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Abstract

The global biodiversity loss resulting from anthropogenic land-use activities is a pressing concern,
requiring precise assessments of impacts at large spatial extents. Existing models primarily focus on
guantifying impacts on species richness and abundance, often overlooking the ecological relevance of
species traits and their contributions to ecosystem functioning. To address this gap, we conducted a
comprehensive analysis throughout Europe, investigating the effect of human land use on plant functional

diversity across different land-use classes and bioregions.

Integrating extensive databases of vegetation plots with spatial data on land use and land cover, we
paired plots from areas actively used and modified by humans with plots from natural habitats under
similar environmental conditions. Employing species occurrences and traits from the same databases, we
computed three functional diversity metrics (functional richness, evenness, and divergence) per each plot.

We assessed the impact of land use by comparing the functional diversity values in the paired.

Our findings revealed that land used and modified by humans generally exhibits lower functional richness
and divergence, but higher functional evenness compared to natural habitats, across most land-use
classes and bioregions. Particularly noteworthy was the impact on functional richness in croplands and
urban areas, identified as having the lowest functional richness values in multiple bioregions. Furthermore,
the impact of human land use on plant communities displayed less variation among land-use classes than

among bioregions.

Our study emphasizes how land use impacts the functionality of species at a large scale, disclosing
regional and land-use class differentiations. The results underscore the crucial need for informed
conservation strategies and sustainable land management across various scales to address the

escalating challenges posed by human activities to biodiversity and its associated functions.

Keywords
Anthropocene, biodiversity loss, bioregions, functional divergence, functional evenness, functional

richness, vegetation.
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1. Introduction

Biodiversity contributes substantially to the resilience and resistance of ecosystem functions, to the
maintenance of ecosystem services, and to the mitigation of global changes (Isbell et al. 2011; Harrison
et al. 2014; Tilman, Isbell, and Cowles 2014; Felipe-Lucia et al. 2018; Reader et al. 2023; Le Provost et al.
2023). At the same time, biodiversity is highly affected by habitat loss and degradation: anthropogenic
land-use activities are among the major drivers of biodiversity loss (IPBES 2019). As a result of human
pressures, more than 80% of the global land has now been transformed, leaving only 20% to wildland
(Ellis et al. 2021). Anthropogenic transformation of natural habitats notably impacts ecosystems and their
functions, which are essential for the survival and well-being of all organisms (Valladares, Magro, and

Martin-Forés 2019), including humans.

Halting biodiversity loss is a major challenge that requires a multi-faceted approach, which builds on the
continuous improvement of biodiversity impact assessments (Leclére et al. 2020), as well as on better
quantification of the linkage between drivers and effects at different spatial scales (Chaplin-Kramer et al.
2022). However, there is currently a lack of well-established connections between individual local
biodiversity assessments and global patterns (Jandt et al. 2022). This gap hampers a comprehensive
analysis and suggests the demand for replicated local assessments. These assessments are particularly
crucial in understanding the effect of human use of land (which encompasses activities like agriculture
and urbanization and hereafter simply referred as “land use”) compared to natural habitats (Zebisch,
Wechsung, and Kenneweg 2004; Dornelas et al. 2014; Jandt et al. 2022). Furthermore, biodiversity is very
complex and multidimensional, while most biodiversity models focus on quantifying the number of species
lost or the loss in species abundance (O’'Connor et al. 2017; Bannar-Martin et al. 2018; Jandt et al. 2022).
However, species counts and abundance do not inform about the ecological importance of species in a
community, thus pointing to the need of considering also other biodiversity dimensions, such as functional
diversity, which provide additional and complementary information (Cadotte, Carscadden, and

