8]. This is the case of graphene [1, 9–11], arguably the
most-studied Dirac material, which continues to attract
significant interest because of its potential for electronic
and optoelectronic applications [11]. However, graphene
is just an instance of a broad family of systems which
includes the 2D surface states of three-dimensional (3D)
topological insulator [2, 3, 12]. Their inverted bulk band
structure allows states to localize at the surface [5, 13–
16]. In ideal topological insulators, surface states do not
hybridize with bulk ones, and are topologically protected
against any perturbation that preserves the symmetries
of the bulk [2, 3, 12].

Thanks to the coupling between kinetic momentum
and spin, the electronic surface states of a 3D topolog-
ical insulator present a physics potentially richer than
graphene, and promise application to a diverse range of
fields, including spintronics [6, 7], optoelectronics, and
photonics [17, 18]. In a recent experimental work [19],
the cooling dynamics of surface electrons of bismuth and
antimony chalcogenides was studied with pump-probe
techniques. Surprisingly, electronic heat relaxation faster
than that of bulk carriers was observed. The observed
bulk and surface heat-decay rates differ by about an or-
der of magnitude, while the environment experienced by
their electrons is the same. Interestingly, a decay rate of
a few hundred femtoseconds was obtained under rather
strong photoexcitation with a fluence on the order of
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100µJ/cm
2
. In comparison, when graphene is excited

with a similar fluence, cooling is rather slow - several
picoseconds - due to a phonon bottleneck effect [20].

So why does the cooling of the electrons of surface
states of topological insulators occur so much faster than
their bulk counterpart or than graphene? In graphene,
the cooling of photoexcited electrons is ultimately lim-
ited by the emission of intrinsic optical phonons of the
material [21] or of the encapsulant [22, 23]. Such phonon
emission mechanisms fail to account for the starkly differ-
ent relaxation dynamics of surface and bulk electrons of
topological insulators, unless, one would postulate differ-
ent electron-phonon couplings or a reduced phase space
for phonon emission by surface states.

In this paper, we explore a different mechanism that
does not require fine-tuning material parameters, as it
relies on electronic systems exclusively. This alternative
mechanisms is based on the notion that, contrary to elec-
trons in conventional graphene devices, the surface elec-
trons of topological insulators are in close proximity to a
macroscopic bulk whose particle-hole excitations can oc-
cur at energies comparable to the (surface) thermal exci-
tations. Thanks to the near-field radiative coupling be-
tween surface and bulk, the latter can act as a heat sink.
Being macroscopic, the bulk can absorb large amounts
of heat and therefore efficiently cool down the surface
electrons. In this picture, heat is dissipated into particle-
hole excitations of the bulk via non-retarded Coulomb
interactions (see Fig. 1). Thus we term this mechanism
“Coulomb cooling” [24].

In the remainder of the paper, we consider a system of
2D massless Dirac fermions in proximity to a 3D gapped
bulk. The two are coupled only electrostatically via non-
retarded Coulomb interactions. This minimal model of
a topological insulator equivalently describes a graphene
sheet in proximity to a small-gap material. For both
cases, using the kinetic equation for surface electrons, we
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FIG. 1. Schematics of Coulomb cooling of hot surface Dirac
fermions into bulk states. Dirac fermions have a constant
Fermi velocity vF, and exhibit a hot thermal distribution char-
acterized by temperature and chemical potential Ts and µs,
respectively. Similarly, bulk states are described in terms of
the effective mass m and band gap 2∆. The Fermi distribu-
tion of bulk states has chemical potential µb (set to zero in
later calculations) and temperature Tb < Ts.

derive an expression for their cooling rate. This is con-
trolled by the convolution of surface and bulk particle-
hole excitation spectra. The higher their overlap, the
larger the amount of heat transferred per unit time. We
show that the cooling rate reaches a maximum for sur-
face temperatures close to half the bulk-band gap. This
is interpreted as a resonance between surface electronic
transitions, whose typical energy is the thermal one, and
interband particle-hole bulk excitations across the band
gap. We find a timescale of a few hundred femtosec-
onds for topological insulators, and even a few tens of
femtoseconds for graphene on a small-bandgap semicon-
ductor.

II. THE MODEL

We model both the surface states of the topological in-
sulator and the electrons in graphene as a gas of massless
Dirac fermions [1–3, 9–12], i.e.

