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THE TWO-PHASE PROBLEM FOR HARMONIC MEASURE IN VMO AND

THE CHORD-ARC CONDITION

XAVIER TOLSA AND TATIANA TORO

Abstract. Let Ω+ ⊂ R
n+1 be a bounded δ-Reifenberg flat domain, with δ > 0 small enough,

possibly with locally infinite surface measure. Assume also that Ω− = R
n+1 \ Ω+ is an NTA

domain as well and denote by ω+ and ω− the respective harmonic measures of Ω+ and Ω− with

poles p± ∈ Ω±. In this paper we show that the condition that log
dω−

dω+
∈ VMO(ω+) is equivalent

to Ω+ being a chord-arc domain with inner unit normal belonging to VMO(Hn|∂Ω+ ).

1. Introduction

In this paper we study a two-phase problem for harmonic measure. In this type of problems one
considers two disjoint domains Ω+,Ω− ⊂ R

n+1 whose boundaries have non-empty intersection, and
whose respective harmonic measures ω+, ω− are usually mutually absolutely continuous in some

subset of ∂Ω+∩∂Ω−. The objective is to relate the analytic properties of the density dω−

dω+ |∂Ω+∩∂Ω−

to the geometric properties of ∂Ω+∩∂Ω−. For example, the works [AMT1], [AMTV] show that if
ω+ and ω− are mutually absolutely continuous in some subset E ⊂ ∂Ω+∩∂Ω−, then the measures
ω+|E and ω−|E are n-rectifiable measures, that is, they are concentrated in an n-rectifiable subset
of E and they are absolutely continuous with respect to the Hausdorff n-dimensional measure
Hn. Recall that a set F ⊂ R

d is called n-rectifiable if there are Lipschitz maps fi : R
n → R

d,
i = 1, 2, . . ., such that

(1.1) Hn
(
F \

⋃
i fi(R

n)
)
= 0.

See [KPT] for a previous partial related result where Ω+ and Ω− are assumed to be complementary
NTA domains (see Section 2.3 for the definition of NTA domain), and [AM] for a related work
involving elliptic measure.

In other works of more quantitative nature, besides assuming that Ω+ and Ω− are complemen-

tary NTA domains, one asks also some quantitative condition about the density dω−

dω+ . For example,

in [KT3] the authors prove (among other results) that if log dω−

dω+ ∈ VMO(ω+) and moreover Ω+

is δ-Reifenberg flat for some δ > 0 small enough, then Ω+ is vanishing Reifenberg flat (see again
Section 2.3 for the notions of δ-Reifenberg flatness and vanishing Reifenberg flatness). Later on,

Engelstein [En] showed that if one strengthens the VMO condition on ω+ by asking log dω−

dω+ ∈ Cα

for some α > 0 (still under the δ-Reifenberg flat assumption) then the inner unit normal N of
Ω+ belongs to Cα and Ω+ is a C1+α domain. On the other hand, in [AMT2] it is shown that
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the condition ω− ∈ A∞(ω+) is equivalent to the fact that Ω+ and Ω− have joint big pieces of
chord-arc subdomains. See Section 2.3 for the precise definition. See also [BH] for a related result

involving the conditions log dω+

dHn|
∂Ω+

∈ VMO(Hn|∂Ω+) and log dω−

dHn|
∂Ω+

∈ VMO(Hn|∂Ω+); and see

the papers [BET1] and [BET2] for results about the structure of the singular set of the boundary

under the assumption that log dω−

dω+ belongs either to VMO(ω+) or to Cα.
In connection with the precise results that we obtain in this work, the following theorem of

Prats and the first author of this paper is particularly relevant.

