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aGrup de F́ısica Teòrica, Departament de F́ısica,

Universitat Autónoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain

bInstitut de F́ısica d’Altes Energies (IFAE) and

Barcelona Institute of Science and Technology (BIST),

Campus UAB, E-08193 Bellaterra (Barcelona), Spain

cDepartamento de F́ısica Atómica, Molecular y Nuclear,
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We perform a combined study of the two hadronic decays D+ → K−π+π+ and
D+
s → K+K+π− using a detailed analysis of the semileptonic decaysD+ → K−π+`+ν`

(` = e, µ) thanks to the high-statistics dataset provided by the BESIII Collabora-
tion. We propose simple and suitable amplitude parametrizations of the studied reac-
tions that shall be of interest to experimentalists for upcoming analyses. These new
parametrizations are based on the näıve factorization hypothesis and the description
of the resulting matrix elements in terms of well-known hadronic form factors, with
special emphasis on the Kπ scalar and vector cases. Such form factors account for
final state interactions which fulfil analyticity, unitarity and chiral symmetry con-
straints. As a result of our study, we find a good prediction for the P -wave BR in
D+ → K−π+π+ decays, while adopting a global phase and moderate rescaling for the
S-wave, that we ascribe to three-body effects, we find a reasonable description. The
resulting model is confronted against D+

s → K+K+π− decays, obtaining again a good
agreement with data.

1 Introduction

In 2009, one of us presented a model for the decay D+ → K−π+π+ where the weak
interaction part of the reaction was described using the effective weak Hamiltonian in the
factorization approach, while the two-body hadronic final state interactions were taken
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into account through the Kπ scalar and vector form factors, fulfilling analyticity, unitarity
and chiral symmetry constraints [1]. Due to the lack of precise data in semileptonic D+ →
K−π+`+ν` decays, the model required two free parameters that were fixed from experimental
branching ratios. Allowing for a global phase difference between the S and P waves, the
Dalitz plot of the D+ → K−π+π+ decay, the Kπ invariant mass spectra and the total
branching ratio due to S-wave interactions were well reproduced.

With the advent of new results for semileptonic decays by the BES-III Collaboration [2],
the free parameters employed in Ref. [1] can be fixed and some assumptions regarding the
form factors can be relaxed. In this study, we carefully analyze semileptonic decays by
employing simple yet well-motivated parametrizations fulfilling analyticity and unitarity
constraints to fix the relevant hadronic matrix elements, that might be of interest for future
experimental analysis. The corresponding matrix element is then used to describe the
D+ → K−π+π+ decay in the näıve factorization approach. While our framework does
not account for genuine three-body effects1 (see Refs. [3–7] regarding 3-body unitarity and
Refs. [8, 9] for previous works), it allows for a simple parametrization fulfilling two-body
unitarity and, not least, to connect D+ → K−π+π+ decays to the isospin-related D+

s →
K+K+π− ones. As a result, we find that näıve factorization performs reasonably well
for D+ → K−π+π+ decays regarding the P -wave contribution. Concerning the S-wave,
a reasonable description can be achieved once a global phase and a moderate rescaling
factor are allowed, that might be effectively ascribed to effective three-body unitarity effects.
Remarkably, the resulting description reproduces well existing results on D+

s → K+K+π−

decays, thus further supporting our approach.
The article is organized as follows: in Section 2, we outline the näıve factorization

approach applied to D+ → K−π+π+ decays, recapitulating all the necessary form factors
that enter the description; in Section 3, we review the semileptonic decays in detail, putting
forward a parametrization that is used to extract the relevant form factors based on BES-
III [2] results; in Section 4, we use the form factor from previous section to put forward a
description for D+ → K−π+π+ decays; in Section 5, this parametrization is applied to the
isospin related D+

s → K+K+π− decays. Conclusions are given in Section 6.

2 Näıve factorization in D+ → K−π+π+ decays

For D+ → K−π+π+decays, we closely follow Ref. [1]. The effective weak interactions
driving such decay follow from the Lagrangian at low energies

Leff = −GF√
2
VudV

∗
cs[C1(µ)O1 + C2(µ)O2] + h.c. , O1(2) = 4[s̄iLγ

µc
i(j)
L ][ūjLγ

µd
j(i)
L ] , (1)

where i, j are color indices, and the Wilson coefficients above differ from those at the elec-
troweak scale due to renormalization [10]. In the following, we employ the näıve factorization

1The model does not account either for two-body π+π+ final state interactions, but these are non-
resonant and presumably small, in such a way that näıve factorization should encompass the most relevant
two-body interactions.
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Figure 1: The O1 (left) and O2 (right) operator contributions to D+ → K−π+π+ decays within näıve
factorization. For each operator there is a N0

c - and N−1
c -suppressed contribution, cf. left and right in each

figure.

hypothesis (see Fig. 1), that implies the following decomposition for the process [1]:

iM = −iGF√
2
VudV

∗
cs

[
a1 〈K−π+

1 | s̄γµ(1− γ5)c |D+〉 〈π+
2 | ūγµ(1− γ5)d |0〉+

a2 〈K−π+
1 | s̄γµ(1− γ5)d |0〉 〈π+

2 | ūγµ(1− γ5)c |D+〉
]