Hs = ~vF

∑
k,α,β

ψ̂†k,α,sk · σα,βψ̂k,β,s , (1)

where vF is the Fermi velocity and σ is a vector of Pauli
matrices. These act in the real spin space for topolog-
ical insulators, and in pseudospin (sublattice) space for

graphene. In Eq. (1), ψ̂†k,α,s (ψ̂k,α,s) creates (destroys)

a surface particle of two-dimensional wavevector k (mo-
mentum ~k) and (pseudo)spin projection α. The band

energy is ε
(s)
k,λ = λ~vF|k|, where λ = + (λ = −) denotes

the surface conduction (valence) band. [The Hamilto-
nian (1) is obtained from the usual one for topologi-

cal insulators, which features a cross product between
momentum and spin operators [2], by re-defining the
spin quantization axes.] Eq. (1) is in form identical for
graphene and topological insulators. However, their elec-
trons exhibit different degeneracies Nf . While the surface
states of topological insulators are helical [2], thus yield-
ing Nf = 1, in graphene they feature a full spin-valley de-
generacy [1]. Thus, for graphene, the number of fermion
flavors is Nf = 4.

We model the bulk as a two-band system confined into
the half-space z > 0 and described by the Hamiltonian

Hb =
∑
k,η

ε
(b)
k,ηψ̂

†
k,η,bψ̂k,η,b . (2)

Here, ε
(b)
k,η = η

[
∆ + ~2|k|2/(2m)

]
, where 2∆ is the bulk-

band gap and m is the bulk-band mass (assumed to be
the same for both valence and conduction bands), while

ψ̂†k,η,b (ψ̂k,η,b) creates (destroys) a bulk particle of three-

dimensional wavevector k = (k‖, kz), in band η. Here,
k‖ and kz are the wavevectors parallel and perpendicular
to the surface z = 0, η = + denotes the conduction band,
while η = − stands for the valence band. For simplic-
ity, we assume that bulk bands are spherically symmet-
ric and have no spin structure. These approximations
do not affect the temperature dynamics on a qualitative
level. Assuming specular reflection at the interface z = 0,
the bulk eigenstates acquire the form of standing waves:
Ψk,η,b(r, z) =

√
2/V eik‖·r sin(kzz), where r is a vector

along the surface.
We assume that bulk and surface electrons are coupled

electrostatically by long-range instantaneous Coulomb
interactions [25], whose Hamiltonian is

Hsb =
1

2

∫ ∞
0

dz
∑
q

Vsb(q, z)n̂q,sn̂−q,b(z) . (3)

Here, q is a two-dimensional wavevector along the surface
of the topological insulator, while n̂q,s and n̂−q,b(z) are
the 2D-Fourier transforms of the surface and bulk density
operators. The precise form of the interaction Vsb(q, z)
is determined by the solution of the associated Poisson
(electrostatic) problem, as we proceed to show.

A. The interaction between surface and bulk
electrons

In this section we derive the Coulomb interaction be-
tween surface and bulk electrons. To do so, we consider
the electrostatic problem of a single charge added to a
conducting 2D sheet (the surface states located at z = 0)
placed on top of the topological-insulator bulk which fills
the half-space z > 0. The half-space z < 0 is instead
empty. The single charge is added as a plane wave of
wavevector q in the surface sheet. In response to this
added charge, induced bulk and surface densities are gen-
erated. These are named nb(r, z) and ns(r), respectively.
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The resulting Poisson equation (in Gaussian units) is

∇ ·
[
ε(z)∇φ(r, z)

]
= −4πe2n(r, z) , (4)

where n(r, z) = nb(r, z)Θ(z) + ns(r)δ(z) + e−iq·rδ(z) is
the total electron density, and ε(z) = εbΘ(z)+εvacΘ(−z)
is the dielectric function. Here, εb is the relative dielectric
constant of the topological insulator, which accounts for
the screening due to filled bands, while εvac = 1 [Θ(z)
is the Heaviside step function]. The Fourier transform
of Eq. (4) in the direction parallel to the topological-
insulator surface (or the graphene sheet) yields

∂z
[
ε(z)∂zφq(z)

]
− q2ε(z)φq(z) = −4πe2nq(z) , (5)

where nq(z) = nq,b(z)Θ(z) + nq,sδ(z) + δ(z). Within
linear response, we write nq,s = χs(q, ω)φq(0), where
χs(q, ω) is the density-density response function (polar-
izability) of the surface states, and

nq,b(z) =

∫ ∞
0

dz′χb(q, ω, z, z′)φq(z′) ' χ̄b(q, ω)φq(z) .