Theorem A ([PT]). Let Ω+ ⊂ R
n+1 be a bounded NTA domain and let Ω− = R

n+1 \ Ω+ be an
NTA domain as well. Denote by ω+ and ω− the respective harmonic measures with poles p+ ∈ Ω+

and p− ∈ Ω−. Suppose that Ω+ is a δ-Reifenberg flat domain, with δ > 0 small enough. Then the
following conditions are equivalent:

(a) ω+ and ω− are mutually absolutely continuous and log
dω−

dω+
∈ VMO(ω+).

(b) Ω+ is vanishing Reifenberg flat, Ω+ and Ω− have joint big pieces of chord-arc subdomains,
and

(1.2) lim
ρ→0

sup
r(B)≤ρ

−

ˆ

B
|N −NB | dω

+ = 0,

where N is the inner unit normal to ∂Ω+ and NB is the unit normal to the n-plane LB

pointing to Ω+ and minimizing

(1.3) max
{

sup
y∈∂Ω+∩B

dist(y, LB), sup
y∈LB∩B

dist(y, ∂Ω+)
}
.

Notice that the condition (b) above provides a geometric characterization of the analytic con-

dition log
dω−

dω+
∈ VMO(ω+), under the assumption that Ω+ is a δ-Reifenberg flat domain, with

δ > 0 small enough. Remark that the Reifenberg flatness condition on the domain is necessary in
the theorem above. This can be easily seen by taking a suitable smooth truncation of the cone
Ω+ = {(x1, x2, x3, x4) ∈ R

4 : x21 + x22 < x23 + x24}, for which the harmonic measures ω+ and ω−

with pole at ∞ coincide.
The main result of the current paper is the following.

Theorem 1.1. Let Ω+ ⊂ R
n+1 be a bounded NTA domain and let Ω− = R

n+1 \ Ω+ be an NTA
domain as well. Denote by ω+ and ω− the respective harmonic measures with poles p+ ∈ Ω+ and
p− ∈ Ω−. Suppose that Ω+ is a δ-Reifenberg flat domain, with δ > 0 small enough. Then the
conditions (a) and (b) in Theorem A are equivalent to the following:

(c) Ω+ and Ω− have joint big pieces of chord-arc subdomains and (1.2) holds.
(d) Ω+ is a chord-arc domain and the inner unit normal N to ∂Ω+ belongs to VMO(Hn|∂Ω+).

Recall that a chord-arc domain in R
n+1 is an NTA domain with n-AD regular boundary (see

(2.1)). It is trivial that (b) from Theorem A implies (c). On the other hand, the fact that the
condition (d) above implies (a) from Theorem A is essentially known. See Section 3.1 for more
details. So the main novelty lies in the fact that (c) implies (d).

Notice that neither the assumptions in Theorem 1.1 nor the conditions (a) and (b) in Theorem A
contain the fact the surface measure Hn|∂Ω+ is locally finite. So the conclusion that Ω+ is chord-
arc, and thus with locally finite surface measure may appear rather surprising at first glance.
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Indeed, this result contrasts with the fact that, as shown in [AMT2], there are two-sided NTA
domains Ω± with non-σ-finite surface measure such that ω− ∈ A∞(ω+).

It is worth comparing the results from Theorems A and 1.1 with previous results obtained by
Kenig and the second author of this paper in connection with the one-phase problem for harmonic
measure in chord-arc domains. By combining some of the results from [KT1], [KT2], [KT4], one
gets the following.

Theorem B. Let Ω ⊂ R
n+1 be a bounded chord-arc domain which is δ-Reifenberg flat, with δ > 0

small enough. Denote by ω the harmonic measure in Ω with pole p ∈ Ω and write σ = Hn|∂Ω.
Then the following conditions are equivalent:

(i) log
dω

dσ
∈ VMO(σ).

(ii) Ω is vanishing Reifenberg flat and the inner normal N to ∂Ω belongs to VMO(σ).
(iii) The inner normal N to ∂Ω exists σ-a.e. and it belongs to VMO(σ).

