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Abstract

In this paper we investigate a structured population model with distributed delay. Our
model incorporates two different types of nonlinearities. Specifically we assume that individual
growth and mortality are affected by scramble competition, while fertility is affected by contest
competition. In particular, we assume that there is a hierarchical structure in the population,
which affects mating success. The dynamical behavior of the model is analysed via linearisation
by means of semigroup and spectral methods. In particular, we introduce a reproduction func-
tion and use it to derive linear stability criteria for our model. Further we present numerical
simulations to underpin the stability results we obtained.

1 Introduction

Population dynamics has been at the center of biomathematics since Malthus’ exponential model
of population growth. The renowned logistic equation is the classic example of a mathematical
model for a self-regulating population. Simple models, like the logistic model are based on the
premise that for example the per capita growth rate is solely determined by the total population
size. Although these type of models tackle the issues of population self-regulation and stability,
they fail to consider individual variations. As a consequence, only population level processes can
be accounted for, and their predictive power may be limited.

It is clear that an individual’s activity in a specific population may be influenced not just by
one-on-one interactions with other members of the population of the same physiological state, but
also by interactions with individuals who are of a different state (e.g. older or younger, larger or
smaller etc.) than themselves. It has been proven that when population density rises, competition
among individuals for a restricted resource increases, and individuals may compete for a variety
of resources including food, space, shelter, and mates. It has been also shown that individuals of
various species, such as fish, lizards, water buffalo, snails, and others, have a positive relationship
between the quantity of available food and their own body size [1]. A similar phenomenon occurs
for terrestrial plants, which rely on solar energy for photosynthesis. The survival of each plant is
heavily influenced by the vertical component of plant size distribution, or the size related hierarchy
within a particular strand. Clearly, a taller plant is exposed to more light, and the energy is then
channeled into their individual growth. Consequently, a hierarchical size-structured population
model may prove to be useful to model such species, in particular when modelling intra-specific
competition. Indeed, hierarchical size-structured population models have been studied extensively
in the literature. Without the desire of completeness we mention a few relevant recent papers,
where the interested reader will also find further references [2, 4, 3, 5, 6].
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In the present paper we introduce and study a size-structured population model in which the
birth rate is a function of an infinite dimensional interaction variable related to a hierarchy in the
population (modelling contest competition), and the growth and death rates are functions of the
total population size (modelling scramble competition). Hence our model incorporates two different
types of nonlinearities. Specifically, we consider the following system that describes the dynamics
of a hierarchical size-structured population model with delayed birth process.

∂p(s,t)
∂t + ∂

∂s(γ(s, P )p(s, t)) + µ(s, P )p(s, t) = 0, 0 ⩽ s ⩽ m, t > 0,

p(0, t) =
∫m
0

∫ 0
−θ β(s, τ,Q(s, t+ τ))p(s, t+ τ)dτds, t > 0,

p(s, δ) = p0(s, δ), 0 < s ⩽ m, δ ∈ [−θ, 0].

(1.1)

Here p(s, t) stands for the density of individuals with respect to size s ∈ [0,m], where m is the
maximum size of an individual in the population. The functions γ and µ denote individual growth
and mortality rates respectively, which depend on the individual’s own size s as well as on the total
population size

P (t) =

∫ m

0
p(s, t)ds. (1.2)

The function β in Eqs. (1.1) stands for the fertility rate of an individual, which depends on the
size s and a function of the population density (environment) specified as:

Q(s, t+ τ) = α

∫ s

0
w(r)p(r, t+ τ)dr +

∫ m

s
w(r)p(r, t+ τ)dr, s ∈ [0,m], t > 0. (1.3)

The interaction variableQ accounts for a hierarchy in the population impacting fertility/reproduction,
where the parameter α (0 ≤ α < 1) determines the strength of the hierarchy between individuals
of different sizes. In particular, α = 0 corresponds to an absolute hierarchical structure, in which
large individuals in the population have an absolute advantage. The other limiting case α = 1
describes a scenario with no hierarchical structure in the population, that is, each individual is in
fair (scramble) competition when accessing resources. The parameter τ ∈ [−θ, 0], where θ > 0 is
expressed as the maximum delay. The distributed delay through Q is introduced here to account
for the effect of delay through contest competition. Note the slightly unusual boundary condition
we employ in our model (1.1). From the physical point of view the flux of individuals at the min-
imal size is naturally γ(0, P )p(0, t). Hence we tacitly assume that γ(0, P ) ≡ 1, i.e. the growth
rate is normalised such that newborns have the same growth speed independent of the standing
population. This assumption yields a great deal of simplification in the linearisation and makes the
computations much more tractable. In the rest of the paper we assume that the vital rates satisfy
the following regularity assumptions:

γ = γ(s, P ) ∈ C1
(
[0,m];C1[0,∞)

)
, γ > 0,

µ = µ(s, P ) ∈ C
(
[0,m];C1[0,∞)

)
, µ ≥ 0,

β = β(s, τ,Q) ∈ C
(
[0,m]× [−θ, 0);C1[0,∞)

)
, β ≥ 0,

w = w(s) ∈ C1([0,m]), w > 0.

Mathematical models of physiologically structured populations have been developed and inves-
tigated by numerous researchers over the past decades. Without completeness we mention here a
few recent (and not so recent) works [7, 8, 10, 9, 18, 21, 19, 20, 15, 12, 13, 11, 14, 16, 17], where
the interested reader will find further useful references. There are two main modelling approaches
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to build and study structured population models. The classic PDE modelling approach, which we
employ here, utilises the natural density distribution of the population, and therefore the resulting
models are typically formulated as first order hyperbolic equations with non-local boundary condi-
tions, such as the one we study here. For relatively simple PDE models one can often directly derive
a renewal (integral) equation for the population birth rate, which is a delay equation. For more
complicated models, in particular with infinite dimensional nonlinearities, such a direct approach
is not necessarily convenient. In this case it is possible to build from basic biological principles a
structured population model, which takes the form of a delay equation, or an even more abstract
dynamical system. Then the question of equivalence between the two different formulations nat-
urally arises, which has been the subject of the recent papers: [24, 22, 23]. For a linear model
with distributed states at birth we studied in [24] the equivalence results we were able to establish
are quite satisfying. However, for certain classes of nonlinear models the question of equivalence is
much more complicated, and the delay equation formulation has an advantage in particular when
studying qualitative properties via linearisation. Using the the framework of nonlinear semigroup
theory it is possible to establish existence of solutions of the nonlinear PDE model on a suitable
Banach space using the Crandall-Liggett theorem [25], however the arising (solution) nonlinear
semigroup cannot be shown to be continuously differentiable in general. This does not necessar-
ily mean though, that using the formal linearisation we employed here stability results cannot be
deduced in the PDE framework. In fact we expect that this is possible, hence we tacitly assumed
that this is the case in this work. Indeed the specific examples presented in Section 7, also support
this.