Mirotchnick 2011; Hu et al. 2014; Rosenfield and Muller 2020; Scherer et al. 2023).
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Functional diversity of plants has shown to offer better insights into ecosystem performance than
taxonomic diversity (Bruelheide et al. 2018; Zambrano et al. 2019; van der Plas 2019; Jens Kattge et al.
2020; Hagan, Henn, and Osterman 2023), especially in areas affected by human activities (Bonilla-
Valencia et al. 2022). To calculate functional diversity, three independent and complementary functional
diversity indices can be used: functional richness, evenness, and divergence (Mason et al. 2005). These
indices are derived from plant traits, i.e., plants’ anatomical, physiological, biochemical, regenerative,
reproductive and phenological characteristics. Functional richness measures how much trait variation in
different species add up within a community. It affects aspects such as resource use, productivity,
reproduction and resistance to invasions. Functional evenness locks at how evenly species abundances
are distributed across the range of trait variation inside the community. It indicates if resources are being
overused or underused and the level of trait redundancy. Functional divergence measures how far
different species are from each other in terms of functional traits occurring in the community, and it is
sensitive to the presence and abundance of species with extreme trait values, e.g., highly specialized or
functionally rare species (Mason et al. 2005; Mouchet et al. 2010; Scherer, van Baren, and van Bodegom

2020).

The effect of land use on functional diversity at a large spatial extent (i.e., continental or global) has been
investigated in previous studies (Flynn et al. 2009; De Souza et al. 2013; Newbold et al. 2020). However,
these studies relied on relatively coarse-grained data and lack the necessary information to assess
impacts at the community level where species co-occur and interact. In such studies, species occurrence
data are originating from many different sources and rarely from harmonized databases. Moreover, in
most cases, the results primarily aimed at obtaining global or continental aggregated values (Wolf et al.
2022; Dechant et al. 2023), without distinguishing impacts in different regions and without considering

plot-level differences between areas under anthropogenic land use and their natural habitat counterparts.

The recent release of global vegetation and trait databases discloses new opportunities for exploring the
effect of land use on different dimensions of functional diversity (Chytry et al. 2016; Bruelheide et al. 2019;
J. Kattge et al. 2011), especially in areas with a good coverage and representativity of data, such as

Europe. The European Vegetation Archive (EVA) (Chytry et al. 2016) is a European vegetation plot
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databases containing information on species co-occurrences and abundances within plant communities.
Coupled with the TRY database, which provides species-level plant trait data (Jens Kattge et al. 2020), it
allows for the calculation of functional diversity for millions of vegetation plots across all of Europe
(Bruelheide et al. 2018). The further matching of vegetation plots and trait data with land use and land
cover allows investigating the change in functional diversity in areas used and modified by humans

compared to natural and close-to-natural habitats.

Given this context, our goal is to answer the following research question: how does plant functional
diversity change in land actively used by humans compared to natural habitats sharing otherwise similar

environmental conditions? Do biogeographical patterns emerge across different regions in Europe?

2. Materials and methods

Functional diversity indices were calculated by combining vegetation plots and trait information. To allow
for a consistent comparison between anthropogenic land-use classes and natural habitats, we used the
land-use and land-cover data to pair each vegetation plot sampled in land actively and predominantly
used by human with a vegetation plot sampled in the natural habitat that would potentially occur there

under low human pressure on the environment.

The approach we applied consisted of seven steps (see Fig. 1 and, for more details, Fig. S1.1 in the
supplementary materials). First, we retrieved and filtered the suitable vegetation plots from the European
Vegetation Archive (EVA) (Chytry et al. 2016), while matching them to the sPlot database (Bruelheide et
al. 2019), which contains all of EVA plots and has curated a taxonomic standardization procedure to link
to each species name a set of 30 gap-filled traits from the TRY database (Schrodt et al. 2015; Jens Kattge
et al. 2020) (see section 2.1). Second, we assigned each of the vegetation plots to biogeographic regions
(hereafter “bioregions”) to enable a spatially-explicit analysis while including a sufficient sample size per
spatial unit (see section 2.2). Third, based on land-use and potential natural vegetation maps, we
aggregated land-use classes into broader ones to be suitable for the analysis (see section 2.3). Fourth,

we assigned each vegetation plot to either one of the five identified land-use classes (Urban areas,
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Cropland, Pasture and rangeland, Mosaic, Planted forest) or to one of the five identified potential natural
vegetation class (Natural forest, Natural grassland, Natural shrubland, Natural herbaceous wetland,
Natural bare and sparse vegetation) (see section 2.4). Fifth, we selected the relevant environmental
covariates (i.e., bioclimatic variables and soil properties) and then performed a Principal Component
Analysis (PCA) across European to obtain the scores of each vegetation plot along the PCA axes (see
section 2.5). Sixth, within each bioregion, we used the distance between the PCA scores in the PCA space
to pair plots sampled in a land-use class and plots representing potential natural vegetation sampled in
otherwise similar environmental conditions (see section 2.6). Finally, we calculated the ratios between the

values of functional richness, evenness, and divergence of each pair of plots (see section 2.7).