+ (π+
1 ↔ π+

2 ) , (2)

where a1 = C1 + N−1
c C2 = 1.2(1), and a2 = C2 + N−1

c C1 = −0.5(1) have been taken
from Ref. [10].2 Factorization boils down the problem to the description of the hadronic
matrix elements in Eq. (2): the matrix element 〈π+| ūγµ(1 − γ5)d |0〉 = ifπp

µ
π with fπ =

130.2(1.7) MeV [11]; the matrix element 〈K−π+| s̄γµ(1− γ5)d |0〉, that reduces to the well-
known scalar and vector Kπ form factors that, following Ref. [1], we take from Refs. [12]
and [13]; the 〈π+| ūγµ(1 − γ5)c |D+〉 matrix element is connected via isospin symmetry to
D0 → π−`+ν decays; finally, the remaining matrix element, 〈K−π+

1 | s̄γµ(1 − γ5)c |D+〉,
corresponds to that appearing in semileptonic D+ → K−π+`+ν` decays. Indeed, a closer
look reveals that all that is required for the current process is3

ifπp
µ
π2
〈K−π+

1 | s̄γµ(1− γ5)c |D+〉 = fπ(mc +ms) 〈K−π+
1 | s̄iγ5c |D+〉 , (3)

that selects a single form factor among those appearing in semileptonic decays. It turns out
that such a form factor produces a contribution to the semileptonic decays proportional to
the lepton masses, that is irrelevant for D+ → K−π+e+νe decays (see Eqs. (8), (12) and (43)
to (51)).

Potentially, D+ → K−π+µ+νµ decays could probe such a form factor. At the moment,
there is available data from FOCUS [14] and CLEO [15]. Regarding FOCUS, the available
statistics cannot discern a non-vanishing value for the form factor in Eq. (3). Concerning
CLEO, their results are controversial regarding the q2-dependency. Thereby, some modelling
is required. In the following we employ known relations due to Ward identities to suggest
a plausible low-q2 description based on existing results from semileptonic decays. To that
end, we revise the model put forward in Ref. [1] to describe the semileptonic matrix element,
taking advantage of the precise results from BES-III not available at the time.

2In principle, ai ≡ ai(µ) are scale-dependent parameters, but this does not appear at the leading order
factorization scheme employed here.

3where, in the last step, i(ms −mc) 〈K−π+| s̄c |D+〉 = 0 has been used based on parity arguments.
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3 D+ → K−π+`+ν` decays

In this section we address the semileptonic decay in detail, carefully reviewing the rele-
vant form factors, and paying special attention to the known restrictions that follow from
Ward identities that, under reasonable assumptions, allow to extract the relevant form fac-
tor entering hadronic decays. Our phenomenological description generalizes that in Ref. [1]
by incorporating free parameters previously identified with those appearing in Kπ form
factors —a necessary assumption back then in the absence of data that can be relaxed now
by using the recent results from BES-III [2].

3.1 General definitions

The matrix element for semileptonic decays is given as [16]4

M = −GF√
2
V ∗cs 〈π+K−| s̄γµ(1−γ5)c |D+〉 [ūνγµ(1−γ5)v`]→ |M|2 = 4G2

F |Vcs|2HµνLµν , (4)

where we used (p`ν = p` + pν and p̄`ν = p` − pν),

Hµν = 〈π+K−| s̄γµ(1− γ5)c |D+〉 〈π+K−| s̄γν(1− γ5)c |D+〉† , (5)

Lµν =
1

2

[
pµ`νp

ν
`ν − p̄µ`ν p̄ν`ν − (s`ν −m2

` −m2
ν)g

µν + iεp`νµp̄`νν
]
. (6)

As such, the central quantity is the matrix element in Eq. (2) which, using the variables
p ≡ pK + pπ, p̄ ≡ pK − pπ, and q = pD − p, can be expressed as [16, 17]

〈K−π+| s̄γµ(1− γ5)c |D+〉 = iw+p
µ + iw−p̄

µ + irqµ − hεµqpp̄

= iw+(pµ− qµp·q
q2

) + iw−(p̄µ− qµ p̄·q
q2

) +
ir̃

q2
qµ − hεµqpp̄ , (7)

where the four form factors have an implicit dependence on q2, p2, and p̄ · q. Note that
corresponding quantities in D− decays are related via appropriate CP transformations,
that amount to flip signs for the antisymmetric tensor. In addition, the Ward identities
(i.e., Eq. (3) and finiteness at q2 = 0) following

r̃ = −(mc +ms) 〈K−π+| s̄iγ5c |D+〉 , lim
q2→0

[(p · q)w+ + (p̄ · q)w− − r̃] = 0 , (8)

In particular, their dependence on p̄ · q ∼ cos θKπ (see Appendix A) means that the rela-
tion should be fulfilled for each partial wave (see also Ref. [16]), a property that we will
employ when constructing the form factors. Note that the appearance of p̄ in the tensor
structure accompanying w− and h requires partial-wave contributions with ` ≥ 1. To make
contact with experiment, it is customary to employ the following form factors [16, 17]5 (see

4Note our ε0123 = 1 convention, leading to opposite signs compared to Ref. [16] wherever the antisym-
metric tensor appears (the sign can be inferred from Lµν). We also employ εµkpq ≡ εµναβkνpαqβ .