To invoke the linearised stability principle from the delay formulation of a model, one can
study the equivalence of the two formulations, for example by means of a continuous map, which
maps orbits of the PDE formulation to orbits of the delay formulation. For a different, size-
structured predator-prey (usually referred to as a Daphnia) model, such equivalence between orbits
was studied in the recent paper [22]. Moreover, in the recent manuscript [23]; the delay formulation
of a single species hierarchical size-structured population model is studied. That model is equipped
with the classical boundary condition, representing recruitment of newborn individuals, and it is
assumed that mortality is constant; however the growth rate depends on an infinite dimensional
environmental variable (due to the hierarchical structure), but not size explicitly. For this model
we have verified directly that the characteristic equation deduced (in a similar fashion as here)
from the linearisation of the PDE model, is equivalent to the characteristic equation deduced from
the linearisation of the delay formulation, which is a major indicator that linear stability results
deduced in the PDE framework do indeed hold for the original nonlinear model. We also briefly
discussed the equivalence between orbits in the two formulations, however due to the special delay
formulation we employed (eliminating the infinite dimensional environmental variable) difficulties
arise; please see Section 6 in the above mentioned manuscript for more details.

Researchers have been focusing on how to incorporate delays (e.g. maturation) in the recruit-
ment process, in particular in the context of age-structured models, see e.g. [26, 27, 28, 30, 29],
where stability results were obtained using similar methods to the ones we deploy here. We specif-
ically mention the paper [6], in which a similar size-structured model was studied. However, in
that model the growth and mortality rates only depend on size, and not on the total population
size. It is clear that in most populations, individual growth and survival are greatly correlated with
the size of the standing population, and that if the total population size falls below a certain level
the population will almost certainly die out, which is also known as Allee effect [31]. To account
for this, in our model we incorporated growth and mortality rates, which do depend on the total
population size, which makes our model more realistic.

The main aim of our work is to introduce and study a hierarchical size-structured population
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model, which incorporates two significantly different types of nonlinearities and a delay in the
recruitment process. We aim to demonstrate how to apply the theory of strongly continuous
semigroups for this model. The rest of the paper is organised as follows. In Sect. 2, we first give
conditions for the existence of a positive stationary solution of model (1.1) and formally linearise
it around a steady state. We then recall some theoretical results, which we will utilise later when
studying the linearisation of the model. In Sect. 3, we rewrite the linearised system as an abstract
Cauchy problem, and then prove that it is governed by a strongly continuous semigroup of operators.
In Sect. 4, we study important regularity properties of the governing linear semigroup. In Sect.
5, we derive an explicit characteristic equation characterising the point spectrum of the generator
of the governing linear semigroup. In Sect. 6, we establish criteria for the linear stability and
instability of steady states of our model. Finally, in Sect. 7, some examples will be presented
and using numerical simulations we verify that the linear stability results obtained in the previous
section are indeed valid for the original nonlinear model.

2 Preliminaries

It is clear that our model (1.1) admits the trivial stationary solution. We now establish necessary
conditions for the existence of a positive stationary solution. Clearly, any non-trivial stationary
solution p∗(s) of (1.1) satisfies the following equations

∂

∂s
[γ(s, P∗)p∗(s)] = −µ(s, P∗)p∗(s), (2.1)

p∗(0) =

∫ m

0

∫ 0

−θ
β (s, τ,Q∗(s)) p∗(s)∂τ∂s. (2.2)

The general solution of Eq. (2.1) is found as

p∗(s) = p∗(0)e
−

∫ s
0

µ(y,P∗)+γs(y,P∗)
γ(y,P∗)

∂y
. (2.3)

Substituting Eq. (2.3) into Eq. (2.2), we observe that

1 =

∫ m

0

∫ 0

−θ
β (s, τ,Q∗(s)) e

−
∫ s
0

µ(y,P∗)+γs(y,P∗)
γ(y,P∗)

∂y
∂τ∂s, (2.4)

if p∗(0) ̸= 0. Hence for P ≥ 0 and Q ≥ 0, we define the basic reproduction function as

R(P,Q) =

∫ m

0

∫ 0

−θ
Π(s, P )β(s, τ,Q(s, t+ τ))∂τ∂s, (2.5)

where the function Π is given for 0 ≤ s ≤ m by

Π(s, P ) = e
−

∫ s
0

µ(y,P )+γs(y,P )
γ(y,P )

∂y
. (2.6)

By integration of Eq. (2.3), we obtain

p∗(0) =
P∗∫m

0 e
−

∫ s
0

µ(y,P∗)+γs(y,P∗)
γ(y,P∗)

∂y
∂s

, (2.7)

where P∗ =
∫m
0 p∗(s)∂s represents the positive population size at the steady state. Finally, using

Eq. (2.7) in Eq. (2.3), we get

p∗(s) =
P∗Π(s, P∗)∫m
0 Π(s, P∗)∂s

. (2.8)
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Then the function Q∗, defined by

Q∗(s) = α

∫ s

0
w(r)p∗(r)∂r +

∫ m

s
w(r)p∗(r)∂r, (2.9)

satisfies the equation
R (P∗, Q∗) = 1. (2.10)

We give the following existence result for the stationary solution of model (1.1).

Proposition 2.1. If p∗(s) is a positive stationary solution of model (1.1), then p∗ is defined by
(2.8) and the function Q∗ satisfies (2.9) and R (P∗, Q∗) = 1.

Given a stationary solution p∗, we linearise our model (1.1) by introducing the infinitesimal
perturbation u = u(s, t) and making the ansatz p = u + p∗. After inserting this expression into
(1.1) and omitting all nonlinear terms, we obtain the linearised problem

0 =
∂

∂t
u(s, t) + γ∗(s)

∂

∂s
u(s, t) + ν∗(s)u(s, t) + ε∗(s)U(t),

u(0, t) =

∫ m

0

∫ 0

−θ
βQ(s, τ,Q∗)p∗(s)H(s, t+ τ)dτds

+

∫ m

0

∫ 0

−θ
β(s, τ,Q∗)u(s, t+ τ)dτds,

H(s, t) =α

∫ s

0
w(r)u(r, t)dr +

∫ m

s
w(r)u(r, t)dr,

u(s, δ) =u0(s, δ), H(δ) = H0(δ), δ ∈ [−θ, 0],

(2.11)

where we have set H(s, t) = Q(s, t)−Q∗(s), U(t) = P (t)− P∗ =
∫m
0 u(s, t)∂s, and

γ∗(s) = γ(s, P∗),

ν∗(s) = γs(s, P∗) + µ(s, P∗),

ε∗(s) = p∗(s) (µP (s, P∗) + γsP (s, P∗)) + p′∗(s)γP (s, P∗).

We now recall some important definitions and results from the theory of linear operators, which
we are going to utilise later on. First let us recall the following characterisation theorem due to
Hille and Yosida, see e.g. [32].

Lemma 2.2. A linear operator A is the infinitesimal generator of a C0-semigroup of contractions
T (t), t ≥ 0 if and only if
(i) A is closed and D(A) = X;
(ii) The resolvent set ρ(A) of A contains R+ and for every λ > 0

∥R(λ : A)∥ ≤ 1

λ
. (2.12)

In fact, Lemma 2.2 implies that any Hille-Yosida operator gives rise to a C0-semigroup on the
closure of its domain.

Definition 2.3. Let (A,D(A)) be a linear operator on the Banach space X and set

X0 = (D(A), ∥·∥);
A0x = Ax, for x ∈ D (A0) = {x ∈ D(A) : Ax ∈ X0} .

Then the operator (A0, D (A0)) is called the part of A in X0.
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Particularly, if (A,D(A)) is a Hille-Yosida operator, its part (A0, D (A0)) generates a strongly
continuous semigroup (T0(t))t≥0 on X0 (see e.g. [32]).