All analyses were performed in R version 4.0.5 (2021-03-31) (R Core Team 2021).
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Figure 1 Overview of the methodological conceptual framework applied to this study.

2.1 Selection and processing of vegetation plots

We extracted vegetation plot data from EVA (Chytry et al. 20186). It currently contains more than 2 million
vegetation plots and has a representative geographical coverage for Europe, especially for West, South
and Central Europe. We derived data on 30 gap-filled traits from TRY (Schrodt et al. 2015; Jens Kattge et
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al. 2020) and an additional plot attribute (plot naturalness, used in section 2.4) from sPlot’s (Bruelheide et
al. 2019). Not all the vegetation plots were suitable for the analysis, as some do not report, for example,
geographical coordinates and/or the year of the survey. Therefore, we applied various filtering criteria (in
the supplementary materials, the full list of criteria is available in section S2 and the list of EVA datasets

used for the analysis is available in section $18).

We considered only the vegetation plots for which species abundance data were available, as this
information was needed to calculate functional evenness and divergence. Furthermore, we retained only
vascular plant species with available traits. Additional vegetation plots were excluded from the analysis
for various reasons: e.g., when trait information was known for a small proportion of species occurring in

the plot (< 0.5), or the location uncertainty was too high (Engel et al. 2023).

We set a threshold for location uncertainty of 10 km, because a stricter threshold would exclude almost all
plots from some regions (e.g., Iberian Peninsula). Since this threshold is considerably higher than the
resolution of the land-use maps (300 m, see section 2.3), for plots with location uncertainty higher than
150 m, we applied an additional filter based on the homogeneity of the land use of the area falling within
the uncertainty radius of the plot. We retained only plots where at least 80% of the land use within the
uncertainty radius was the same to that occurring at the location of the plot coordinates. A ranking was
made to keep track of this procedure (ranking 1: location uncertainty < 150 m; ranking 2: location
uncertainty > 150 m and land use 100% homogeneous within the uncertainty radius; ranking 3: location

uncertainty > 150 m and land use being 80 to <100% homogeneous within the uncertainty radius).

2.2 Allocation to bioregions

To evaluate the spatial differences in the impacts on functional diversity, the vegetation plots were
assigned to bioregions (One Earth, n.d.) (list of bioregions name available in Table S3.1 and map in Fig.
2 and S3.1 in the supplementary materials). We chose bioregions instead of the more commonly used
ecoregions (Olson et al. 2001), for being geographical units internally coherent in terms of dominant biome
and evolutionary history, but larger in size than ecoregions, which allows for a higher sampling size in our

analysis.
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2.3 Selection and processing of land use and potential natural vegetation maps

Each vegetation plot was matched to either a land-use class or to a class of potential natural vegetation

(described in more detail in sec. 2.5).

As a base layer for land-use classes, we adopted the land-cover maps from the European Space Agency
for the Climate Change Initiative (ESA CCI) (ESA Land Cover CCI project team and Defourny 2019). The
ESA CCl map had several advantages: (1) it has a 300 m spatial resolution, which we deemed adequate
for our goals; (2) it includes most of the land uses and covers we are addressing in this study (urban areas,
cropland, natural vegetation), although not all (e.g., it does not distinguish between natural and managed
grassland or forest); (3) it has a yearly resolution, although it goes back only to 1992 (so plots sampled
before that had to be excluded); and importantly (4) it is open access. To fill the gaps concerning some
land-use classes, we integrated the ESA CCI data with: (i) the HILDA+ map (Winkler et al. 2021), which
covers the period 1960-2019 on a yearly basis and distinguishes between natural grass/shrubland and
human-modified pasture/rangeland) and (i) the GLOBIO4 map (PBL Netherlands Environmental
Assessment Agency 2023; Schipper et al. 2019), which was built using the ESA CCI as a basis and
distinguishes planted forests from the other land uses and covers. GLOBIO4 provides data for 1992, 1995,
2000, 2005, 2010, 2015. The land use of the intermediate years was assumed to be the same as the
closest year for which the map was available (e.g., for 1993, 1992’s data were used). Bioregions PA1
(Russian Arctic Desert Islands) and PA2 (Iceland) were excluded for not containing any vegetation plot in

anthropogenic land uses.