(6)

Here, χb(q, ω, z, z′) ' χ̄b(q, ω)δ(z − z′) is the density-
density response function [26] (polarizability) of bulk
states treated within a semi-local approximation. Equa-
tions of this section contain the response of the doped
bulk, embodied by χb(q, ω, z, z′) and χ̄b(q, ω), for com-
pleteness. However, we leave this function unspecified
since, as we show below, it plays no role in the undoped
regime when the bulk thermal energy (kBTb) is much
smaller than the bulk-band gap (2∆). Using these ex-
pressions, the Poisson equation (5) can be split into the
two half-spaces as{

εb(∂2
z − q2)φq(z) = −4πe2χ̄b(q, ω)φq(z) if z > 0

(∂2
z − q2)φq(z) = 0 if z < 0

.

(7)

The boundary conditions, at the surface z = 0 and at
z → ±∞, are φq(0+) = φq(0−), φq(z → ±∞) = 0, and

εb∂zφq(z)
∣∣∣
z→0+

− ∂zφq(z)
∣∣∣
z→0−

= −4πe2(nq,s + 1) .

(8)

Introducing the bulk Thomas-Fermi wavevector [26]
q2
TF(q, ω) = −4πe2χ̄b(q, ω)/εb, the solution of Eqs. (7)

with the boundary conditions above is{
φq(z) = φ̄qe

−
√
q2+q2TF(q,ω)z if z > 0

φq(z) = φ̄qe
qz if z < 0

, (9)

where, using Eq. (8), we get

φ̄q =
4πe2

ε
√
q2 + q2

TF(q, ω) + q − 4πe2χs(q, ω)
. (10)

In the limit of zero frequency and small wavevectors,
χs(q, ω) becomes the densities of states of surface elec-
trons.

III. THE COOLING RATE – GENERAL
THEORY

We consider the kinetic equation for electrons at the
surface of the topological insulator, which interact with
those in the bulk via Coulomb interactions. The surface
and bulk electrons are described by the Fermi distribu-

tion functions f
(s)
k,λ and f

(b)

k̃,η
at the temperatures Ts and

Tb and chemical potentials µs and µb, respectively. As
in Sect. II, k and k̃ are their two- and three-dimensional
wavevectors, respectively. We recall that λ = ±1 is used
to denote the two surface bands (together forming a Dirac
cone), while η = ±1 is used for the bulk conduction and
valence bands. For the calculation of the cooling time,
we assume that no driving field is present, and that ma-
terial parameters (including temperatures and chemical
potentials) are isotropic. However, since the two popu-
lations are at different uniform chemical potentials and
temperatures, we can study the time evolution of their
distribution functions. The kinetic equation satisfied by

f
(s)
k,λ is [22]

∂tf
(s)
k,λ = −I(sb)

k,λ , (11)

where I(sb)
k,λ is the electron-electron collision integral be-

tween surface and bulk electrons [resulting from the in-
teraction in Eq. (3)]. This conserves their numbers sep-
arately, but allows for the exchange of energy between
them. We will specify the collision integral in the follow-
ing subsection. First, however, we will derive the general
expression for the cooling rate.

To obtain the cooling rate, we multiply Eq. (11) by

the energy of the surface state, ε
(s)
k,λ, and sum over all

wavevectors k and all values of the surface-band index
λ. The left-hand side of the so-obtained equation yields
the time derivative of the energy stored in surface states,
∂tEs. The latter is rewritten as ∂tE

s = Cs∂tTs, where
the heat capacity of surface states is defined as [22]

Cs =
∑
λ

∫
d2k

(2π)2
ξ

(s)
k,λ

(
−
∂f

(s)
k,λ

∂ξ
(s)
k,λ

)[
ξ

(s)
k,λ

Ts
+
∂µs

∂Ts

]
.(12)

Here, ξ
(s)
k,λ = ε

(s)
k,λ − µs. The derivative of the surface

chemical potential µs ≡ µs(Ts) with respect to tempera-
ture is obtained by imposing the conservation of the sur-
face electron density [22]. Defining the power dissipated

into bulk states as Q =
∑

k,λ I
(sb)
k,λ ε

(s)
k,λ ≡ γCs(Ts − Tb),

Eq. (11) yields the cooling rate [22]

γ =
Q

(Ts − Tb)Cs
. (13)

In the following we first define the collision integral and
then calculate Q, and thus γ.