Lemma 2.4. (see e.g. [33]) Let the operator A be a Hille-Yosida operator on a Banach space X.
If the operator B is a bounded linear operator on X, then the operator A+B is also a Hille-Yosida
operator on the Banach space X.

Definition 2.5. Let (A,D(A)) be a closed linear operator on a Banach space X. Then the point
spectrum of A, denoted by σp(A), is defined as

σp(A) := {λ ∈ C : λI −A : D(A) → X is not injective},

and a crucial quantity s(A), called the spectral bound of A, is denoted by

s(A) := sup{Reλ : λ ∈ σ(A)}.

Definition 2.6. If (A,D(A)) is a generator of a C0-semigroup (T (t))t≥0, we denote by ω0(A) the
growth bound of the semigroup (T (t))t≥0, and define it as

ω0(A) := lim
t→+∞

t−1 log ∥T (t)∥.

The following lemmas (see e.g. [33] and [34]) will be used to establish the positivity of the
governing C0-semigroup (T (t))t≥0.

Lemma 2.7. (Riesz–Schauder theory) Let (A,D(A)) be a compact operator on the Banach space
X, then
(i) 0 ∈ σ(A) when dim X = ∞;
(ii) σ(A)\{0} = σp(A)\{0};
(iii) σ(A) is a discrete set having no limit points except 0.

Lemma 2.8. A strongly continuous semigroup (T (t))t≥0 on a Banach lattice X is positive if and
only if the resolvent R(λ,A) of its generator A is positive for all sufficiently large λ.

3 Existence of a C0-semigroup governing the linearised system

In this section, to prove the well-posedness of the linearised problem (2.11), we set up a C0-
semigroup framework on a suitable Banach lattice. For any positive stationary solution p∗(s), we
denote the Banach space

X = L1([0,m])

with the usual norm ∥ · ∥ and on this space we introduce the following operators

(Amf)(s) = −γ∗(s)f
′(s)− ν∗(s)f(s) for s ∈ [0,m]

with domain D (Am) = W 1,1(0,m),

(Bmf)(s) = −ε∗(s)

∫ m

0
f(s)∂s for s ∈ [0,m]

with domain D (Bm) = L1(0,m). The m subscript indicates that the operators are specified on
their maximum domain. Moreover, we define the boundary operator

P : D (Am) → C, P(f) := f(0),
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which is used to express the boundary condition ([26]). Next, we introduce the delay operator

Φ(y) =

∫ m

0

∫ 0

−θ
β(s, τ,Q∗)y(s, τ)dτds

+

∫ m

0

∫ 0

−θ
p∗(s)βQ(s, τ,Q∗)

(
α

∫ s

0
w(r)y(r, τ)∂r +

∫ m

s
w(r)y(r, τ)∂r

)
dτds,

where y ∈ E = L1([−θ, 0],X) ∼= L1((0,m)× [−θ, 0]). Then with these notations Eqs. (2.11) can be
cast in the form of an abstract boundary delay system:

d
dtu(t) = (Am +Bm)u(t), t ⩾ 0,

Pu(t) = Φ (ut) ,

u0(t) = u0(t), t ∈ [−θ, 0],

(3.1)

where u0(t) := u0(·, t), u : [0,+∞) → L1(0,m) is defined as u(t) := u(·, t), and ut : [−θ, 0] →
L1(0,m) is the history segment defined in the usual way as

ut(τ) := u(t+ τ), τ ∈ [−θ, 0].

In order to transform (3.1) into an abstract Cauchy problem, on the Banach space E, we introduce
the differential operator

(Ymy) (τ) :=
d

dτ
y(τ)

with domain D (Ym) = W 1,1([−θ, 0],X). Moreover, we define another boundary operator G :
D (Ym) → X as

Gy := y(0).

Next, we consider the product space X := E × X, on which we define the matrix operator

A = A1 + A2,

where

A1 :=

(
Ym 0
0 Am

)
, A2 :=

(
0 0
0 Bm

)
(3.2)

with domain

D(A ) = D (A1)

=

{(
y
f

)
∈ D (Ym)×D (Am) :

Gy = f
Pf = Φy

}
.

We get the following abstract Cauchy problem{
U ′(t) = A U (t), t ⩾ 0,
U (0) = U0,

(3.3)

which corresponds to the operator(A , D(A )) on the space X . Here U (t) =

(
ut
u(t)

)
denotes the

function U : [0,+∞) → X .
To establish the well-posedness of the abstract Cauchy problem (3.3), we will show that (A , D(A ))

generates a C0-semigroup on X .
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First of all, we consider the Banach space X := E × X× X× C and the matrix operator

A :=


Ym 0 0 0
−G 0 Id 0

0 0 Am 0
Φ 0 −P 0


with domain D(A) = D (Ym)× {0} ×D (Am)× {0}.

Proposition 3.1. The operator (A, D(A)) is a Hille-Yosida operator on the Banach space X .

Proof. The operator A can be written as the sum of two operators on X as A = A1 +A2, where

A1 =


Ym 0 0 0
−G 0 0 0

0 0 Am 0
0 0 −P 0

 , A2 =


0 0 0 0
0 0 Id 0

0 0 0 0
Φ 0 0 0


with D (A1) = D(A) and D (A2) = X .

It is easy to see that the restriction (Y0, D (Y0)) of Ym to the kernel of G generates the nilpotent
left shift semigroup (T0(t))t⩾0 on E which is given by

(T0(t)y)(s, τ) =

{
y(s, t+ τ), if t+ τ ⩽ 0,
0, if t+ τ > 0.

Similarly, one can verify by direct computations that the restriction (A0, D (A0)) of Am to the
kernel of P generates the positive semigroup (Λ0(t))t⩾0 on X defined as

(Λ0(t)f)(s) =

 e
−

∫ s
Γ−1(Γ(s)−t)

ν∗(y)
γ∗(y)

∂y
f
(
Γ−1(Γ(s)− t)

)
, if t ≤ Γ(s),

0, if t > Γ(s),

where

Γ(s) =

∫ s

0

1

γ∗(y)
dy. (3.4)

Next we demonstrate that A1 is a Hille-Yosida operator. To this end note that for any λ ∈
C and f̃ ̸= 0, the resolvent equation

(λI − A0) f = f̃

has the implicit solution

f(s) = e
−

∫ s
0

λ+ν∗(y)
γ∗(y)

dy
∫ s

0

f̃(α)

γ∗(α)
e
∫ α
s

λ+ν∗(a)
γ∗(a)

da
dα. (3.5)

It shows that σ (A0) = ∅ as γ∗(s) > 0. In the same way, σ (Y0) = ∅. Then for λ ∈ C, we have the
resolvent

R (λ,A1) =


R (λ, Y0) ϵλ 0 0

0 0 0 0
0 0 R (λ,A0) φλ

0 0 0 0

 ,

where

ϵλ(τ) = eλτ , τ ∈ [−θ, 0] and φλ(s) = e
−

∫ s
0

λ+ν∗(y)
γ∗(y)

dy
, s ∈ [0,m]. (3.6)
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In addition,

ker (λ− Ym) = {f · ϵλ : f ∈ X} ,
ker (λ− Am) =< φλ > .