Concerning the map of potential natural vegetation, the NatureMap was selected (Hengl, Jung, and
Visconti 2020) as its resolution (250 m) is similar to the one on the ESA CCI map, and it allows for a

distinction between multiple classes of natural vegetation (e.g., forest, grassland, shrubland, etc.).

ESA CCI contains 38 land-use/cover classes and the NatureMap 17 land-cover classes. An aggregation
was performed to reduce the number of classes and align the classification with the scope of the study
(see Table S4.1 and Table S5.1 in the supplementary materials for the detailed matching between the

aggregated classes and, respectively, the ESA CCI classes and the NatureMap classes).
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2.4 Assigning land-use and cover classes to vegetation plots

Using the geographical coordinates of the center of each vegetation plot, we extracted the corresponding

land-use/cover classes. The list of land-use and land-cover classes retrieved from the spatial sources

described in the previous section and how they were combined to define the final use classification (Table

1) is available in Table $6.1 in the supplementary materials. Two additional attributes were used to refine

the matching between plots and land-use/cover classes: the type of vegetation (from the EVA database)

and the level of naturalness (from the sPlot database). In the final classification, each plot was assigned

to either a land-use class or a natural habitat (Table 1).

Table 1 List and definition of the land-use/cover classes considered in this study, retrieved from the combination of
spatial data and assigned to the vegetation plots.

Land use/cover assigned to the plots

Natural and close-
to-natural habitats

Land-use classes

Natural forest

Natural grassland

Natural shrubland

Natural herbaceous
wetland

Natural bare and
sparse vegetation

Planted forests

Pasture and
rangeland

Cropland

Urban areas

Mosaic

Definition

Areas where natural vegetation belongs to the same formation and
vegetation type that would occupy the site without human
interference. This includes forests with sporadic wood extraction or
natural grasslands that are grazed at such low intensity that the
natural vegetation type is not replaced. .

Planted forests intensively managed. It excludes forest planted for
protection, ecosystem restoration, or established through planting
or seeding, mimicking natural regeneration at maturity.
Herbaceous land or shrubland used for livestock and grazing with
different intensities and practices. It excludes areas grazed at very
low intensity (see two rows above).

Agricultural land where annual or permanent crops (trees, shrubs
and herbaceous) are grown with different intensities and practices.

Human settlements, including artificial surfaces, built-up areas,
industrial areas, and urban green spaces.

Areas characterized by a combination of natural vegetation and
cropland to varying degrees.

10
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2.5 PCA on the environmental covariates

We retrieved 19 bioclimatic variables — temperature- and precipitation-related — at 1-km resolution from
the CHELSA V2.1 database (Karger et al. 2017; 2018), and a selection of soil properties at 250-m
resolution and less influenced by land management from the SoilGrids database (clay mass fraction, silt
mass fraction, sand mass fraction, and pH) (ISRIC, n.d.; Hengl et al. 2017) (see the full list in Table S7.1
in the supplementary materials). The soil variables were aggregated to match the resolution of the
bioclimatic variables by calculating their mean in each 1-km square. The PCA was performed for these
variables at 1Tkm resolution and on the whole area under assessment (similarly to what was done by (F.M.
Sabatini et al. 2021)) and then we extracted the scores along all the PCA axes for each vegetation plot's
location. This approach was chosen as it allowed us to pair vegetation plots and remove part of the
variation in functional diversity values between different plots that is likely caused by different
environmental conditions as described in the next section (Wallis et al. 2021; Joswig et al. 2022).

The PCA was performed using the function rasterPCA from the package RStoolbox (which also allows for
a standardization of the input data by setting spca = TRUE as argument). Figure S7.1 in the supplementary

materials shows the results for the first four PCA axes.