4

IV. THE COOLING RATE –
SURFACE-TO-BULK POWER DISSIPATION

To calculate the power dissipated into bulk states, we
first have to obtain the collision integral due to the inter-

action of Eq. (3). Within the Fermi-golden-rule approx-
imation, the collision integral on the right-hand side of
Eq. (11) reads

I(sb)
k,λ = 2

2π

~A2Lz

∑
k′,k̃′,q

∑
λ′

∑
η,η′

∫ ∞
−∞

dωV 2
q,k′,k̃′

Fk,λ;k+q,λ′δ(ε
(s)
k,λ − ε

(s)
k+q,λ′ + ω)δ(ε

(b)
k′,η − ε

(b)

k̃′,η′
− ω)δ(k′‖ − k̃

′
‖ − q)

×
[
f

(s)
k,λf

(b)
k′,η(1− f (s)

k+q,λ′)(1− f
(b)

k̃′,η′
)− (1− f (s)

k,λ)(1− f (b)
k′,η)f

(s)
k+q,λ′f

(b)

k̃′,η′

]
, (14)

where the factor 2 upfront accounts for the spin degen-
eracy of bulk states, ω and q are the transferred energy
and momentum parallel to the surface, k′‖ and k̃′‖ are the

components of the three-dimensional momenta k′ and
k̃′ parallel to the surface, A is the surface area of the
topological insulator and Lz its extension in the third
dimension. In this equation, Fk,λ;k+q,λ′ is the squared
matrix element of the surface-electron density operator
between incoming and outgoing scattering states. Since
bulk states are standing waves, the z-components of the
three-dimensional momenta k′ and k̃′ are taken to be
positive. The matrix element of the screened Coulomb
interaction Vq,k′,k̃′ is obtained by integrating it over the
incoming and outgoing scattering states, i.e.

V 2
q,k′,k̃′

= 4

∣∣∣∣∫ ∞
0

dz sin(k′zz) sin(k̃′zz)e
−
√
q2+q2TF(q,ω)z

∣∣∣∣2
×
∣∣φ̄q∣∣2 . (15)

This matrix element is manipulated in App. A to give

V 2
q,k′,k̃′

'
∣∣φ̄q∣∣2 π2

4
√
q2 + q2

TF(q, ω)
δ(k′z − k̃′z)

≡ V 2
q δ(k

′
z − k̃′z) . (16)

To obtain this expression, we have evaluated the integral
on the right-hand side of Eq. (15) and approximated it
in the limit of small q and qTF(q, ω) [the latter is jus-
tified when the bulk is undoped and kBTb � 2∆]. In
this case, the weight of the integral is located around the
lines k̃′z = ±k′z. Thus, we replaced Lorenzians of width√
q2 + q2

TF(q, ω) with delta-functions. Finally, we used

that k̃′z and k′z must be taken to be positive. Putting
Eq. (16) back into Eq. (14), after some lengthy but
straightforward algebra we get

Q =
4

π~

∫
d2q

(2π)2
V 2
q

∫ ∞
0

dωω
[
n(s)(ω)− n(b)(ω)

]
× =mχb(q, ω)=mχs(q, ω) , (17)

where n(s/b)(ω) =
[
e~ω/(kBTs/b) − 1

]−1
. In Eq. (17),

=mχs(q, ω) = − π
A
∑

k,λ,λ′

(f
(s)
k,λ − f

(s)
k+q,λ′)Fk,λ;k+q,λ′

× δ(ε(s)
k,λ − ε

(s)
k+q,λ′ + ω) , (18)

and

=mχb(q, ω) = − π

ALz

∑
k′,η,η′

(f
(b)
k′,η − f

(b)
k′−q,η′)

× δ(ε(b)
k′,η − ε

(b)
k′−q,η′ − ω) , (19)

are the imaginary parts of the density-density response
functions of surface [27–29] and bulk [26] states, respec-
tively. The function =mχb(q, ω), not to be confused with
the function χ̄b(q, ω) introduced in Sect. II A, is calcu-
lated in App. B.