Let (z1 z2 z3 z4)
T ∈ X and λ > 0, we have∥∥R (λ,A1) (z1 z2 z3 z4)

T
∥∥ = ∥R (λ, Y0) z1 + ϵλz2∥E + ∥R (λ,A0) z3 + z4φλ∥X
≤∥R (λ, Y0) z1∥E + ∥ϵλz2∥E + ∥R (λ,A0) z3∥X + ∥z4φλ∥X

≤
∫ 0

−θ

1

λ
∥z1(τ)∥Xdτ +

1

λ
∥z2∥X +

1

λ
∥z3∥X +

1

λ
|z4|

=
1

λ
(∥z1∥E + ∥z2∥X + ∥z3∥X + |z4|) .

Therefore, we obtain
∥λR (λ,A1)∥ ≤ 1,

and A1 is a Hille-Yosida operator. Since the perturbing operator A2 is bounded, it follows from
Lemma 2.4 that A is also a Hille-Yosida operator. In particular, the Hille-Yosida operator A is the
generator of a strongly continuous semigroup on the closure of its domain, by Lemma 2.2.

Hence, according to Proposition 3.1 we observe that the operator (A0, D (A0)) also yields a
strongly continuous semigroup on the space E×{0}×X×{0}. The operator (A1, D (A1)) generates
a C0-semigroup on X , as shown by the following theorem.

Theorem 3.2. The operator (A1, D (A1)) is isomorphic to the part (A0, D (A0)) of the operator
(A, D(A)) on the closure of its domain D(A).

Proof. From Definition 2.3, we observe that the part (A0, D (A0)) of (A, D(A)) on the closure of
its domain

X0 := D(A) = E × {0} × X× {0}

generates a strongly continuous semigroup. Or more precisely,

D (A0) = {x ∈ D(A) : Ax ∈ D(A)}

=




y
0
s
0

 : y ∈ D (Ym) , s ∈ D (Am) , A


y
0
s
0

 ∈ X0


=




y
0
s
0

 : y ∈ D (Ym) , s ∈ D (Am) ,
Gy = s
Ps = Φy

 .

Hence, the operator (A1, D(A1)) is isomorphic to (A0, D (A0)) and generates a C0-semigroup
on the state space X .

Next we formulate the most important result of this section as folllows.
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Theorem 3.3. The operator (A , D(A )) of the abstract boundary delay problem (3.3) generates a
strongly continuous semigroup (T (t))t⩾0 of boundary linear operators on X .

Proof. Since isomorphisms have similar properties, we can obtain that the matrix operator A1 is
as well as a Hille-Yosida operator. In addition to this, both (A2, D(A2)) and Bm are bounded
perturbations of A on X, thus by A = A1 + A2 and using the Desch-Schappacher perturbation
theorem (Corollary 3.4 in [33]), we conclude that A generates a strongly continuous semigroup.

The following well-posedness result for (3.3) is implied by Theorem 3.3 (see Theorem 2.1 in Ref.
[36]).

Proposition 3.4. Assume that the initial value of the linear boundary delay problem (3.1) is
u0 ∈ E, then it has a unique solution u(s, t) in the space C ([−θ,+∞),X), given by u(s, t) = u0(s, t)
for t ∈ [−θ, 0] and

u(s, t) = Π2

(
T (t)

(
u0(s, 0)
u0(0)

))
, for t > 0,

where Π2 is the projection operator of T (t) on the space X.

4 Regularity properties of the C0-semigroup

In this section, we study regularity properties of the governing linear semigroup and use results
from the spectral theory of C0 semigroups to prove that s (A ) ∈ σ (A ) = σp (A ). Then the
stability of the positive stationary solution of model (1.1) is determined by the position of the
leading eigenvalue. We will then demonstrate that it is possible to obtain an explicit characteristic
equation corresponding to the linearised system to determine the position of the leading eigenvalue.

We first establish the main result of this section.

Theorem 4.1. The spectrum of A can contain only isolated eigenvalues of finite multiplicity.

Proof. Since the operator A2 is clearly compact on X, it suffices to verify the claim for the operator
A1. To this end, given z ∈ X, we find a unique solution u ∈ D(A1) of the equation

λu− A1u = z

in the form

u(s) = e
−

∫ s
0

λ+ν∗(y)
γ∗(y)

dy
∫ s

0
e
∫ α
s

λ+ν∗(a)
γ∗(a)

da z(α)

γ∗(α)
dα. (4.1)

Consequently, for λ > 0 large enough, the resolvent operator (λI − A1)
−1 exists and is bounded,

mapping X = L1(0,m) into W 1,1(0,m). It then follows from Sobolev embedding theorems, that
W 1,1(0,m) is compactly embedded in X , that is, any bounded set M on W 1,1(0,m) is a compact
set on X. It also follows from the boundedness of (λI − A1)

−1, that (λI − A1)
−1M is a bounded

set in W 1,1(0,m). Using the definition of a compact operator, it’s not hard to see that (λI − A1)
is a compact operator on W 1,1(0,m). The conclusion of the theorem is then obtained by using
Riesz-Schauder theory, e.g. Lemma 2.7.
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Proposition 4.2. The linear stability of the stationary solution of model (1.1) is determined by
spectrum of the generator, i.e.,

σ(T (t)) = {0} ∪ eσ(A ), t > 0.

Furthermore, the spectral bound

s(A ) = sup{Reλ | λ ∈ σ(A )

coincides with the growth rate (see e.g. [33, 32])

ω0 = lim
t→∞

t−1 ln ∥T (t)∥.

If the eigenvalue with the largest real part was real, our analysis would be greatly simplified. In
some cases, the following finding allows us to reach this conclusion. To this end, we would mention
various existing lemmas and theorems in order to establish the second major result in this section.

Lemma 4.3. For λ ∈ ρ (Y0) ∩ ρ (A0), we define the abstract Dirichlet operators (see e.g. [37])
separately

Kλ : X → E by Kλ := 1 ◦ ϵλ,
Lλ : E → X by Lλ := (1 ◦ φλ) Φ,

(4.2)

where ϵλ and φλ are given in (3.6). Then Kλ ∈ L (X, E) and Lλ ∈ L (E,X). Apart from that,

G (Kλ(f)) = f, for all f ∈ D (Am) ,

P (Lλ (y)) = Φ(y), for all y ∈ D (Ym) .
(4.3)

Next we will study the position of eigenvalues related to the compactness of operators, in
particular we have:

Lemma 4.4. Let λ ∈ ρ (Y0) ∩ ρ (A0), and consider the following properties
(i) λ ∈ ρ (A1);
(ii) 1 ∈ ρ (KλLλ) for the operator KλLλ ∈ L (E);
(iii) 1 ∈ ρ (LλKλ) for the operator LλKλ ∈ L (X).
Then one has the implications (i) ⇐ (ii) ⇔ (iii). In particular, if Kλ and Lλ are compact operators,
the assertions (i), (ii) and (iii) are equivalent.

This lemma is taken from [37], specifically see Theorem 2.7 in [37]. Here the operator Lλ is
compact, which has one-dimensional range. Therefore KλLλ and LλKλ are compact too. From
Lemma 4.4 we have the following result.