2.6 Pairing of plots in land-use classes and plots in natural habitats

After extracting the PC scores, we paired each vegetation plot sampled in an area assigned to a land-use
class with a vegetation plot sampled in the corresponding potential natural land and sharing similar
environmental conditions. This approach paired vegetation plots that are close to each other in the
environmental space of the PCA as well as belonging to the same bioregion, thus minimizing the Euclidean
distance between the vegetation plots’ PC scores within a given pair (see Fig. S8.1 in the supplementary
materials) (ElImore and Richman 2001). To calculate the Euclidean distance, each PC score was weighted
according to the explained variance of the corresponding PCA axis. Multiple pairings were possible for
the same vegetation plot in a natural habitat if the plot had a minimum distance with multiple vegetation

plots in human-used land (Fig. S8.1).

Alternatively, the opposite situation also occurred: the same vegetation plot from a land-use class was
paired to multiple vegetation plots belonging to natural habitats, if the environmental distance within the

11
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PCA space was the same. When this occurred, only the vegetation plot from natural habitats having the
lowest location uncertainty ranking was considered. If multiple natural plots remained paired to the same
plot even after filtering out those with lower location uncertainty ranking, they were kept, and the average

of their functional metrics (see next section) was calculated.

Any combinations of bioregion and land-use class with fewer than 10 pairings were removed from the
subsequent analyses for statistical reasons, and this caused the exclusion of two additional bioregions
not fulfilling this requirement: PA3 (Scandinavian Birch & Coastal Conifer Forests) and PA17 (Black Sea,

Caucasus-Anatolian Mixed Forests & Steppe).

The final selection consisted of 72247 vegetation plots and 7185 vascular plant species (see Fig. S8.2
and Fig. 59.1 in the supplementary materials, respectively, for the spatial and density distribution of the

plots after the pairing and for the ridge plot of the PC distance).

2.7 Calculation of functional richness, evenness, and divergence

We calculated the functional richness, evenness and divergence for each vegetation plot using the dbFD
function from the FD package in R (Villéger, Mason, and Mouillot 2008; Laliberté et al. 2010; Ahmed, van
Bodegom, and Tukker 2019). All plant traits were standardized to zero mean and unit variance. We
considered all 30 traits available in sPlot (please find the full list in Table S10 in the supplementary
materials), which offer a nuanced understanding of the ecological strategies and adaptations of plant
species within the studied ecosystems. The traits range from morphological and nutritional to reproductive
characteristics, including stem specific density, rooting depth, specific leaf area, leaf carbon and nitrogen
content, plant height, seed characteristics, leaf dimensions, and various genotype-related features. Since
the function we used (dbFD) already performs a PCA on the traits, a selection of the traits was not

necessary.

Finally, the ratio between the values of functional diversity in each plot assigned to a land-use class and
its corresponding plot assigned to a natural habitat (hereafter called ‘relative functional richness’, ‘relative

functional evenness’ or ‘relative functional divergence’) was calculated as follows:
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re, = fL land—use class
fi—%
fj, natural habitat

Where fi 1and-use class IS the functional metric (richness, evenness, or divergence) in plot i among those plots
assigned to a land-use class and fj, natural havitat is the functional metric (richness, evenness, or divergence)
in the natural plot j paired to plot i. When the relative values are below (or above) 1, it means that the
functional richness, evenness or divergence is lower (or higher) in the land-use class than in the natural
habitat. To obtain aggregated values per bioregion, a median of all the relative functional diversity values
for each metric, land-use class and bioregion was calculated. The values per land-use class across

bioregions were calculated as weighted mean of the medians using the areas of bioregions as weights.

The Wilcoxon signed-rank test for paired data corrected with the Benjamini & Hochberg (hereafter “BH")
correction for multiple comparisons was used to determine the significance of the shift between the

absolute values of functional diversity metrics in the paired plots.

3. Results

In most bioregions, we found lower relative functional richness and divergence (rfi < 1) but higher relative
functional evenness (ri > 1) within habitats modified by human activities than within paired natural habitats
sharing otherwise similar environmental condition (see Fig. 2, and for more details Fig. $S11.1, section S12,

Table S15-S17 in the supplementary materials).