The cooling rate γ is obtained by inserting Q in
Eq. (17) back into the definition (13), and reads

γ = − 4

π~Cs

∫
d2q

(2π)2
V 2
q

∫ ∞
0

dωω
n(s)(ω)− n(b)(ω)

Ts − Tb

× =mχb(q, ω)=mχs(q, ω) . (20)

This equation is the key result of this paper.

V. RESULTS

We now show our results for the cooling time of elec-
trons in the surface state of a topological insulator and
in graphene in proximity to a small-gap material. We
find that the bulk behaves as an efficient heat sink for
electrons, yielding sub-picosecond cooling times.

We start with the surface states of the topological in-
sulator. We numerically evaluate Eq. (13), with the heat
capacity of surface states and power lost to bulk states
given by Eqs. (12) and (17), respectively. For a sake
of definiteness, in the numerical calculations, we set the
surface Fermi velocity [33] vF = 0.5× 106 m/s, while the
bulk is left undoped, i.e. its electron density is nb = 0
(which translates into µb = 0). The bulk temperature is
set to Tb = 300 K, which is much smaller than the bulk-
band gap [34] 2∆ = 200 meV. Under these conditions,
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(a)

(b)

FIG. 2. Panel (a): the cooling rate for Dirac-like surface
states (vF = 0.5 × 106 m/s) in proximity to an undoped 3D
bulk (nb = 0, which translates into µb = 0) kept at room
temperature (Tb = 300 K, much smaller than the gap en-
ergy: kBTb � 2∆), calculated from Eq. (13) and plotted as
a function of temperature. Curves exhibit a maximum at a
surface electron temperature corresponding to half the bulk-
band gap, ∆ = 100 meV (dashed line). Panel (b): the cool-
ing rate is very weakly dependent on surface carrier density.
The parameter used in these calculations are given at the
beginning of Sect. V and are recalled here for convenience.
The bulk electron mass is set to [30, 31] m = 0.21me, where
me = 9.1 × 10−31 kg is the bare electron mass, while the
dielectric constant of the (undoped) topological insulator is
taken to be [32] εb = 10.

the bulk bands are nearly unpopulated and we can thus
safely take qTF(q, ω) = 0 in Eqs. (10) and (15). Finally,
the bulk electron mass is set to [30, 31] m = 0.21me,
where me = 9.1 × 10−31 kg is the bare electron mass,
while the dielectric constant of the (undoped) topologi-
cal insulator is taken to be [32] εb = 10. This value re-
flects the fact that the topological insulator we describe
has no charge carriers in the bulk at low temperature
(contrary to, e.g., common topological insulators such as
Bi2Se3 which are metallic). The effect of bulk thermal
excitations is included in our theory via the bulk response
function. Furthermore, since the typical energies of ex-

citations here are of the order of kBT ∼ 10 − 100 meV
(in particular, they can be interband transitions), the
dielectric constant should be taken to be the one at in-
termediate frequencies, not the zero-frequency one.

In Fig. 2 we show the cooling rate for surface-to-bulk
Coulomb cooling in topological insulators (with Fermi
energy in the bulk band gap). calculated from Eq. (13).
In Panel (a) we present our numerical results for three
different values of the surface electronic density and as a
function of temperature Ts. The three chosen densities
as ns = 0 cm−2, i.e. an undoped system with Fermi en-
ergy at the surface Dirac crossing, ns = 5 × 1011 cm−2

and ns = 1012 cm−2. the latter corresponds to a Fermi
energy close to the bottom of the bulk conduction band.
We find that the cooling rate depends only weakly on sur-
face carrier concentration, while it depends quite strongly
on temperature. In particular, it decreases rapidly at
low temperatures (i.e. for the surface temperature ap-
proaching the bulk one). Curiously, we find that the
cooling rate exhibits a maximum at a temperature ap-
proximately equal to half the bulk-band gap. At this
temperature, excitations of surface states occur with typ-
ical energies equal to kBTs, and become resonant with
the bulk particle-hole excitations, whose weight grows
sharply for energies larger than 2∆. The latter fact is
seen in the plots of the bulk density-density response (the
bulk absorption spectrum) given in App. B.