5Note in this respect that, for the kinematic variables chosen for the semileptonic decay, X2 = (p · q)2 −
p2q2, while [(p ·q)(p̄ ·q)−q2(p · p̄)] = X(zβKπ cos θKπ+X∆Kπ), reproducing the result in Ref. [17]. However,
we keep it general in order to use it in D+ → K−π+π+ decays.
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definitions in Appendix A)

F1 =
1

X

(
X2w+ + [(p · q)(p̄ · q)− q2(p · p̄)]w−

)
, (9)

F2 = βKπ
√
sKπs`νw− , (10)

F3 = βKπX
√
sKπs`νh , (11)

F4 = r̃ . (12)

where Fi ≡ Fi(q
2, p2, p̄ · q). F4 was not defined in Ref. [16] and is only relevant for finite

lepton masses, so that results in Appendix A might be of some interest. Further, Eq. (8)
implies for these form factors that

lim
q2→0

[F1(q2, p2, p̄ · q)− F4(q2, p2, p̄ · q)] = 0 , (13)

that relates again the normalization at q2 = 0 that, as mentioned, must be fulfilled for each
partial wave. This is as far as can be reached in a model-independent way and we refer to
Appendix A for the differential decay width expressed in terms of the previous form factors.
In the following section, we present the model that was used in Ref. [1] to parametrize
F4 that, in essence, assumes the Kπ spectra to be dominated by intermediate resonances
with roles parallel to those in 〈K−π+| s̄γµd |0〉 form factors. In doing so, we employ a more
flexible description compared to that in Ref. [1], that will prove convenient to make contact
with the standard phenomenological analysis.

3.2 Resonance model

With the lack of precise data for semileptonic decays, Ref. [1] assumed a model for the
F4 form factor saturated by the lightest K∗(0) resonances. Assuming a similar model for the

Kπ scalar and vector form factor allowed them to relate the p2 dependence of the previous
form factors to that of the Kπ scalar and vector form factors. While this was a necessary
assumption back then, the current available data for semileptonic decays from BES-III [2]
allows to relax this assumption and to provide a more flexible model that might be of interest
for experimental analysis. In particular, in the following we assume that the S- and P -waves
contributions share the same phase as the scalar and vector form factor (that holds below
threshold due to Watson’s theorem) but have, in general, different subtraction constants
that can be determined thanks to the available data.

3.2.1 Scalar contributions

In the original work from Ref. [1], the scalar contribution was assumed to be dominated
by the K∗0(1430) [11] resonance, whose peak dominates the Kπ scalar form factor, FKπ

0 (s),
at intermediate energies. Under the assumption that such a resonance is a quasi-stable (e.g.
narrow) state, the D+ → K̄∗0`

+ν decay can be described via its matrix element (p is the
momentum associated to the K̄∗0)

〈K̄∗0 | s̄γµ(1− γ5)c |D+〉 = i

[
w
K̄∗0
+ (q2)

(
pµ
K̄∗0
−
q · pK̄∗0
q2

qµ
)

+ qµ
r̃K̄
∗
0 (q2)

q2

]
, (14)
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where once more

r̃K̄
∗
0 (q2) = −(mc +ms) 〈K̄∗0 | s̄iγ5c |D+〉 , lim

q2→0

[
(q · p)wK̄

∗
0

+ (q2)− r̃K̄∗0 (q2)
]

= 0 . (15)

Finally, the q2 dependence is reduced, as usual, to the closest charmonium resonance. Its
subsequent K̄∗0 → K−π+ decay merely adds the resonance structure, meaning that the full
amplitude is given as 〈K−π+|K̄∗0〉PK̄∗0 〈K̄

∗
0 | s̄γµ(1 − γ5)c |D+〉, with PK̄∗0 the scalar propa-

gator. Were this fully dominated by the K∗0 resonance both for the semileptonic and Kπ
scalar form factors, then 〈K−π+|K̄∗0〉PK∗0 → χK̄∗0F

Kπ
0 , where χK̄∗0 = (m2

K − m2
π)/(ms −

md)/ 〈K̄∗0 | s̄d |0〉 [1]. However, the different interplay of scalar resonances shall in general
differ, yet their phase shift below inelasticities must agree by Watson’s theorem. We reflect
this by shifting FKπ

0 → FD`4
0 , that allows for the following ansatz for the S-wave contribution

w+(q2, p2, p̄ · q) = X−1F
K̄∗0
1 (q2, p2, p̄ · q) = 2χeff

S F
D`4
0 (p2)

(
1− q2/m2

Ds1

)−1
, (16)

r̃(q2, p2, p̄ · q) = F
K̄∗0
4 (q2, p2, p̄ · q) = χeff

S (m2
D − p2)FD`4

0 (p2)
(
1− q2/m2

Ds

)−1
. (17)

The parametrization in Eq. (17) has been chosen to fulfill Eqs. (8) and (15), and to include
the closest pole with appropriate quantum numbers. Regarding the parametrization used
in BES III [2], we identify 2χeff

S F
D`4
0 (p2) = AS(p2) (see Eq. (20) from Ref. [2]).