The difference in functional diversity between the anthropogenic land-use classes and their paired natural
counterparts was much more evident for functional richness than for functional evenness and divergence
(Fig. S11.1 in the supplementary materials). On average, across all bioregions and land-use classes,
functional richness and divergence were, respectively, 66% and 4% lower in anthropogenic areas
compared to natural habitats with similar environmental conditions. Additionally, functional evenness was

6% higher in anthropogenic areas than in natural ones.

Overall, Cropland and Urban areas appeared to be the land-use classes with the lowest relative functional

richness compared to their paired potential natural vegetation (Fig. 2): the four lowest values were found
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for Cropland in PA8 Ural Mountains & West Eurasian Taiga Forests (0.08), for Cropland and Urban areas
in PAQGreat Britain, Ireland & Faroe Islands (both 0.1) and for Urban areas in PA18 Aegean Sea & East
Mediterranean Mixed Forests (0.1). In four cases, the relative functional richness was above 1: for Pasture
and rangeland in PA18 Aegean Sea & East Mediterranean Mixed Forests (1.5), for Urban areas in PA20
Balearic Sea & West Mediterranean Mixed Forests (1.4), and for Planted forests and Pasture and

rangeland in PA16 Pontic Steppe Grasslands (1.2 and 1.12).

Variation among land-use classes

Averaging the relative functional richness values per land-use class across bioregions (Table 2), we found
the lowest weighted mean for Cropland and the highest one for Pasture and rangeland. Cropland and
Pasture and rangeland were also the categories with the lowest minimum value and the highest maximum
value, respectively. Mosaic showed the most heterogeneous distribution of values of relative functional

richness across bioregions.

Table 2 Mean, minimum, maximum and standard deviation of relative functional diversity values across bioregions.
The alphanumeric codes in brackets correspond to the bioregion where the minimum/maximum was found.

Land-use . Weighted o ] Standard
Metric Minimum Maximum o
class mean deviation

Relative functional richness 0.38 0.10 (PA9) 1.44 (PA20) 0.43
Urban areas

Relative functional evenness 1.12 0.98 (PA14) 1.36 (PA18) 0.12

Relative functional divergence 1.01 0.81 (PA20) 1.36 (PA9) 0.18

Relative functional richness 0.32 0.08 (PA8) 0.79 (PA16) 0.25
Cropland ] .

Relative functional evenness 1.02 0.95 (PA8) 1.10 (PA10) 0.04

Relative functional divergence 0.95 0.84 (PA18) 1.21 (PA9) 0.10
Pasture and Relative functional richness 0.46 0.11 (PA9) 1.52 (PA18) 0.45
Rangeland Relative functional evenness 1.03 0.85 (PA16) 1.25 (PA18) 0.10

Relative functional divergence 0.97 0.82 (PA18) 1.21 (PA9) 0.11
Mosal Relative functional richness 0.39 0.13 (PA9) 0.80 (PA18) 0.24

osaic

Relative functional evenness 1.08 0.95 (PA13) 1.11 (PA9) 0.05

Relative functional divergence 1.02 0.83 (PA15) 1.34 (PA16) 0.17

Relative functional richness 0.37 0.12 (PA9) 1.25 (PA16) 0.35
Planted forest

Relative functional evenness 1.05 0.76 (PA16) 1.38 (PA20) 0.16

Relative functional divergence 0.96 0.88 (PA8) 1.26 (PA20) 0.10
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Cropland had the lowest weighted mean also for relative functional divergence and relative functional
evenness. Relative functional divergence and relative functional divergence showed the highest weighted
mean, respectively, in Mosaic and in Urban areas. The highest variation in terms of impact on functional
evenness was found for Planted forest (the values are the most heterogeneous across bioregions, Fig. 2).
We found the opposite for Mosaic, negative and with similar value of functional evenness in all bioregions,

except PA13 Alps & Po Basin Mixed Forests.