In Panel (b) we show the cooling rate as a function of
the surface density ns and for three values of the tem-
perature, Ts = 500, 1000 and 1500 K. We see that the
numerical results are practically independent of carrier
density at the highest temperatures, and only weakly de-
pendent at the lowest one. This can be understood as a
consequence of the complete smearing of the surface oc-
cupation function at temperatures much larger than the
Fermi energy. Only at the lowest temperatures and high-
est densities achievable in our model we start observing
some deviation from perfect flatness.

In Fig. 3 we show the cooling rate for a graphene sheet
in proximity of a small-gap bulk material as a function of
temperature [in panel (a)] and carrier density [in panel
(b)]. For the bulk material, we use the same 3D topo-
logical insulator used above, i.e. the 3D parameters are
taken to be the same. However, for the “surface” states
(now a graphene sheet), the number of fermion flavors is
set to [1] Nf = 4, while the Fermi velocity is doubled, i.e.
we use [1] vF = 106 m/s. Comparing Figs. 2 and 3, we
see that graphene would exhibit dynamics approximately
four-five times faster than the topological-insulator sur-
face states. This is surprising because, thanks to the
doubling of the Fermi velocity and quadrupling of the
number of fermion flavors, the density of states of un-
doped graphene and of the surface states studied above
are (accidentally) identical. This in turn implies that,
in the undoped limit, they also exhibit the same heat
capacity.

The reason for the enhanced cooling rate is instead
to be found in the typical energies of particle-hole ex-
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(a)

(b)

FIG. 3. The cooling rate for Dirac-like states in graphene
(vF = 106 m/s) in proximity to an undoped 3D bulk identical
to that of Fig. 2, calculated from Eq. (13). Panel (a): as a
function of temperature, it exhibits a maximum at a surface
electron temperature corresponding to half the bulk-band gap
∆ (dashed line). Panel (b): the cooling rate is very weakly
dependent on surface carrier density. The parameters used in
these plots are given in Sect. V and Fig. 2.

citations, which are different in the two systems. Due
to the linear energy dispersion, the typical energy ex-
changed by surface and bulk states during a collision is
ω ' ~vFq. This in turn implies that, for a given value of
momentum ~q, the energy exchanged between graphene
and bulk electrons is twice the energy exchanged between
surface and bulk states. Thus, the cooling dynamics pro-
ceeds at a faster pace in graphene, even if the number of
interactions per unit time is the same as in a topologi-
cal insulator, a fact that is reflected in the larger cooling
rate.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have developed the theory of the cool-
ing dynamics of electrons in the surface states of a topo-
logical insulator, as well as in a graphene sheet, coupled
to bulk states via non-retarded Coulomb interactions.

The aim has been to explore the cooling capabilities of
all-electronic surface-bulk coupling in these systems. For
this reason, we have employed a simplified model: we
have treated the surface states (and graphene electrons)
as massless Dirac fermions characterized by a Dirac-like
energy dispersion. We have neglected corrections due
to, e.g., trigonal warping, which are expected to be only
minor. We have considered a fully-gapped bulk with
particle-hole symmetric parabolic-energy bands of equal
masses. We have neglected all possible couplings between
surface and bulk states (such as impurity or phonon-
mediated hopping) with the exception of a density-
density interaction of the Coulomb type. The latter con-
serves the number of electrons in surface and bulk states
separately, but allows the exchange of energy between
them. We have thus studied how such near-field radia-
tive coupling can efficiently transfer energy between the
surface and the bulk. We have thus explored an alterna-
tive mechanism to phonon-mediated cooling, which can
be very efficient and could become dominant in some cir-
cumstances.

In fact, at least as a matter of principle, near-field ra-
diative coupling could out-compete other cooling mech-
anisms. However, a comparison between different cool-
ing pathways would require a significantly more detailed
work to describe the impact of disorder, phonons, etc.
on the cooling dynamics. All these mechanism are also
potentially strongly dependent on material characteris-
tics, and therefore it would be hard to derive general and
universal trends. On the contrary, our model depends on
few, experimentally available parameters (e.g., the sur-
face Fermi velocity, the bulk-band mass, the undoped-
material dielectric constant). Thus, it could be employed
to study universal trends in electronic cooling of surfaces
of topological insulators.