Theorem 4.5. For the operator (A1, D(A1)), there holds that
(i) λ ∈ σ (A1) ⇔ 1 ∈ σ (LλKλ) ⇔ 1 ∈ σp (LλKλ) ⇔ λ ∈ σp (A1);
(ii) Moreover, if λ ∈ ρ (A1) equivalently 1 ∈ ρ (LλKλ), then the resolvent of A1 is given by

R (λ,A1) =

(
(1−KλLλ)

−1R (λ, Y0) (1−KλLλ)
−1KλR (λ,A0)

(1− LλKλ)
−1 LλR (λ, Y0) (1− LλKλ)

−1R (λ,A0)

)
. (4.4)

Proof. We just need to verify (4.4). For λ ∈ ρ (Y0) ∩ ρ (A0), we have

(λ− A1) =

(
λ− Y0 0

0 λ− A0

)
Bλ, (4.5)
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where Bλ :=

(
Id −Kλ

−Lλ Id

)
is a bounded linear matrix operator on D (Ym)× D (Am) and the

matrix

(
λ− Y0 0

0 λ− A0

)
has domain D (Y0)×D (A0). The inverse of (λ− A1) is

R (λ,A1) = B−1
λ

(
R (λ, Y0) 0

0 R (λ,A0)

)
.

By the definition of Bλ, we get

B−1
λ =

(
(1−KλLλ)

−1 (1−KλLλ)
−1Kλ

(1− LλKλ)
−1 Lλ (1− LλKλ)

−1

)
.

Therefore expression (4.4) follows.

We conclude this section by establishing a criterion to guarantee the positivity of the governing
linear semigroup.

Theorem 4.6. Suppose that∫ 0

−θ
β (·, τ, Q∗(·)) dτ + w(·)

(∫ ·

0

∫ 0

−θ
βQ (y, τ,Q∗(y)) p∗(y)dτdy

+α

∫ m

·

∫ 0

−θ
βQ (y, τ,Q∗(y)) p∗(y)dτdy

)
≥ 0,

(4.6)

then the semigroup (T (t))t⩾0, generated by the operator (A , D(A )) is positive.

Proof. Here condition (4.6) is a direct generalisation of the positivity condition corresponding to the
age-structured model established in [38]. If βQ ≡ 0, condition (4.6) is trivially satisfied. Condition
(4.6) guarantees that operator A2 is positive, then we only need to show that the semigroup
(T1(t))t≥0 generated by the operator A1 is positive. Firstly, we consider the operator KλLλ. By
the definitions of Kλ and Lλ in Lemma 4.3, it is clear that

lim
Reλ→+∞

∥KλLλ∥ = 0.

For Reλ is sufficiently large, we have ∥KλLλ∥ < 1. The operator (1−KλLλ) is invertible, and
the Neumann series determines its inverse (1−KλLλ)

−1. Distinctly, the condition (4.6) implies
that KλLλ is a positive operator, and (1−KλLλ)

−1 is positive as well if Reλ is large enough.
Hence from the representation (4.4), we see that R (λ,A1) is non-negative for such λ. Therefore,
in combination with Lemma 2.8 above, the operator (A1, D (A1)) generates a positive semigroup
on the Banach lattice E × X, which concludes the proof.

The following result can be established using results from the theory of positive semigroups (see
e.g. [33, 32] and also [9, 2] for similar results).

Proposition 4.7. Suppose that condition (4.6) is satisfied. Then s(A ) ∈ σ(A ). Specifically, s(A )
is a dominant eigenvalue, namely

s(A ) = sup{Reλ | λ ∈ σp(A )}.
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5 The characteristic equation

The linear stability of stationary solutions of model (1.1) is determined by the eigenvalues of the
semigroup generator A according to the results we derived in the previous section. In this section,
we derive an explicit characteristic equation to study the position of the eigenvalues of the generator
A .

The eigenvalue equation
(λI − A )u = 0 (5.1)

for λ ∈ C and non-trivial u is equivalent to the system

0 =γ∗(s)u
′(s) + (λ+ ν∗(s))u(s) + ε∗(s)Ū ,

u(0) =

∫ m

0

∫ 0

−θ
eλτ (β(s, τ,Q∗(s))u(s) + βQ(s, τ,Q∗(s))p∗(s)H(s)) dτds,

(5.2)

where Ū =
∫m
0 u(s)ds and

H(s) = α

∫ s

0
w(r)u(r)dr +

∫ m

s
w(r)u(r)dr

= (α− 1)

∫ s

0
w(r)u(r)dr +

∫ m

0
w(r)u(r)dr.

(5.3)

We assume that α ∈ [0, 1) holds for the rest of this section. From (5.3), we have

H ′(s) = (α− 1)w(s)u(s) and H ′′(s) = (α− 1)
(
w′(s)u(s) + w(s)u′(s)

)
. (5.4)

Using relations (5.4), we can write system (5.2) in the form of H as well as its derivatives

H ′′(s) +

(
λ+ ν∗(s)

γ∗(s)
− w′(s)

w(s)

)
H ′(s) + (α− 1)Ū

w(s)ε∗(s)

γ∗(s)
= 0. (5.5)

Eq. (5.5) is accompanied by boundary conditions of the form

αH(0) = H(m), (5.6)

H ′(0) =w(0)

∫ m

0

∫ 0

−θ
eλτ

β (s, τ,Q∗(s))

w(s)
H ′(s)dτds

+ (α− 1)w(0)

∫ m

0

∫ 0

−θ
eλτβQ (s, τ,Q∗(s)) p∗(s)H(s)dτds.

(5.7)

Thus the general solution of (5.5) can be expressed as

H(s) = H(0) +H ′(0)

∫ s

0

w(y)

w(0)
π∗(λ, y)∂y + (1− α)

∫ s

0
w(y)π∗(λ, y)

∫ y

0

ε∗(r)Ū

π∗(λ, y)γ∗(r)
drdy, (5.8)

where

π∗(λ, y) = e
−

∫ y
0

λ+γs(a,P∗)+µ(a,P∗)
γ(a,P∗)

∂a
.
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Meanwhile, substituting the solution (5.8) into (5.7), we get

0 = H(0)(α− 1)w(0)

∫ m

0

∫ 0

−θ
eλτβQ (s, τ,Q(s)∗(s)) p∗(s)dτds

+H ′(0)

(
1−

∫ m

0

∫ 0

−θ
eλτβ(s, τ,Q∗(s))π∗(λ, s)dτds

)
+H ′(0)(1− α)

∫ m

0

∫ 0

−θ
eλτβQ (s, τ,Q∗(s)) p∗(s)

∫ s

0
w(y)π∗(λ, y)dydτds

− Ū

∫ m

0

∫ 0

−θ
eλτβ(s, τ,Q∗(s))π∗(λ, s)

∫ s

0

ε∗(y)w(0)(1− α)

π∗(λ, y)γ∗(y)
dydτds

+ Ū

∫ m

0

∫ 0

−θ

(
eλτβQ(s, τ,Q∗(s))p∗(s)

∫ s

0
w(y)π∗(λ, y)

∫ y

0

ε∗(r)w(0)(1− α)2

π∗(λ, r)γ∗(r)
drdy

)
dτds.