Variation among bioregions

Among bioregions (Fig. 3), PA9, being Great Britain, Ireland & Faroe Islands showed the most
homogeneous data and the lowest values of relative functional richness for all land-use classes, except
Cropland, which was minimum in PA8 Ural Mountains & West Eurasian Taiga Forests. At the same time,
PA9 and PA8 depicted the highest values of relative functional divergence in various land-use classes:

PA9in Mosaic, Pasture and Rangeland, and Urban Areas and PA8 in Cropland and Planted forests.

In general, PA16, being Pontic Steppe Grasslands and PA20 Balearic Sea & West Mediterranean Mixed

Forests showed the highest values of relative functional richness.

Contrary to most bioregions and for a given land-use category, PA16 being Pontic Steppe Grasslands,
showed high relative functional richness/divergence and low relative functional evenness compared to
other bioregions for the same land use. It is important to mention that this bioregion had p-values higher
than 0.05 at the Wilcoxon test for most land uses (Fig. 3 and Fig. S12.1-512.2 in the supplementary

materials), which is not the case with the other bioregions.

The data for PA8 Ural Mountains & West Eurasian Taiga Forests were much more spread than in other
bioregions for relative functional richness, but not for relative functional evenness and divergence (Fig. 3,

S12.1,812.2).
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of Wilcoxon test: ***: p-value < 0.001, **: 0.001 < p-value < 0.05, *: 0.05 < p-value < 0.1, no *: p-value > 0.1.
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4. Discussion

We found strong evidence that anthropogenic land use leads to a reduction in functional richness and
divergence, while simultaneously promoting a slight increase in functional evenness. This was true across
most of the bioregions we considered, and especially pronounced for functional richness. Notably, our
study makes a significant step forward as, for the first time, vegetation plots from anthropogenic land were
paired with vegetation plots from natural habitats sharing otherwise similar environmental conditions,
ensuring a standardized evaluation of the effects of land use on different aspects of the functional diversity
of plant communities across the entire extent of Europe. Our examination of the regionalized effects of

land-use impacts on plant diversity focused specifically on functional richness, evenness, and divergence.

Our results confirm the results of (Scherer, van Baren, and van Bodegom 2020), who applied a similar
approach across Germany as a whole and also found a decrease in functional richness but an increase
in functional evenness in response to human land uses. Specifically, habitat filtering and disturbance -
such as those caused by human land use have been identified as potential determinants reducing
functional richness (Pakeman 2011; Janecek et al. 2013): functional richness is related to taxonomic
richness and does not considers abundance (Villéger, Mason, and Mouillot 2008; Laliberté et al. 2010),
as aresult, the less natural and species-rich a habitat, the lower the functional richness. In parallel, habitat
filtering and disturbance have been found to promote functional evenness. In plant communities subject
to high levels of disturbance, species exhibit a broader distribution along functional trait gradients with
similar abundances, reducing functional space available for redundancy and competition (Mouchet et al.
2010; Pakeman 2011). Regarding plant functional divergence, the response to human pressure is not

clear yet (Pakeman 2011).

Our findings also suggest that the variation of the impact of human land uses on plant functional diversity,
relative to natural habitats, is smaller among land-use classes than among bioregions. This
biogeographical pattern may arise from spatial variation in environmental conditions and management

practices. Environmental conditions also act as habitat filters on trait composition within the community of
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co-occurring plants (Diaz, Cabido, and Casanoves 1998; Cheng et al. 2022; Wallis et al. 2021; Joswig et
al. 2022) and for this reason a Principal Component Analysis (PCA) was performed in order to minimize
the influence of different climatic and soil conditions when pairing the plots. However, this influence cannot
be entirely removed when pairing vegetation plots with natural habitats used as a baseline or reference
here. Therefore, the natural vegetation of different bioregions can exhibit dissimilarities in terms of
functional diversity, and this is reflected in the relative values of functional diversity. Additionally,
management practices and intensity within the land use classes we considered can vary across
bioregions and can be responsible for modulating the impacts on functional diversity (Laliberté et al. 2010;
Janecek et al. 2013; Van Meerbeek, Helsen, and Hermy 2014). We could not consider management
intensity in this study, mainly because most of the available land-use and land-cover maps are based on
remote sensing products, which still lack this level of detail at the continental extent of our analysis and for
sufficiently long time series. It would be valuable to include this aspect in upcoming studies to provide a

more comprehensive assessment (Dullinger et al. 2021).