We further observe that, although we have not treated
phonon cooling in this paper, the interaction we describe
could be thought as the result of phonon emission and re-
absorption by the electrons at the surface and in the bulk,
respectively. Such phonon-number-conserving processes
could be easily incorporated in the theory and would re-
sult in a further enhancement of cooling rates. Finally, we
stress that the theory also applies, with minor modifica-
tions, to graphene in proximity to narrow-gap materials,
as we have shown above. This fact, which broadens the
applicability of the present theory, has also important
practical implications. Graphene is in fact one of the
most studied materials for optoelectronic applications.
The slowing down of cooling dynamics at high powers
limits however its potential, for example to applications
such as higher harmonic generation [19]. The fact that
heat dissipation could be made more efficient via near-
field coupling to narrow-gap materials offers a novel way
to overcome the limitation intrinsic to current graphene
devices.
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Appendix A: Manipulation of the surface-bulk interaction

The integration of Eq. (15) yields

V 2
q,k′,k̃′

=
∣∣φ̄q∣∣2( √

q2 + q2
TF(q, ω)[

q2 + q2
TF(q, ω)

]
+ (k′z − k̃′z)2

−
√
q2 + q2

TF(q, ω)[
q2 + q2

TF(q, ω)
]

+ (k′z + k̃′z)
2

)2

(A1)

We now observe that, for small q and q2
TF(q, ω), the regime of interest for the processes we are describing, the two

terms on the right-hand side of Eq. (A1) are sharply peaked around k̃′z = k′z and k̃′z = −k′z, respectively. Thus,

we approximate them with two delta function, making sure that their total integral (over the variable k̃′z) remains
unchanged. We thus obtain

V 2
q,k′,k̃′

'
(

4πe2

(εb + 1)q − 4πe2χs(q, ω)

)2
π2

4
√
q2 + q2

TF(q, ω)

[
δ(k′z − k̃′z) + δ(k′z + k̃′z)

]
'
(

4πe2

(εb + 1)q − 4πe2χs(q, ω)

)2
π2

4
√
q2 + q2

TF(q, ω)
δ(k′z − k̃′z) . (A2)

In the last line we noticed that k′z and k̃′z must be taken as positive, since the bulk wavefunctions describe standing
waves (negative wavevectors correspond to the same wavefunction).

Appendix B: The density-density response of bulk electrons

The imaginary part of the density-density function in Eq. (19) is given by

=mχb(q, ω) = −π
∑
η,η′

∫
d3k

(2π)3

[
f(ηεk + η∆− µb)− f(ηεk + η∆ + ω − µb)

]
δ(ω + ηεk + η∆− η′εk+q − η′∆) .

(B1)

Here we rewrote εk,η = η∆+ηεk, introducing εk = k2/(2m). We also defined f(ξ) =
[
eξ/(kBTb) +1

]−1
, and introduced

the chemical potential of bulk bands µb. In what follows, we assume ω > 0 and analyze separately the intraband
(η′ = η) and interband (η′ 6= η) contributions to Eq. (B1).

1. Intraband term

In this case, η′ = η. Hence,

=mχ(intra)
b (q, ω) = − 1

4π

∑
η

∫ ∞
0

dkk2

∫ π

0

dθ sin θ
[
f(ηεk + η∆− µb)− f(ηεk + η∆ + ω − µb)

]
δ(ω + ηεk − ηεk+q) .

(B2)

The delta function implies that

ω + η
k2

2m
− η k

2 + q2 + 2kq cos(θ0)

2m
= 0 ⇒ cos(θ0) =

m

kq

(
q2

2m
− ηω

)
. (B3)

Solutions exist for

−kq
m
≤ q2

2m
− ηω ≤ kq

m
⇒ k ≥ m

q

∣∣∣∣ q2

2m
− ηω

∣∣∣∣ ≡ k0 (B4)
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(a) (b)

(c) (d)

FIG. A1. The density-density response function of bulk electrons in units of ∆2/(~vF)3 (vF = 0.5 × 106 m/s), for a fixed
value of the wavevector q and as a function of energy ω (in units of the half-gap ∆). In each panel we show three curves, one
for each temperature (T = 10, 300 and 600 K, respectively). Panel (a): Here q = 0.5q∆ and the chemical potential is µb = 0
(undoped system). Panel (b): Same as in panel (a), but for q = 1.5q∆. Panel (c): Here q = 0.5q∆ and the chemical potential
is µb = 1.4∆ (n-doped system). Panel (d): Same as in panel (c), but for q = 1.5q∆. The parameters used in these plots are
the same as those used in Sect. V, except that ∆ = 50 meV. We also defined q∆ = ∆/(~vF).