Notice the analogies between the conditions (a), (b), (c) from Theorems A and 1.1 with the
preceding conditions (i), (ii), (iii). In fact, in view of these results, it is natural to ask if the
conditions (a), (b), (c), (d) from Theorems A and 1.1 are equivalent to the fact that the inner
normal N to ∂Ω+ (which exists ω+-a.e.) belongs to VMO(ω+) together with the vanishing
Reifenberg flatness of Ω+. Indeed, we remark that the condition (1.2) implies that N ∈ VMO(ω+).
For the moment, the converse implication is an open problem.

To prove the main implication of Theorem 1.1, namely that Ω+ is a chord-arc domain with
N ∈ VMO(σ) if (c) holds, we will use a geometric corona decomposition which will allow us to
estimate the surface measure Hn|∂Ω+ . We will split some dyadic lattice of “cubes” from ∂Ω+ into
trees, so that, in each tree, ∂Ω+ is well approximated by a Lipschitz graph at the location and
scales of the cubes from the tree. A key step consists in showing that each tree does not have too
many stopping cubes (see (3.4) in Lemma 3.3).

2. Preliminaries

We denote by C or c some constants that may depend on the dimension and perhaps other
fixed parameters. Their value may change at different occurrences. On the contrary, constants
with subscripts, like C0, retain their values. For a, b ≥ 0, we write a . b if there is C > 0 such
that a ≤ Cb. We write a ≈ b to mean a . b . a. If we want to emphasize that the implicit
constant depends on some parameter η ∈ R, we write a ≈η b

2.1. Measures and rectifiability. All measures in this paper are assumed to be Borel measures.
A measure µ in R

d is called doubling if there is some constant C > 0 such that

µ(B(x, 2r)) ≤ C µ(B(x, r)) for all x ∈ suppµ.

The measure µ is called n-AD regular (or n-Ahlfors-David regular) if

(2.1) C−1rn ≤ µ(B(x, r)) ≤ Crn for all x ∈ suppµ and 0 < r ≤ diam(suppµ).

Note that n-AD regular measures are doubling. A set E ⊂ R
d is called n-AD regular if Hn|E is

n-AD regular. In case that µ satisfies the second inequality in (2.1), but not necessarily the first
one, we say that µ has n-polynomial growth. We write “C-doubling” or “C-n-AD regular” if we
wish to mention the constant C involved in the definitions.
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A set E ⊂ R
d is called n-rectifiable if there are Lipschitz maps fi : R

n → R
d such that

Hn
(
E \

⋃
i fi(R

n)
)
= 0.

Analogously, one says that a measure µ is n-rectifiable if there are Lipschitz maps fi : R
n → R

d,
i = 1, 2, . . ., such that

(2.2) µ
(
R
d \
⋃

i fi(R
n)
)
= 0,

and moreover µ is absolutely continuous with respect to Hn. An equivalent definition for rectifi-
ability of sets and measures is obtained if we replace Lipschitz images of Rn by possibly rotated
n-dimensional graphs of C1 functions.

A measure µ in R
d is called uniformly n-rectifiable (UR) if it is n-AD-regular and there exist

constants θ,M > 0 such that for all x ∈ suppµ and all 0 < r ≤ diam(suppµ) there is a Lipschitz
mapping g from the ball Bn(0, r) in R

n to R
d with Lip(g) ≤ M such that

µ(B(x, r) ∩ g(Bn(0, r))) ≥ θrn.

A set E is called uniformly n-rectifiable if the measure Hn|E is uniformly n-rectifiable. The
notion of uniform n-rectifiability is a quantitative version of n-rectifiability introduced by David
and Semmes (see [DS]). It is easy to check that uniform n-rectifiability implies n-rectifiability.

Given two doubling measures µ, ν in R
d with the same support, we write ν ∈ A∞(µ) if there

are constants δ, ε ∈ (0, 1) such that, for any ball B centered in suppµ and any Borel set E ⊂ B,
the following holds:

µ(E) ≥ δ µ(B) ⇒ ν(E) ≥ ε ν(B).