(5.9)

Using the boundary condition (5.6) and the solution (5.8), we obtain

(1− α)H(0) +H ′(0)

∫ m

0

w(s)

w(0)
π∗(λ, s)ds+ Ū

∫ m

0
w(s)π∗(λ, s)

∫ s

0

ε∗(y)(1− α)

π∗(λ, y)γ∗(y)
dyds = 0. (5.10)

The general solution of Eq.(5.2)a takes the form

u(s) = u(0)π∗(λ, s)− π∗(λ, s)

∫ s

0

ε∗(y)Ū

π∗(λ, y)γ∗(y)
dy. (5.11)

Integrating (5.11) from 0 to m, we obtain

Ū =− Ū

∫ m

0
π∗(λ, s)

∫ s

0

ε∗(y)

π∗(λ, y)γ∗(y)
dyds+ U(0)

∫ m

0
π∗(λ, s)ds. (5.12)

Eqs.(5.9), (5.12) and the boundary condition (5.4) imply that

0 = H(0)

∫ m

0
π∗(λ, s)ds

∫ m

0

∫ 0

−θ
eλτβQ (s, τ,Q∗(s)) p∗(s)dτds

+H ′(0)

∫ m

0
π∗(λ, s)ds

∫ m

0

∫ 0

−θ
eλτβ(s, τ,Q∗(s))

π∗(λ, s)

w(0)(α− 1)
dτds

+H ′(0)

∫ m

0
π∗(λ, s)ds

∫ m

0

∫ 0

−θ
eλτβQ (s, τ,Q∗(s)) p∗(s)

∫ s

0

w(y)

w(0)
π∗(λ, y)dydτds

+ Ū

∫ m

0
π∗(λ, s)ds

∫ m

0

∫ 0

−θ
eλτβQ(s, τ,Q∗(s))p∗(s)

∫ s

0

∫ y

0

ε∗(r)(1− α)

π∗(λ, r)γ∗(r)
w(y)π∗(λ, y)drdydτds

− Ū

∫ m

0
π∗(λ, s)ds

∫ m

0

∫ 0

−θ
eλτβ(s, τ,Q∗(s))π∗(λ, s)

∫ s

0

ε∗(y)

π∗(λ, y)γ∗(y)
dydτds

− Ū

(
1 +

∫ m

0
π∗(λ, s)

∫ s

0

ε∗(y)

π∗(λ, y)γ∗(y)
dyds

)
.

(5.13)
Hence, the linear system composed of (5.9), (5.10) and (5.13) has a non-zero solution (H(0), H ′(0), Ū)
if and only if λ satisfies the equation A11(λ) A12(λ) A13(λ)

A21(λ) A22(λ) A23(λ)
A31(λ) A32(λ) A33(λ)

 H(0)
H ′(0)
Ū(0)

 = 0, (5.14)
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where we define

A11(λ) =(1− α)w(0)

∫ m

0

∫ 0

−θ
eλτβQ (s, τ,Q∗(s)) p∗(s)dτds,

A12(λ) =1−
∫ m

0

∫ 0

−θ
eλτβ(s, τ,Q∗(s))π∗(λ, s)dτds

+ (1− α)

∫ m

0

∫ 0

−θ
eλτβQ (s, τ,Q∗(s)) p∗(s)

∫ s

0
w(y)π∗(λ, y)dydτds,

A13(λ) =

∫ m

0

∫ 0

−θ
eλτβ(s, τ,Q∗(s))π∗(λ, s)

∫ s

0

ε∗(y)w(0)(α− 1)

π∗(λ, y)γ∗(y)
dydτds

+

∫ m

0

∫ 0

−θ

(
eλτβQ(s, τ,Q∗(s))p∗(s)

∫ s

0
w(y)π∗(λ, y)

∫ y

0

ε∗(r)w(0)(1− α)2

π∗(λ, r)γ∗(r)
∂r∂y

)
dτds,

A21(λ) =1− α,

A22(λ) =

∫ m

0

w(s)

w(0)
π∗(λ, s)ds,

A23(λ) =

∫ m

0
w(s)π∗(λ, s)

∫ s

0

ε∗(y)(1− α)

π∗(λ, y)γ∗(y)
dyds,

A31(λ) =

∫ m

0
π∗(λ, s)ds

∫ m

0

∫ 0

−θ
eλτβQ (s, τ,Q∗(s)) p∗(s)dτds,

A32(λ) =

∫ m

0
π∗(λ, s)ds

∫ m

0

∫ 0

−θ
eλτβ(s, τ,Q∗(s))

π∗(λ, s)

w(0)(α− 1)
dτds

+

∫ m

0
π∗(λ, s)ds

∫ m

0

∫ 0

−θ
eλτβQ (s, τ,Q∗(s)) p∗(s)

∫ s

0

w(y)

w(0)
π∗(λ, y)dydτds,

A33(λ) =

∫ m

0
π∗(λ, s)ds

∫ m

0

∫ 0

−θ
eλτβQ(s, τ,Q∗(s))p∗(s)

∫ s

0

∫ y

0

ε∗(r)(1− α)

π∗(λ, r)γ∗(r)
w(y)π∗(λ, y)drdydτds

−
∫ m

0
π∗(λ, s)ds

∫ m

0

∫ 0

−θ
eλτβ(s, τ,Q∗(s))π∗(λ, s)

∫ s

0

ε∗(y)

π∗(λ, y)γ∗(y)
dydτds

−
(
1 +

∫ m

0
π∗(λ, s)

∫ s

0

ε∗(y)

π∗(λ, y)γ∗(y)
dyds

)
.

Proposition 5.1. λ ∈ C is a eigenvalue of the operator A if and only if λ is a solution of the
following characteristic equation

K(λ) =

∣∣∣∣∣∣
A11(λ) A12(λ) A13(λ)
A21(λ) A22(λ) A23(λ)
A31(λ) A32(λ) A33(λ)

∣∣∣∣∣∣ = 0. (5.15)

In summary, K(λ) determines the characteristic equation corresponding to the linearised system
(2.11) and its zeros are the eigenvalues of the operator A , which completely determine the spectrum
of A , and therefore the linear stability of the steady state.

6 Linear stability analysis

In the previous section we deduced an explicit characteristic equation corresponding to the lin-
earisation of hierarchical size-structured model (1.1). We now use this characteristic equation to
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derive stability criteria. By virtue of Corollary 4.7 we can investigate the asymptotic stability and
instability of stationary solutions of model (1.1) using the characteristic equation. Further, we will
show how the basic reproduction function R(P,Q) introduced in Eq. (2.5) can be used to establish
stability and instability conditions.

The first result addresses the stability of the trivial stationary solution p0 ≡ 0.

Theorem 6.1. The trivial stationary solution p0 ≡ 0 is linearly asymptotically stable if R(0, 0) < 1,
and unstable if R(0, 0) > 1 holds.

Proof. For p0 ≡ 0 we have

Â12(λ) = 1−
∫ m

0

∫ 0

−θ
eλτβ(s, τ, 0)π0(λ, s)dτds,

Â21(λ) = 1− α,

Â22(λ) =

∫ m

0

w(s)

w(0)
π0(λ, s)ds,

Â32(λ) =

∫ m

0
π0(λ, s)ds

∫ m

0

∫ 0

−θ
eλτβ(s, τ, 0)

π0(λ, s)

w(0)(α− 1)
dτds,

Â31(λ) = Â23(λ) = Â13(λ) = Â11(λ) = 0,

Â33(λ) = − 1,

where

π0(λ, s) = e
−

∫ s
0

λ+γs(a,0)+µ(a,0)
γ(a,0)

da
.

