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Abstract
Climate change is causing widespread land surface greening in spring1–4, but the impacts of
anthropogenic air pollution on these changes remain poorly understood. Using global ground and
satellite observations of fine particulate matter ≤ 2.5 μm (PM2.5) from 2000 to 2020, here we show that
PM2.5 concentration offsets global spring greening as indicated by significant decreases in the
normalized difference vegetation index (NDVI), leaf area index (LAI), and solar-induced fluorescence (SIF).
Our experiments and meta-analyses involving up to 104 worldwide species reveal that pollution-induced
greenness declines are primarily due to physical blockage and damage to leaf stomata. However, factors
such as increased diffuse radiation and nitrogen deposition may occasionally enhance greening.
Moreover, we observed significant variations among state-of-art terrestrial ecosystem models in
replicating these greenness declines, with incorrect representation of PM2.5 effects on vegetation
greening for roughly one third of global land coverage, further underscoring the importance of empirical
data for benchmarking these models. This study reveals the negative feedback between anthropogenic
air pollution and terrestrial carbon uptake, emphasizing the critical need for major polluting countries to
mitigate air pollution and CO2 emissions.

Main
The ongoing climate change is causing significant changes to the terrestrial surface of the Earth5. As
atmospheric CO2 concentrations rise, understanding the impact of climate change on photosynthetic

activity becomes critical to comprehending and predicting the future carbon cycle6–8. Climate warming
has increased the carbon uptake potential of terrestrial ecosystems9 by increasing plant activity through
elevated CO2 levels and nitrogen deposition1,2 and through inducing earlier leaf onset in spring10–12.

Greening of the terrestrial surface has therefore been observed worldwide over recent decades13.
However, there are still poorly understood mechanisms that might counteract global greening trends and
increases in plant photosynthesis, such as air pollution, that pose significant challenges to predicting
future vegetation activity and carbon uptake. One of the major challenges with air pollution is the large
increase in the emissions of fine particulate matter (PM2.5), particularly due to rapidly growing

cities with unprecedented urbanization14,15 as well as increased wildfires globally16,17. PM2.5 pollution

adversely affects human health18, but its effects on ecosystems, particularly on land surface greening
and carbon uptake in spring, are not well understood.

While it is well established that human activities have a significant impact on ecosystem processes19, the
extent to which PM2.5 pollutants emitted globally over the past two decades have affected vegetation
activity remains unknown. Due to its properties, including scattering mass efficiency and optical
hygroscopicity, PM2.5 pollution can alter the propagation of visible light and significantly reduce

atmospheric visibility17, making it likely to have a strong effect on spring greening and vegetation
activity through both biogeophysical and biochemical paths. To investigate this, we used a large-scale
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monitoring network that collected ground-sourced observations of PM2.5 emissions at 3580 sites, as well

as satellite records spanning 2000-202020 (Extended data Fig. 1 and Supplementary Table 1 and Fig. 1).
We combined this data with moderate-resolution satellite data on the normalized difference vegetation
index (NDVI), leaf area index (LAI)21, solar-induced fluorescence (SIF)22, and climate to quantify the
effects of PM2.5 emissions on spring greening and vegetation activity. We then studied the underlying
mechanisms of the observed trends using experimental data on leaf morphology from 15 tree species
(Supplementary Table 2), meta-analytical data from 104 worldwide species (Supplementary Table 3), and
global flux measurements from 187 sites representing various plant functional types and ecosystem
characteristics (Supplementary Table 4). Lastly, we examined the PM2.5 effects on spring productivity
using 16 state-of-art terrestrial ecosystem models (Supplementary Table 5).

Results
We tested for the effects of PM2.5 pollution and climate change on satellite-observed spring greenness
(NDVI, LAI, and SIF) through rigorous analysis of ground and satellite data (Supplementary Materials and
Methods). Before that, we first examined and minimized the attenuation effects of PM2.5 pollution on the
greenness signals of satellite observation (Supplementary Figs. 2 and 3). For the global scale, spatially
explicit results for NDVI, LAI and SIF using satellite-based PM2.5 pollution were provided (Fig. 1 B-D).
PM2.5 pollution led to reduced spring greening in 59.7-64.9% of the studied area, with 12.2-14.3% being
significant. In comparison, PM2.5 pollution led to increased spring greening in ~38% of regions (e.g., west
Australia, North Africa, high lands in the northern Europe), with only ~4% being statistically significant.
Consistent results were observed for the USA, Europe and China where ground monitoring networks have
been well established. The ground-sourced observations demonstrate that PM2.5 pollution were
associated with decreased spring greening, with median standard sensitives for NDVI, LAI and SIF of
-0.33, -0.36 and -0.38, respectively (Fig. 1 A).