Therefore,

=mχ(intra)
b (q, ω) = − 1

4π

∑
η

∫ ∞
0

dkk2
[
f(ηεk + η∆− µb)− f(ηεk + η∆ + ω − µb)

]m
kq

∫ π

0

dθδ
(
θ − θ0

)
= − m

4πq

∑
η

∫ ∞
k0

dkk
[
f(ηεk + η∆− µb)− f(ηεk + η∆ + ω − µb)

]
= −m

2

4πq

∑
η

∫ ∞
k20/(2m)

dε
[
f(ηε+ η∆− µb)− f(ηε+ η∆ + ω − µb)

]
= −m

2

4πq

∑
η

η

∫ ∞
k20/(2m)

dε
[
f(ε+ ∆− ηµb)− f(ε+ ∆ + ηω − ηµb)

]
= −m

2kBT

4πq

∑
η

η

{
ln

[
1 + exp

(
ηµb −∆

kBTb
− k2

0

2mkBTb

)]
− ln

[
1 + exp

(
ηµb − ηω −∆

kBTb
− k2

0

2mkBTb

)]}
.

(B5)
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2. Interband term

In this case, η′ = −η. Hence,

=mχ(inter)
b (q, ω) = − 1

4π

∑
η

∫ ∞
0

dkk2

∫ π

0

dθ sin θ
[
f(ηεk + η∆− µb)− f(ηεk + η∆ + ω − µb)

]
× δ(ω + 2η∆ + ηεk + ηεk+q) .

(B6)

It is clear that, for the delta function not to vanish, it must be η = −1. This in turn implies that

ω − 2∆− k2

2m
− k2 + q2 + 2kq cos(θ0)

2m
= 0 ⇒ cos(θ0) =

m

kq

(
ω − 2∆− 2k2 + q2

2m

)
. (B7)

Solutions exist for

−kq
m
≤ ω − 2∆− 2k2 + q2

2m
≤ kq

m
⇒


k2 − kq + 2m∆−mω +

q2

2
≤ 0

k2 + kq + 2m∆−mω +
q2

2
≥ 0

⇒ |k−| < k < k+ ,

where

k± =
q ±

√
4(mω − 2m∆)− 2q2

2
, ω > 2∆ +

q2

2m
. (B8)

Therefore,

=mχ(inter)
b (q, ω) = − 1

4π

∫ ∞
0

dkk2
[
f(−εk −∆− µb)− f(−εk −∆ + ω − µb)

]m
kq

∫ π

0

dθδ
(
θ − θ0

)
= − m

4πq

∫ k+

|k−|
dkk

[
f(−εk −∆− µb)− f(−εk −∆ + ω − µb)

]
=

m2

4πq

∫ k2+/(2m)

k2−/(2m)

dε
[
f(ε+ ∆ + µb)− f(ε+ ∆− ω + µb)

]
=
m2kBT

4πq

{
ln

[
1 + exp

(
−µb + ∆

kBTb
−

k2
−

2mkBTb

)]
− ln

[
1 + exp

(
−µb + ∆

kBTb
−

k2
+

2mkBTb

)]
− ln

[
1 + exp

(
−µb − ω + ∆

kBTb
−

k2
−

2mkBTb

)]
+ ln

[
1 + exp

(
−µb − ω + ∆

kBTb
−

k2
+

2mkBTb

)]}
.(B9)

3. Results

Fig. A1 shows results for the imaginary part of the bulk density-density response function, =mχb(q, ω), where
its intra- and inter-band parts are given in Eqs. (B5) and (B9), respectively. The parameters used in these plots
are those given in Sect. V, with the exception of the half-gap which has been set to ∆ = 50 meV for convenience
reasons. Different panels correspond to different values of the chemical potential and of the wavevector q [in units
of q∆ = ∆/(~vF)] used. In each plot the density-density response function of bulk electrons is shows in units of
∆2/(~vF)3, where vF = 0.5 × 106 m/s, as a function of energy ω. The latter is in units of the half-gap ∆. In each
panel we show three curves, one for each temperature, T = 10, 300 and 600 K, respectively.
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