Hence the characteristic equation (5.15) reduces to

K̂(λ) =

∣∣∣∣∣∣
0 Â12(λ) 0

1− α Â22(λ) 0

0 Â32(λ) −1

∣∣∣∣∣∣ = (1− α)Â12(λ), for 0 ≤ α < 1. (6.1)

It is readily observed that

K̂(0) = (1− α)Â12(0) = (1− α) (1− R(0, 0)) . (6.2)

Clearly condition (4.6) is satisfied and therefore we can restrict the characteristic equation K̂(λ)
to λ ∈ R. Furthermore, from (6.1), we have

lim
λ→+∞

K̂(λ) = 1− α, K̂ ′(λ) = (1− α)Â′
12(λ) > 0. (6.3)

Therefore, if R(0, 0) < 1 holds, we can obtain K̂(0) > 0 and K̂(λ) is monotonically increasing,
which implies that the characteristic equation (5.15) cannot have non-negative roots. However, if
R(0, 0) > 1 holds, there is a positive root since K̂(0) < 0. The claim of the theorem follows.

Next we will address the instability of positive stationary solutions.

Theorem 6.2. Let p∗(s) be any positive stationary solution of (1.1) and suppose that all the
conditions of Theorem 4.6 are fulfilled. Then the positive stationary solution p∗(s) is linearly
unstable if K(0) < 0.
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Proof. It suffices to show that there exists a positive solution λ of the characteristic equation (5.15).
We can readily deduce that

limλ→+∞K(λ) =

∣∣∣∣∣∣
0 1 0

1− α 0 0
0 0 −1

∣∣∣∣∣∣ = 1− α, for 0 ≤ α < 1. (6.4)

Here the limit is taken in R, then we can formulate the above simple instability criterion, which
follows immediately from the Intermediate Value Theorem since K(0) < 0.

Since a strict linear stability proof requires showing that all zeros of the characteristic equation
are be located in the left half-plane of C, the stability results for positive stationary solutions of
model are much more difficult to obtain than instability results, especially considering that our
growth and mortality rates are both depend on the total population size, and the birth rate that
involves fertility delay and an infinite dimensional interaction variable (environment). We will now
demonstrate for some special cases of the model ingredients, that we can overcome these difficulties.
Consider the situation when mortality and growth rates are independent of the population size P ,
i.e. γP ≡ 0 ≡ µP . Hence ε∗ = p∗(s) (µP (s, P∗) + γsP (s, P∗)) + p′∗(s)γP (s, P∗) = 0. In this case,
we can derive explicit conditions for the linear stability and instability of the positive stationary
solution in a relatively straightforward fashion. We have the following result.

Theorem 6.3. Suppose that ε∗ ≡ 0 and the positivity condition (4.6) holds true.
(i) If βQ (s, τ,Q∗) < 0, then the positive stationary solution p∗ is linearly asymptotically stable.
(ii) If βQ (s, τ,Q∗) ≥ 0, then p∗ is linearly unstable.

Proof. For the special case of model ingredients we are dealing now, we have for the terms in the
characteristic equation (5.15)

Ã11(λ) =(1− α)w(0)

∫ m

0

∫ 0

−θ
eλτβQ (s, τ,Q∗(s)) p∗(s)dτds,

Ã12(λ) =1−
∫ m

0

∫ 0

−θ
eλτβ(s, τ,Q∗(s))π(λ, s)dτds

+ (1− α)

∫ m

0

∫ 0

−θ
eλτβQ (s, τ,Q∗(s)) p∗(s)

∫ s

0
w(y)π(λ, y)dydτds,

Ã13(λ) =0,

Ã21(λ) =1− α,

Ã22(λ) =

∫ m

0

w(s)

w(0)
π(λ, s)ds,

Ã23(λ) =0,

Ã31(λ) =

∫ m

0
π(λ, s)ds

∫ m

0

∫ 0

−θ
eλτβQ (s, τ,Q∗(s)) p∗(s)dτds,

Ã32(λ) =

∫ m

0
π(λ, s)ds

∫ m

0

∫ 0

−θ
eλτβ(s, τ,Q∗(s))

π(λ, s)

w(0)(α− 1)
dτds

+

∫ m

0
π(λ, s)ds

∫ m

0

∫ 0

−θ
eλτβQ (s, τ,Q∗(s)) p∗(s)

∫ s

0

w(y)

w(0)
π(λ, y)dydτds,

Ã33(λ) =− 1,
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where we have set

π(λ, s) = e
−

∫ s
0

λ+γs(a)+µ(a)
γ(a)

da
.

It follows that

K̃(λ) =

∫ m

0

∫ 0

−θ
eλτβ(s, τ,Q∗(s))π(λ, s)dτds

+ (α− 1)

∫ m

0

∫ 0

−θ
eλτβQ (s, τ,Q∗(s)) p∗(s)

∫ s

0
w(y)π(λ, y)dydτds

+

∫ m

0

∫ 0

−θ
eλτβQ (s, τ,Q∗(s)) p∗(s)dτds

∫ m

0
w(y)π(λ, y)dy − 1.

Clearly condition (4.6) of Theorem 4.6 is satisfied, thus we can restrict the characteristic equation
K̃(λ) to λ ∈ R. Making use of βQ (s, τ,Q∗) < 0 and Eq. (2.4), we obtain

K̃(0) =(α− 1)

∫ m

0

∫ 0

−θ
βQ (s, τ,Q∗(s)) p∗(s)

∫ s

0
w(y)π(0, y)dydτds

+

∫ m

0

∫ 0

−θ
βQ (s, τ,Q∗(s)) p∗(s)dτds

∫ m

0
w(y)π(0, y)dy + R(0, Q∗)− 1

=

∫ m

0

∫ 0

−θ
βQ (s, τ,Q∗(s)) p∗(s)

(
α

∫ s

0
w(y)π(0, y)dy +

∫ m

s
w(y)π(0, y)dy

)
dτds

<0.

Moreover, we deduce that

K̃ ′(λ) =

∫ m

0

∫ 0

−θ
eλτβ(s, τ,Q∗(s))(τ −

∫ s

0

1

γ(a)
∂a)π(λ, s)dτds

+ (α− 1)

∫ m

0

∫ 0

−θ
eλτβQ (s, τ,Q∗(s)) p∗(s)

∫ s

0
w(y)(τ −

∫ s

0

1

γ(a)
da)π(λ, y)dydτds

+

∫ m

0

∫ 0

−θ
eλτβQ (s, τ,Q∗(s)) p∗(s)

∫ m

0
w(y)(τ −

∫ s

0

1

γ(a)
∂a)π(λ, y)dydτds.