We further conducted analyses to separate the greening effects of CO2, temperature, precipitation, vapor
pressure deficit (VPD), and PM2.5 (Fig. 1 E-F). Stepwise regression analysis confirmed the dominant
negative impacts of PM2.5 pollution on spring greening at site and global scales, the extent of which was
comparable to the inhibiting effects of vapor pressure deficit (Extended Data Figs. 2 and 3). Given the
potential multicollinearity of driving factors, we also used partial correlation and ridge regression
analyses and found consistently and dominantly negative effects of PM2.5 pollution on spring greening
(Extended Data Fig. 4 and Supplementary Fig. 4). Overall, these findings reveal that PM2.5 pollution
inhibits photosynthesis and offsets the ongoing trends in land surface greening globally.

To study the underlying mechanisms that drive the observed reductions in spring vegetation activity in
response to PM2.5 pollution, we conducted experiments on the leaf morphology of 15 widely-distributed
tree species. We found that PM2.5 can adhere to the leaf surface to varying degrees (Supplementary Fig.
5), potentially causing blockages and damage to leaf stomata, as observed through scanning electron
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microscopy (Fig. 2A1-A15). To further investigate the effects of PM2.5 on gas exchange and
photosynthesis, including stomatal size, density and conductance, transpiration rate, chlorophyll content,
maximum CO2 assimilation rate, potential photosynthetic capacity (Fv/Fm), and photosynthetic rate, we
conducted a meta-analysis based on 233 records of both experimental and observational results across
104 plant species worldwide (Fig. 2B). Overall, PM2.5 exposure caused substantial reductions in stomatal
size (−0.15, P < 0.01), stomatal conductance (−0.18, P < 0.01), chlorophyll content (−0.17, P < 0.01),
transpiration rate (−0.27, P < 0.01), and photosynthetic rate (−0.18, P < 0.01). Similar results were found
when separately analyzing the experimental and observational data (Supplementary Fig. 6). Notably, the
significant decline in stomatal conductance and photosynthetic rate was identified as the key link
between plant growth and PM2.5 pollution. Further analysis of the effects of PM2.5 on stomatal
conductance using global flux measurements showed consistent results with the meta-analysis,
indicating that increased PM2.5 caused significant (P < 0.05) decreases in stomatal conductance and
vegetation productivity accordingly (Fig. 2C and Supplementary Figs. 7 and 8). In line with flux
measurements, PM2.5 pollution could lower canopy stomatal conductance and SIF based on gridded
data, supporting that PM2.5 effects on greening trends are linked with the gas exchange between air and
the interior of leaf (Supplementary Fig. 9).

To gain deeper insights into the underlying mechanisms that drive the correlation between PM2.5

pollution and spring greening, we explored potential biogeophysical and biogeochemical paths for the
correlation (Fig. 3). We found that elevated levels of PM2.5 greatly reduced the amount of
photosynthetically active radiation (PAR), with 64.7% of the grids showing a negative PM2.5-PAR
correlation (16.2% of which were significant). In line with gridded data analysis, flux measurements
confirmed the negative impacts of PM2.5 on PAR (Supplementary Fig. 10). This adverse effect on
photosynthesis led to substantial declines in the maximum rate of carboxylation (VCmax), a key indicator
of leaf photosynthetic capacity. This was evidenced by 64.1% negative correlations (12.3% significant)
compared to only 35.9% positive correlations (3.6% significant). Since VCmax generally showed a positive
correlation with SIF (62.0% positive vs. 1.2% negative, P < 0.05), higher PM2.5 levels counteracted the
process of spring greening (Fig. 3A). Similar trends were observed for LAI. Nonetheless, certain regions
exhibited increased spring greening with higher PM2.5. In these areas, PM2.5 raised the fraction of diffuse
radiation (PARdiff/PAR) and nitrogen deposition (Ndeposition). Our structural equation models supported the
hypothesis that PM2.5 decreased radiation, thereby reducing VCmax and LAI, but increased the fraction of
diffuse radiation and Ndeposition (Fig. 3 C-H). Increased PM2.5 concentration could also lower the ambient
ozone (O3) levels in spring due to lower atmospheric radiation, potentially undermining vegetation
photosynthetic activities (Extended data Fig. 5). We also tested the impact of PM2.5 on air temperature
and found no dominant relationship (Supplementary Fig. 11), suggesting PM2.5 pollution effect was not
determined by air temperature regulation.