In order to parametrize FD`4
0 (p2), we follow the approach in Refs. [18–20]. This uses an

Omnès representation subtracted at p2 = 0 and the Callan-Treiman point ∆Kπ = m2
K−m2

π,

FD`4
0 (s) = exp

[
s[lnCD`4 +G0(s)]

∆Kπ

]
, (18)

G0(s) =
∆Kπ(s−∆Kπ)

π

∫ ∞
sth

dη
δ

1/2
0 (η)

η(η −∆Kπ)(η − s) , (19)

with δ
1/2
0 the scalar I = 1/2 Kπ phase shift, that preserves the constraints provided by

unitarity and analiticity below higher inelasticities. The subtraction constant, lnCD`4 , en-
capsulates high-energy effects that need not be the same as in the Kπ scalar form factor
case, thus requiring data on semileptonic decays to fix it. For the phase shift, we take that in
Ref. [12] below Λ = 1.67 GeV, where δ

1/2
0 = π; above, we take a constant phase δ

1/2
0 = π fol-

lowing Ref. [18–20]. This model allows for a relatively simple and flexible parametrization,
that improves the one used by the BES-III Collaboration by incorporating appropriate an-
alyticity and unitarity constraints (up to higher-threshold inelasticities). As such, it might
be useful in future experimental analyses.

3.2.2 Vector contributions

The next relevant wave is the P -wave, to narrow K̄∗ resonance plays a prominent role
both in the Kπ vector form factor and semileptonic decays. Again, assuming them to
be narrow states, the D+ → K̄∗`+ν decay can be described via the corresponding matrix

6



element,6

〈K̄∗| s̄γµ(1−γ5)c |D+〉=
(
Aεµνqp−i

[
B(gµν−q

µqν

q2
)+Cqν(pµ−q ·p

q2
qµ)+

D̃

q2
qµqν

])
mK̄∗εν , (21)

where mK̄∗ has been used for later convenience. In addition, the Ward identity implies

mK̄∗D̃(q2)(q·ε) = (mc+ms) 〈K∗| s̄iγ5c |D+〉 , lim
q2→0

[
B(q2) + (q · p)C(q2)−D̃(q2)

]
= 0 . (22)

Again, the q2-dependency can be saturated via the appropriate charmonium resonances.
Then, along the lines in Ref. [1], the subsequent K−π+ decay would closely resemble the
vector Kπ form factor if both cases were fully dominated by the K∗. Still, as for the
scalar case, these will generally differ —even if the phase shift below inelasticities should
be the same. Therefore, we replace once more FKπ

+ (p2) → FD`4
+ (p2) (for a single resonance

contribution χK̄∗ = f−1
K̄∗

[1]), obtaining

F1(q2, p2, p̄ · q) =−χK̄∗FD`4
+ (p2)βKπ cos θKπ

[
X2C(0) + (q · p)B(0)

] [
1− q2/m2

Ds1

]−1
, (23)

F2(q2, p2, p̄ · q) =−χK̄∗FD`4
+ (p2)βKπ

√
sKπs`νB(0)

[
1− q2/m2

Ds1

]−1
, (24)

F3(q2, p2, p̄ · q) =− χK̄∗FD`4
+ (p2)βKπX

√
sKπs`νA(0)

[
1− q2/m2

D∗s

]−1
, (25)

F4(q2, p2, p̄ · q) =− χK̄∗FD`4
+ (p2)

N(p2)

2
D̃(q2, p2)

=− χK̄∗FD`4
+ (p2)

N(p2)

2

[
B(0) +

m2
D − p2

2
C(0)

] [
1− q2/m2

Ds

]−1
, (26)

where N(p2)/2 = [p2(p̄ · q) − (p · p̄)(p · q)]/p2 is a variable defined in Ref. [1] that re-
duces to XβKπ cos θKπ in semileptonic decays, and the last form factor is chosen to fulfill
Eq. (13) and saturated with the closest resonance. The connection to the ansatz employed
by the BES-III Collaboration [2] can be easily obtained accounting that 2α

√
2m−1A(m) =

−gK̄∗KπβKπPK̄∗(m2), with PK̄∗(s) the standard propagator. Once again, to obtain a descrip-
tion fulfilling appropriate analyticity and unitarity constraints below higher inelasticities,
we take

FD`4
+ (s) = exp

[
λ1

s

m2
π

+G+(s)

]
, G+(s) =

s2

π

∫ ∞
sth

dη
δ

1/2
1 (η)

η2(η − s) , (27)

with δ
1/2
1 the P -wave I = 1/2 Kπ phase shift. The input for the phase shift is taken from

the result in Ref. [28] with a single vector resonance and with a single subtraction constant.
To match their results, we choose an upper cutoff s = 4 GeV2 and λ1 = 0.025, but such
parameter could be fitted from the experiment, providing then an useful parametrization
for experimentalists. Further details are given in Appendix C.