The tricky step needed here is to note that∫ m

0

∫ 0

−θ
eλτβQ (s, τ,Q∗(s)) p∗(s)

∫ s

0
w(y)(τ −

∫ s

0

1

γ(a)
∂a)π(λ, y)dydτds

=

∫ m

0

∫ 0

−θ
eλτw(s)π(λ, s)(τ −

∫ s

0

1

γ(a)
da)

∫ m

s
βQ (y, τ,Q∗(y)) p∗(y)dydτds.
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By means of the positivity condition (4.6), we observe that

K̃ ′(λ) =

∫ m

0

∫ 0

−θ
eλτβ(s, τ,Q∗(s))(τ −

∫ s

0

1

γ(a)
∂a)π(λ, s)dτds

+ α

∫ m

0

∫ 0

−θ
eλτw(s)π(λ, s)(τ −

∫ s

0

1

γ(a)
da)

∫ m

s
βQ (y, τ,Q∗(y)) p∗(y)dydτds

+

∫ m

0

∫ 0

−θ
eλτw(s)π(λ, s)(τ −

∫ s

0

1

γ(a)
da)

∫ s

0
βQ (y, τ,Q∗(y)) p∗(y)dydτds

=

∫ m

0

∫ 0

−θ
eλτπ(λ, s)(τ −

∫ s

0

1

γ(a)
da)

[
β (s, τ,Q∗(s))

+ w(s)

(∫ s

0
βQ (y, τ,Q∗(s)) p∗(y)dy + α

∫ m

s
βQ (y, τ,Q∗(s)) p∗(y)dy

)]
dτds

≤0.

As a result, for λ ≥ 0, K̃(λ) is monotone decreasing, and the stability result follows. Since K̃(0) ≥ 0
by βQ (s, τ,Q∗) ≥ 0 and limλ→+∞ K̃(λ) = −1, the instability result follows from the Intermediate
Value Theorem.

7 Examples and simulations

In this section we will present two examples to illustrate and underpin the linear stability results
presented in Theorems 6.1 and 6.3.

Example 7.1. (Stability of p0) We set the model ingredients as follows:

γ ≡ 1, µ ≡ 0.5, w ≡ 1, α = 0.5, θ = 1.5, m = 8;

β(s, τ,Q(s, t+ τ)) =

{
0.5eτ (0.7 + sin2(2s))(1−Q), 0 ≤ s ≤ 8,

0, otherwise.
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0.5

1

1.5
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(t

)

p
1

p
2

P
0

Figure 1: R(0, 0) = 0.9088, p0 represents the trivial stationary solution and P (t) the total popula-
tion size at time t; the initial conditions corresponding to p1 to p2 are u1 = 12sin2(s)(8− s)2 and
u2 = 3cos2(s+ π

2 )(10− s)2.
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We compute R(0, 0) = 0.9088 < 1 using the inherent net reproduction function (2.5). We can
observe that as time increases, solutions approach the horizontal plane (trivial stationary solution),
demonstrating the linear stability result in Theorem 6.1, as shown in Fig.1.

When the fertility rate is changed to

β(s, τ,Q(s, t+ τ)) =

{
0.55eτ (1 + cos2(0.1s))(1−Q), 0 ≤ s ≤ 8,

0, otherwise,

we compute R(0, 0) = 1.6297 > 1. As shown in Fig.2, the numerical results indicate that the
solutions corresponding to the initial conditions p1 and p2 gradually move away from the horizontal
plane, demonstrating the instability result presented in Theorem 6.1.
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Figure 2: R(0, 0) = 1.6297; the total population size P (t) is plotted on the left; the initial conditions
corresponding to p1 to p2 are u1 = 0.3sin2(s+ π

3 )(10− s)2;u2 = 0.5sin2(s+ π
2 )(12− s)2.

Example 7.2. (Stability of p∗) Let us now consider the following set of model ingredients

γ ≡ 1, µ ≡ 0.58, w ≡ 1, α = 0.6, θ = 0.5;

β(s, τ,Q(s, t+ τ)) =

{
eτ (1 + 1.8s)(1−Q), 0 ≤ Q ≤ 1,

0, otherwise.

It is not difficult to verify that both conditions (4.6) and βQ (s, τ,Q∗) < 0 hold true for the current
set of model ingredients. Here we take the initial conditions

u1(s) =
0.1

0.1 + 10s3
+ 0.028, u2(s) =

0.1

4 + 2s3
+ 0.1; s ∈ [0, 8].

The numerical results show that total population sizes corresponding to the solutions p1, p2 eventu-
ally converge to the total population size corresponding to the positive stationary solution P∗, which
demonstrates the stability result in Theorem 6.3, as shown by Fig.3.
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Figure 3: P (t) denotes the total population size at time t; p∗represents the stationary solution;
the parameters γ ≡ 1, µ ≡ 0.58, w ≡ 1, α ≡ 0.6, θ = 0.5,m = 8; the initial conditions corresponding
to curves p1 to p2 are u1 =

0.1
0.1+10s3

+ 0.028 and u2 =
0.1

4+2s3
+ 0.1. On the left we can see the total

population sizes plotted, while on the right the corresponding density distributions.

Next we replace the fertility function with the following one

β(s, τ,Q(s, t+ τ)) =

{
0.5eτ (1 + 0.1s)Q, Q ≥ 0,

0, otherwise.

It is obvious that conditions (4.6) and βQ (s, τ,Q∗) ≥ 0 of Theorem 6.3 are satisfied. The trajectories
p1 and p2 are shown in Fig.4 with two different initial conditions. This example demonstrates the
instability result we obtained in Theorem 6.3.

0 5 10 15 20 25

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(t

)

p
1

p
2

P
*

Figure 4: P (t) denotes the total population size at time t; p∗represents the stationary solution;
the parameters γ ≡ 1, µ ≡ 0.58, w ≡ 1, α ≡ 0.6, θ = 0.5,m = 8; the initial conditions corresponding
to curves p1 to p2 are u1 =

0.1
0.1+10s3

+ 0.028 and u2 =
0.1

4+2s3
+ 0.1. On the left we can see the total

population sizes plotted, while on the right the corresponding density distributions.
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8 Conclusion

In this work we have introduced and analysed a partial differential equation model intended to
describe the dynamics of a hierarchical size-structured population. Our model incorporates two
different types of nonlinearities: we assumed that individual growth and mortality are affected
by scramble competition (which allows to model for example Allee effects); while recruitment of
offspring is affected by contest competition via an infinite dimensional interaction variable related
to a hierarchy in the population. Moreover, we incorporated delay in the recruitment (e.g. to
account for maturation delay). We have formally linearised our model around a steady state and
showed how to apply the theory of strongly continuous semigroups. In particular we studied the
asymptotic behaviour of the governing semigroup by using spectral methods. In contrast to [2], we
were able to derive an explicit characteristic equation, which characterises the point spectrum of the
semigroup generator. This then allowed us to derive some stability/instability results, in particular
using an appropriately defined net reproduction function. The stability results we deduced were
obtained by using a formal linearisation of the PDE model. A rigorous result often referred to as
the Principle of Linearised Stability has not been established for the PDE model we studied here,
therefore we presented examples and numerical simulations to underpin the formal stability results
we established.

Structured population models incorporating an infinite dimensional nonlinearity, e.g. due to
a hierarchical structure in the population have been studied for long by many researchers. One
of the earliest models describing a hierarchically age-structured population can be found in [39].
There is a major difference though between age-structured, i.e. semilinear, and size-structured, i.e.
quasilinear models, such as the one we studied here. While natural age-structured PDE models
tend to be well-posed on the biologically relevant state space of L1; size-structured (quasilinear)
models are not necessarily well-posed on L1, in particular when the growth rate depends on the
infinite dimensional nonlinearity (interaction variable) in a non-monotone fashion, see e.g. [3, 4].
In this case, in order to study existence of solutions, it is necessary to enlarge the state space
and allow for measure valued solutions. The choice of the particular state space then becomes
very important as demonstrated recently in [40], in particular when trying to extend the theory of
positive semigroups to such a setting.
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