In a last step, we used the output from the TRENDY project to test the potential of 16 state-of-art
terrestrial ecosystem models to reproduce the effects of PM2.5 on gross primary productivity (GPP), a
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productivity-based indicator of greening (Supplementary Table 5). Overall, the ecosystem models
captured the widespread and negative effects of PM2.5 (Fig. 4A and Supplementary Fig. 12). The
standard sensitivity of GPP to PM2.5 across the models was -0.15 ± 0.05, which is comparable with the
inhibiting effects of VPD (Fig. 4B). However, the large biases of PM2.5 effects, indicated by relatively high
standard deviation of PM2.5 sensitivity among models, were detected in the central of Europe and the
eastern of America (Fig. 4C), suggesting the large inconsistency and limitation of model projections.
Pixel-to-pixel comparison of PM2.5 sensitivities between satellite observations and model projections
suggests an incorrect representation of PM2.5 effects on vegetation greening in nearly 34% of areas (Fig.
4D), highlighting the need for incorporating PM2.5 effects into future model improvement.

Discussion
This study discovered and quantified the adverse effects of PM2.5 air pollution on global spring greening
trends over the past two decades. The findings reveal that ambient PM2.5 pollution has had a negative
impact on spring greenness and carbon uptake, as it has offset global change-induced greening. These
results deepen our understanding of the impacts of human activities, including economic and social
developments, on regional ecosystem functioning and its consequences for climate change. Given that
high concentrations of PM2.5 are closely linked with industrialization and urbanization16,17, these results

have important implications for the disparities across population and income groups23 and emphasize
the need for urgent action to reduce air pollution and greenhouse gas emissions in order to mitigate the
negative impacts of human activity on the environment.

We identified specific mechanisms that explain how PM2.5 contamination leads to a decrease in spring
greening. We suggest that the key factor through which PM2.5 affects photosynthesis appears to be the

regulation of leaf stomata24,25. High concentrations of PM2.5 can adsorb harmful substances such as

SO4
2-, NO3-, and NH4+, which can be detrimental to leaf growth26,27. Our results are supported by global

flux data, an analysis of leaf morphology changes in 15 tree species, and a meta-analysis on 104
worldwide species which showed that PM2.5 exposure significantly decreases stomatal conductance and
photosynthetic rates. We also observed a significant decrease in the maximum rate of carboxylation,
which is the single most important driver of leaf photosynthetic capacity, and which explains the declines
in spring greenness and photosynthesis under high air pollution. These findings are consistent with the
reported role of stomatal conductance in regulating photosynthesis28.

We also identified additional factors contributing to the decline in spring greening due to PM2.5 pollution.
The significant reduction in radiation is likely to further contribute to the decreased greening observed in
our study29,30. Lower radiation is closely tied to declines in the capacity for photosynthesis, represented
here by the maximum rate of carboxylation (VCmax), leading to declines in LAI and SIF. Our results also
indicated that PM2.5 pollution contributed to enhanced greening in several regions. This positive effect is
likely due to the increased fraction of diffuse radiation, elevated nitrogen deposition, and reduced risk of
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O3 exposure, which can boost plant photosynthesis and carbon storage31,32. For instance, nitrogen oxides

(NOx) associated with PM2.5 pollution can promote nitrogen deposition33. Ecosystem models projected
an overall negative correlation between PM2.5 and spring Gross Primary Productivity (GPP), confirming
the widespread adverse effects of PM2.5 emissions on spring greening. Despite these findings, the
limitations in accurately reproducing spatial patterns in PM2.5 effects highlight the need for a more
accurate representation of the impacts of air pollution in terrestrial ecosystem models.