6Different parametrizations appear in Refs. [21–27]; the connection reads, up to overall signs,

A = − 2V

mK̄∗(mD +mK̄∗)
, B =

mD +mK̄∗

mK̄∗
A1 , C = − 2A2

mK̄∗(mD +mK̄∗)
, D̃ = 2A0 . (20)

7
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3.3 Obtaining parameters from BES-III

Since there is no available data from experiment, we fit our model to the scalar and
vector form factors extracted by BES-III Collaboration. Still, we emphasize that having
such data available would allow for a more reliable estimate of our parameters. Regarding
the free parameters for the scalar part (cf. Eq. (18)), we fit 2χeff

S F
D`4
0 (s), to pseudodata

from the AS(s) form factor from BES-III, obtaining

χeff
S = 2.13(16) GeV−1 , lnCD`4 = 0.152(11) , (28)

with a correlation of −0.27. We show our results in Fig. 2. Note that, in the case of FKπ
0 (s),

the chosen parametrization would require lnCD`4 = 0.206(9) [20], based on a combined
analysis from τ → Kπν and K`3 decays. This is not incosistent, but shows that the
necessary assumption adopted back in Ref. [1] holds only approximately. Concerning the
vector part, we fit the differential decay width distributions obtained from pseudodata from
BES-III parametrization with vector contributions only. This way we obtain the parameters

χeff
A = −3.35(16) GeV−3 , χeff

B = 8.44(23) GeV−1 , χeff
C = −1.64(12) GeV−3 . (29)

where χeff
X ≡ χK̄∗X(0) in Eqs. (23) to (26). The error to describe the semileptonic decay is

fully dominated by that of χeff
B . The correlation for χeff

B and χeff
C , that enters the F4 form

factor, reads -0.35. In Fig. 3, we show our description for the differential mKπ spectrum
compared to the central values of BES-III, observing nice agreement. We observe that
an overall sign cannot be extracted from experiment; to do so, we make use of quark
models [25, 29], that allow to choose a sign that is consistent among the different matrix
elements here considered. These imply a positive sign for χeff

B . That this gives the correct
interference pattern in the hadronic decays below suggests a reasonable performance of näıve
factorization.

8
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4 Case I: D+ → K−π+π+ decays

Having extracted the F4 semileptonic form factor, and with existing parametrizations
for the FKπ

+,0 (s) form factors at hand [12, 28], we can continue to the prediction of D+ →
K−π+π+ decays within the näıve factorization hypothesis.

4.1 Matrix elements

First, we summarize the required matrix elements,

〈K−π+| s̄γµ(1− γ5)d |0〉=
(
p̄µKπ−

∆Kπ

p2
Kπ

pµKπ

)
FKπ

+ (p2
Kπ) +

∆Kπ

p2
Kπ

pµKπF
Kπ
0 (p2

Kπ) , (30)

〈π+| ūγµ(1− γ5)c |D+〉=
(
pµDπ −

∆Dπ

p̄2
Dπ

p̄µDπ

)
FDπ

+ (p̄2
Dπ) +

∆Dπ

p̄2
Dπ

p̄µDπF
Dπ
0 (p̄2

Dπ) , (31)

ifπp
µ
π2
〈K−π+

1 | s̄γµ(1− γ5)c |D+〉=(i)2fπF4 = −fπ
[
χeff
S (m2

D − p2
Kπ)FD`4

0 (p2
Kπ)

− 1

2
N(p2

Kπ)FD`4
+ (p2

Kπ)(χeff
B +

m2
D − p2

Kπ

2
χeff
C )
] 1

1− m2
π

m2
Ds

, (32)

where pµAB = pµA + pµB and p̄µAB = pµA − pµB and ∆AB = m2
A −m2

B. Concerning FKπ
0 (s), we

use that from Ref. [12], while for FKπ
+ (s) we take that from Ref. [28]. For the D+ → π+

9



transition, we use isospin symmetry that relates it to that in D0 → π−`+ν decays, that is
parametrized as

FDπ
+(0)(s) =

FDπ
+(0)(0)

1− s/m2
D∗0

(0)

, FDπ
0 (0) = FDπ

+ (0) = 0.612(35) [30] . (33)

The final result for the amplitude and differential decay width is given in Appendix B. In
addition, we will need to use in the following |VudV ∗cs| = 0.971(17) [11], GF = 1.1663787 ×
10−5GeV−2, ΓD+ = 6.33× 10−13 GeV and masses in Ref. [11].