Our findings regarding the impacts of human land uses on plant functional diversity bear notable
implications under future global change. Species community composition is expected to change in
response to factors such as climate change, eutrophication, and habitat fragmentation; predictive models
have found that alterations in the relative abundance of species within their natural habitat and the
evolution of traits function as mechanisms for resilience (Guerin et al. 2014). Moreover, the threat of
invasive alien species amplified by global trade and their impacts on ecosystem functioning depends on
the functional diversity and abundance of native species (Kaushik et al. 2022; Tordoni et al. 2020). For
instance, a decrease in functional richness and divergence accompanied by an increase in functional
evenness following human pressures on the environment, as we report in our study, may change the
tolerance or resistance of the native community to invasion risks by alien species. Shifts in functional
diversity caused by anthropogenic land use may also exacerbate the response of plant community to
nitrogen deposition, especially important in Europe and currently promoting broadly distributed, nitrogen-

demanding plants (Staude et al. 2020). Given the observed patterns in response to human pressures on
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the ecosystems, we anticipate that under ongoing global changes, such as land use change, climate

change and biological invasions, there will be continued alterations in plant functional diversity dynamics.

To evaluate the effects of human land use on vascular plant diversity comprehensively, we had to face a
few shortcomings. Firstly, data coverage was heterogeneous across bioregions and land-use classes.
Particularly in southern Europe and the Mediterranean region, limited data availability for certain land
covers, like natural Grassland and natural Shrubland reduced the number of vegetation plots we could
pair between natural habitats and land-use classes. The extensive history of land management in Eurcpe,
especially in Mediterranean regions, further constrained the availability of natural habitats for pairing plots
(Irene Martin-Forés 2017; Francesco Maria Sabatini et al. 2018; Ellis et al. 2021). Secondly, the absence
of a consistent spatial data source for land-use classification led us to combine multiple maps, introducing
uncertainty. ldentifying a reliable source distinguishing between natural and managed forests at a
meaningful spatiotemporal resolution was the main challenge. Despite advancements in remote sensing,
distinguishing unmanaged from managed forests remains difficult (Hirschmugl et al. 2017). A third source
of uncertainty derived from the imprecise spatial location of the vegetation plots and their uneven level of
completeness and descends from three factors: (i) the mismatch between the resolution of the land-use
map and the size of the vegetation plots (53 m2 on average but with much higher or not available values
for part of the plots, see Fig. S14.1), which could lead to incorrect land-use assignments; (i) the intrinsic
uncertainty of the land-use/-cover maps; and (iii) the location uncertainty of the vegetation plots (attribute
available in EVA, Fig $14.2 in the supplementary materials), with which we dealt by excluding plots with
high location uncertainty and ranking the others based on the homogeneity of the land use/cover within

the uncertainty radius (see sec. 2.1).

In our analysis, we considered numerous traits thanks to the TRY gap-filling procedure using imputed data
has proved efficient compared to a reduced species set (Scherer et al. 2023). Yet, achieving an even
representativeness of the functions expressed through the traits presents some difficulty. To address this,
enhancing belowground trait coverage is advisable (Carmona et al. 2021). Exploring solutions for trait
distribution gaps or scaling up with methods like model predictions or remote sensing is worth

investigating (Boonman et al. 2022; Schneider et al. 2017).
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As an outlook, an improvement in the ecological relevance of the assessment and an in-depth
comprehension of the effect of land-use change from natural to human-modified could be achieved by
considering not only plants’ traits but also traits of other taxonomic groups. This advancement would make
it possible to trace the effect along the trophic chain and on species interactions, given the essential

interplay between them (Haddad et al. 2009; Rigal, Dakos, and Devictor 2023; Windsor et al. 2023).

In conclusion, our work makes a noteworthy contribution to advancing the understanding of the complex
relationship between human land use and functional diversity. This study sheds more light on the nuanced
impact of human land modification on functional richness, evenness, and divergence, through a
regionalized approach. The methodology employed in this study not only enhances our understanding of
this intricate relationship but also introduces a fresh perspective on connecting localized studies with

broader regional implications.
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