In summary, our research forecasts that if air pollution, particularly PM2.5, is not adequately managed, it
will impede spring greening in the future, countering the current trends of global greening. This is
especially critical for regions with high levels of PM2.5 emissions, where immediate action to reduce air
pollution is necessary. The effectiveness of these measures will be evident in the mitigation of the
negative impact on spring greening, an essential factor in reducing CO2 emissions through the
photosynthesis of terrestrial ecosystems. Our results have important implications for policy design and
implementation, as they highlight the synergies and trade-offs among various policies aimed at achieving
sustainable development, especially in the context of social equity and climate change. Furthermore, our
study underscores the impacts of aerosols, particularly PM2.5, on climate change and highlights the

uncertainties associated with future warming34,35. The detrimental influence of atmospheric pollution on
spring greening reveals a critical feedback mechanism through which anthropogenic pollution may
reduce the terrestrial carbon sink, further accelerating climate change. This underscores the critical
importance of promoting sustainable development on a global scale.
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Figure 1

Spring greening sensitivity to PM2.5 air pollution from site to global scales. A, The standard sensitivity
(Supplementary Materials and Methods) of spring greening indicators (i.e., NDVI, LAI, and SIF) to ground-
observed PM2.5 pollution for the globe (upper-left boxplot) and regions (i.e., Europe, USA, and China). The
crosses and points with colors indicate local level of PM2.5 pollution. B-D, The standard sensitivity of
spring greening indicators (i.e., B: NDVI, C: LAI, D: SIF) to satellite-observed PM2.5 pollution from 2000 to
2020. The right panels represent variations of standard sensitivity along with latitude gradients. E, F, The
standard sensitivities of spring greening indicators to driving factors, i.e., CO2, temperature, precipitation,
VPD, and PM2.5 pollution, at site (E) and global (F) scales.
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Figure 2

Observational evidence of the impacts of PM2.5 pollution on leaf morphology, gas exchange and
photosynthesis. A1-A15, Leaf morphology of 15 tree species exposed to PM2.5 pollution (Supplementary
Table 2). The red circle highlights the PM2.5 particles adhering to the leaf surface, potentially causing
blockage and damage to leaf stomata. B, The effect of PM2.5 on plant physiological indicators related to
gas exchange and photosynthesis (Supplementary Table 3). Amax represents the maximum rate of
carbon assimilation, and Fv/Fm represents the maximum quantum efficiency of Photosystem Π. The
values in brackets represent the mean effect size (left) and number of species (right) in each estimate. P-
values are shown when the effect size of a variable is significant (P < 0.05). C, The relationship between
the monthly anomalies of PM2.5 and stomatal conductance derived from global flux measurements
(Supplementary Table 4). The subplot shows the relationship between anomalies of stomatal
conductance and gross primary productivity (GPP).
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Figure 3

Potential mechanisms underlying the correlation between spring photosynthesis (i.e., SIF) and PM2.5

pollution. A, Correlation of negative effects of PM2.5 emissions. The maximum rate of carboxylation
(VCmax), photosynthetically active radiation (PAR), and LAI were considered to link PM2.5 and SIF. B,
Correlation of positive effects of PM2.5 emissions. The fraction of diffuse radiation (PARdiff/PAR) and
nitrogen deposition (Ndeposition) were considered to link PM2.5 and SIF. C-H, Structural equation model
describing the biogeophysical and biogeochemical relationships between PM2.5 emissions and SIF for
negative (C-E) and positive paths (F-H) based on three levels of AQI-based PM2.5 (Supplementary
Materials and Methods).



Page 15/15

Figure 4

Effects of PM2.5 pollution on spring productivity stimulated by state-of-the-art terrestrial ecosystem
models. A, C, The mean (A) and standard deviation (SD) (C) of standard sensitivity of spring gross
primary productivity (GPP), generated by 16 ecosystem models (Table S5), to PM2.5 pollution. B, The
standard sensitivity of spring GPP to driving factors, including CO2, temperature, precipitation, vapor
pressure deficit (VPD), and PM2.5. D, The consistency of PM2.5 effect in direction between model-
(Senmodel) and satellite-observation-based (Senobs) analyses at four levels of AQI-based PM2.5.
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