4.2 P-wave contribution

Following Ref. [1], we check first the P -wave contribution, which spectrum essentially cor-
responds to that of a two-body D+ → K̄∗0π+ decay, thus free of relevant genuine three-body
problems and theoretically cleanest. The current branching ratio (BR) reads (1.04(12) +
0.022(11) = 1.06(12))% [11], where the first and second part refer, respectively, to the
K∗(892) and the K∗(1680) resonances. With the given values for the form factors and a1,2

Wilson coefficients, we find BR = (0.19(+17
−11)a1(

+37
−16)a2(

+9
−7)BES(+8

−7)FDπ [+42
−22]Total)%, that slightly

underestimates the corresponding branching fraction below the 2σ level. Accounting the in-
herent uncertainties from näıve factorization, potential model-dependencies in extracting the
P -wave branching ratio, and subtleties regarding the overall normalization in semileptonic
decays (cf. discussions in [2] and Ref. [31]), the result seems reasonable. To attain a better
prediction, and before accounting for the S-wave component, in the following we allow for an
overall re-scaling of the F4 form factor of 1.23(6)BES(3)PDG(12)a1(16)a2(5)FDπ [21]Total, that
reproduces the central value for the BR and that is compatible at the 1σ level. Conversely,
this could be reinterpreted as a fit of the a1 Wilson coefficient.

4.3 Complete description

With the above rescaling, everything should be fixed and the Dalitz plot should be a
prediction. However, as found in Ref. [1], we need an additional (global) phase for the scalar
component of (180− 60)◦, that might be ascribed to genuine three-body effects that should
be mostly relevant for the S-wave and within the K∗(892) window, where interference is
stronger. The additional phase gives the appropriate picture in the Dalitz-plot, but still
underestimates the total BR in the PDG [11], BR= 9.38(16)%. Allowing for an additional
moderate rescaling for the S-wave part in the semileptonic F4 form factor, we find that a
rescaling factor of 1.55(10)BES(6)P−wave(2)BR(0)a1(26)a2(5)FDπ [30]Total suffices to reproduce
the total BR that, once more, could be related to effects beyond two-body unitarity. With
these modifications, the P -wave BR is fixed to 1.06(12)% by construction, while the S-
wave fraction (e.g., the corresponding S-wave BR normalized to the total one, see [1])
is 85.9(1.6)%, with the error fully dominated by the uncertainty of the P -wave BR. The
resulting invariant mass distribution and Dalitz plot are shown, respectively, in Fig. 4 and
Fig. 5, displaying an overall nice agreement given the simplicity of the approach.

Overall, the näıve factorization approach seems to provide a decent first-order estimate,
offering a nice picture regarding the P -wave contribution, while the S-wave necessitates from

10
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Figure 4: Differential decay width for D+ → K−π+π+ compared to E791 data [32]. The dark gray band
represents our model, while the light gray band represent the low- and high-mass parts of the spectra. The
dotted (dashed) blue lines represent the scalar (vector) components in our model. The bands do not show
errors from a1,2, nor inherent uncertainties from the näıve factorization hypothesis.

Figure 5: The symmetrized Dalitz plot for D+ → K−π+π+ in our model (left) together with the experi-
mental one from E791 [32] (right).
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Figure 6: Left: invariant mass distribution (gray band) together with S-wave and P -wave contributions
shown as dotted- and dashed-blue lines respectively. Right: Dalitz plot. Note in particular the depleted
lower-left corner that requires the same relative scalar phase as in D+ → K−π+π+ decays.

an additional phase and a moderate rescaling that might be ascribed to genuine three-body
effects. To further test this hypothesis, we address the isospin-related D+

s → K+K+π−

decays.

5 Case II: D+
s → K+K+π− decays

In order to shift to D+
s → K+K+π− decays, the following replacements need to be done

with respect to D+ → K−π+π+ decays:

fπ → fK , FDπ
+(0)(s)→ FDsK

+(0) (s) , FD`4
4 (m2

π, s, t)→ FDs`4
4 (m2

K , s, t) , (34)

as well as VudV
∗
cs → VusV

∗
cd, mD+ → mDs and mK± ↔ mπ± where necessary. We take

fK/fπ = 1.193(2) [11], FDsK
+(0) (0) = 0.720(84)(13) [33] as well as effective masses mD∗0

(0)
.

Regarding the semileptonic form factors, there are results in Refs. [33] that show a similar
pattern for the relative strengths, but do not report the overall normalization. We assume it
to be the same based on approximate U -spin symmetry. With our model above, we predict
BR = 1.5(2) × 10−4, fully dominated by the uncertainties for FDsK

+(0) (0). The result is in

agreement with the experimental result BR = 1.28(3) × 10−4 [11]. In addition, we show
the mKπ spectra as well as the Dalitz plot in Fig. 6. We emphasize that the (180 − 60)◦

global phase in the scalar component brings again results in good agreement with the recent
experimental analysis of the Dalitz plot at LHCb [34], that requires a depletion of events
for mKπ values below the K∗(892) resonance, that is reassuring. The obtained branching
fraction for P -wave is 13.6(4.7)% and for the S-wave 79.3(5.8)%. Ref. [35] offers estimates
for the K∗(892) component to yield a fit fraction of 47(22)(15)%, also in agreement, yet
their result relies on their model describing the S wave, for which no branching fraction is
given.
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6 Conclusions

We have described the hadronic D+ → K−π+π+ and D+
s → K+K+π− decays using

näıve factorization. Compared to previous work in Ref. [1], we have taken advantage of the
precise data from semileptonic D+ → K−π+`+ν` decays from BES-III [2]. To do so, we have
used a model for final-state Kπ interactions fulfilling analitycity and unitarity constraints
below higher inelasticities —these in general differ from the Kπ scalar and vector form
factors, so the corresponding parameters have been fixed based on the BES-III [2] analysis.
These parametrizations might be of relevance for experimentalists. With the semileptonic
form factor fixed, a parameter-free prediction for the P -wave BR in D+ → K−π+π+ decays
has been possible. We have obtained a reasonable prediction, and the BR in PDG [11]
could be achieved with a minor rescaling of the semileptonic form factor, compatible with
1 at the 1σ level. This is remarkable, as it requires appropriate signs for the interference
amongst the two contributions in Eq. (2), that is completely fixed in our approach. Also, we
emphasize that uncertainties related to the factorization approach, or model-dependencies
in extracting the P -wave BR in PDG [11], were not accounted for. To reproduce the full
BR and Dalitz plot, a global phase of (180− 60)◦ among the S and P waves was necessary,
analogous to Ref. [1]. Furthermore, a moderate rescaling for the S-wave semileptonic form
factor was necessary; both were ascribed to effective three-body effects not accounted for in
our approach. The resulting description could be used to describe D+

s → K+K+π− decays,
satisfactorily describing existing data.
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A Definitions for D+ → K−π+`+ν` decays

A.1 Phase space and kinematics

For this process, we take the conventions in Ref. [36]. Note in particular that our
lepton-hadron-plane angle (φ in the following) defined in Fig. 7 has opposite sign to that
in Refs. [2, 16] (χ in the following). The phase space can be described in terms of the
invariant masses p2

Kπ(`ν) = sKπ(`ν), angles in the hadronic/leptonic reference frames θKπ(`ν)

and hadron-lepton planes angle. For the calculation all that is required is (pij = pi + pj,

13



p3

p4

p34

p343 sin θ343

p1

p2
p12

p121 sin θ121

ẑ
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Figure 7: Definitions for the phase space variables in D+ → K−π+`+ν` decays. The particle labeling
reads {1, 2, 3, 4} = {K−, π+, `+, ν}.

p̄ij = pi − pj)

pKπ · p`ν =(m2
D − sKπ − s`ν)/2 ≡ z , (35)

p̄Kπ · p`ν =∆̃Kπz +XβKπ cos θKπ ≡ ζ , (36)

pKπ · p̄`ν =∆̃`νz +Xβ`ν cos θ`ν , (37)

p̄Kπ · p̄`ν =
[
z
(

∆̃Kπ∆̃`ν + βKπβ`ν cos θKπ cos θ`ν

)
+X

(
∆̃Kπβ`ν cos θ`ν + ∆̃`νβKπ cos θKπ

)]
−√sKπs`νβKπβ`ν sin θKπ sin θ`ν cosφ , (38)

εpKπ p̄Kπp`ν p̄`ν =−X√sKπs`νβKπβ`ν sin θKπ sin θ`ν sinφ , (39)

where ∆̃ij = (p2
i − p2

j)/p
2
ij, βij = λ

1/2
ij /p

2
ij, X = λ

1/2
Kπ,`ν/2, and λij = [p2

ij − (p2
i + p2

j)]
2− 4p2

i p
2
j .

Finally, the differential phase space can be defined as

dΦ4 =
1

(4π)6

1

2m2
D

XβKπβ`νdsKπds`νd cos θKπd cos θ`νdφ . (40)

A.2 Decay width

Following Eq. (4) and the notation for the hadronic form factors in Eqs. (7) and (9)
to (12), the differential decay width is given by

dΓ =
G2
F |Vcs|2

(4π)6m3
D

XβKπβ`ν(H
µνLµν)dsKπds`νd cos θKπd cos θ`νdφ . (41)

Taking in parallel to Ref. [16] the following decomposition7 (for corresponding CP -related
D− decays, φ→ −φ needs to be taken)

HµνLµν ≡ I1 + I2 cos 2θ`ν + I3 sin2 θ`ν cos 2φ+ I4 sin 2θ`ν cosφ+ I5 sin θ`ν cosφ

+ I6 cos θ`ν − I7 sin θ`ν sinφ− I8 sin 2θ`ν sinφ− I9 sin2 θ`ν sin 2φ , (42)

7Note in particular the minus sign in the I7−9 terms due to our φ definition.
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the results in Ref. [16] are modified for finite lepton masses (mν = 0) as follows

I1 =
1

4
β`ν

[
(1 +

m2
`

s`ν
)|F1|2 +

3

2
sin2 θKπ(1 +

m2
`

3s`ν
)(|F2|2 + |F3|2) +

2m2
`

s`ν
|F4|2

]
, (43)

I2 = − 1

4
β2
`ν

[
|F1|2 −

1

2
sin2 θKπ(|F2|2 + |F3|2)

]
, (44)

I3 = − 1

4
β2
`ν

[
|F2|2 − |F3|2

]
sin2 θKπ , (45)

I4 =
1

2
β2
`ν Re(F1F

∗
2 ) sin θKπ , (46)

I5 = β`ν Re

[
F1F

∗
3 +

m2
`

s`ν
F4F

∗
2

]
sin θKπ , (47)

I6 = β`ν Re

[
F2F

∗
3 sin2 θKπ −

m2
`

s`ν
F1F

∗
4

]
, (48)

I7 = β`ν Im

[
F1F

∗
2 +

m2
`

s`ν
F4F

∗
3

]
sin θKπ , (49)

I8 =
1

2
β2
`ν Im(F1F

∗
3 ) sin θKπ , (50)

I9 = − 1

2
β2
`ν Im(F2F

∗
3 ) sin2 θKπ , (51)

which in the m` → 0 coincides with that in Ref. [16]. Note that the hadronic matrix element
can also be expressed in terms of the Fi form factors as (ξ = ∆KπX + zβKπ cos θKπ)

〈K−π+| s̄γµ(1− γ5)c |D+〉 =
iF1

X
(pµKπ − pµ`ν

z

s`ν
) +

iF4

s`ν
pµ`ν

+
iF2

βKπ
√
sKπs`ν

[
(p̄µKπ − pµ`ν

ζ

s`ν
)− ξ

X
(pµKπ − pµ`ν

z

s`ν
)

]
− F3

βKπX
√
sKπs`ν

εµp`νpKπ p̄Kπ . (52)

B Definitions in D+ → K−π+π+ decays

Following Eq. (2) and the notation in Section 3.2 and Ref. [1], the matrix element of this
process can be expressed as M = −iGF√

2
VudV

∗
cs[M(s, t) +M(t, s)], where

M(s, t) =
−a1fπ

1− m2
π

m2
Ds

[
χeff
S (m2

D − s)FD`4
0 (s)−N(s)FD`4

+ (s)
1

2
(χeff

B +
m2
D − s
2

χeff
C )

]

+ a2

[
(m2

D −m2
π)(m2

K −m2
π)

s
FKπ

0 (s)FDπ
0 (s) +N(s)FKπ

+ (s)FDπ
+ (s)

]
, (53)

with FKπ,Dπ
0,+ (s) standing for the relevant scalar(vector) form factors as defined in Ref. [1],

and N(s) = t − u − (m2
D −m2

π)(m2
K −m2

π)s−1 defined below Eq. (26). Consequently, the
differential decay width can be expressed in terms of the Dalitz variables as

dΓ =
1

2

1

(2π)3

1

32m3
D

G2
F |VudV ∗cs|2

2
|M(s, t) +M(t, s)|2 . (54)
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C The vector form factor description

The phase for the vector form factor is that of the following [28]

f̃Kπ+ =
m2
K∗ −

(
192π
σ3
Kπ

γK∗
mK∗

)
HKπ(0) + γs

m2
K∗ − s−

(
192π

σ3
Kπ(m2

K∗ )
γK∗
mK∗

)
HKπ(s)

− γs

m2
K∗′ − s−

(
192π

σ3
Kπ(m2

K∗′ )

γK∗′
mK∗′

)
HKπ(s)

, (55)

with σ2
Kπ(s) = λ(s,m2

K ,m
2
π)/s2, where we used the Kahlén function λ(a, b, c) = a2 + b2 +

c2 − 2ab− 2ac− 2bc, and with

HKπ(s) =
1

(4π)2

1

12

[
sσ2

Kπ(s)B̄0(s;m2
π,m

2
K)− s

2
ln
m2
πm

2
K

µ4

−
(Σ2

Kπ −∆2
Kπ − sΣKπ

2
) ln

m2
K

m2
π

∆Kπ

+

(
2

3
s− 2ΣKπ

) , (56)

with ∆Kπ = m2
K − m2

π and ΣKπ = m2
K + m2

π. The function B̄ is defined in terms of the
1-loop two-point function B̄(s,m2

K ,m
2
π) = B(s,m2

K ,m
2
π)−B(0,m2

K ,m
2
π) and reads

B̄(s,m2
K ,m

2
π) =

1

2

[
2 +

(
∆Kπ

s
− ΣKπ

∆Kπ

)
ln
m2
π

m2
K

+ 2σKπ(s) ln

(
ΣKπ + sσKπ − s

2mKmπ

)]
. (57)

In order to match their poles position we use the same parameters mK∗ = 0.94338(69) GeV,
γK∗ = 0.06666(8) GeV and mK∗′ = 1.379(36) GeV, γK∗′ = 0.196(66) GeV. Concerning γ,
we choose γ = 0 instead of γ = −0.034 since BES-III finds no evidence for a K∗(1410).
Still, the model allows for an easy extension to study possible effects of the K∗(1410).
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