2.2. Harmonic measure. For a bounded domain Ω ⊂ R
n+1 and x ∈ Ω, one can construct the

harmonic measure ωx
Ω (see [He, p. 217], for example). In fact, for any continuous function f , the

Perron solution for the boundary function f is given by

Hf (x) =

ˆ

∂Ω
f(y) dωx

Ω(y),

Remark that constant functions are continuous and since H1(x) = 1, for any x ∈ Ω, we have that
ωx
Ω(∂Ω) = 1, for any x ∈ Ω.
Let E denote the fundamental solution for the Laplace equation in R

n+1, for n ≥ 2, so that
E(x) = cn |x|

1−n for n ≥ 2, cn > 0. The Newtonian potential of a measure µ ∈ M+(R
n+1) is

defined by

Uµ(x) = E ∗ µ(x),

and the Newtonian capacity of a compact set F ⊂ R
n+1 equals

Cap(F ) = sup
{
µ(F ) : µ ∈ M+(R

n+1), suppµ ⊂ F, ‖Uµ‖∞ ≤ 1
}
,

where M+(R
n+1) is the space of finite Borel measures from R

n+1.
The following result is standard. See [To1, Lemma 2.1] for example.

Lemma 2.1. Given n ≥ 2, let Ω ⊂ R
n+1 be open and let B be a closed ball centered at ∂Ω. Then

ωx
Ω(B) ≥ c(n)

Cap(14B \Ω)

r(B)n−1
for all x ∈ 1

4B ∩ Ω,

with c(n) > 0.
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A similar result holds in the case n = 1, involving logarithmic capacity instead of Newtonian
capacity.

2.3. NTA and Reifenberg flat domains. Given Ω ⊂ R
n+1 and C ≥ 2, we say that Ω satisfies

the C-Harnack chain condition if for every ρ > 0, k ≥ 1, and every pair of points x, y ∈ Ω with
dist(x, ∂Ω), dist(y, ∂Ω) ≥ ρ and |x − y| < 2kρ, there is a chain of open balls B1, . . . , Bm ⊂ Ω,
m ≤ C k, with x ∈ B1, y ∈ Bm, Bk ∩Bk+1 6= ∅ and C−1diam(Bk) ≤ dist(Bk, ∂Ω) ≤ C diam(Bk).
The chain of balls is called a Harnack chain. Note that if such a chain exists, then any positive
harmonic function u : Ω → R satisfies

u(x) ≈ u(y),

with the implicit constant depending on m and n. We say that Ω is a C-corkscrew domain if for
every ξ ∈ ∂Ω and r ∈ (0,diam(∂Ω)) there is a ball of radius r/C contained in B(ξ, r) ∩ Ω. If
B(x, r/C) ⊂ B(ξ, r) ∩ Ω, we call x a corkscrew point for the ball B(ξ, r). Finally, we say that
Ω is C-non-tangentially accessible (or C-NTA, or just NTA) if it satisfies the C-Harnack chain
condition and both Ω and R

n+1 \ Ω are C-corkscrew domains. We say that Ω is C-chord-arc if,
additionally, ∂Ω is C-n-AD-regular. Also, Ω is two-sided C-NTA if both Ω and Ωext := (Ω)c are
C-NTA.

NTA domains were introduced by Jerison and Kenig in [JK]. In that work, the behavior of
harmonic measure in this type of domains was studied in detail. Among other results, the authors
showed that harmonic measure is doubling in NTA domains, and its support coincides with the
whole boundary. They also proved that harmonic measure in these domains satisfies the following
important change of pole formula.

Theorem 2.2. Let n ≥ 1, Ω be a C-NTA domain in R
n+1 and let B be a ball centered in ∂Ω.

Let p1, p2 ∈ Ω be such that dist(pi, B ∩ ∂Ω) ≥ c−1
0 r(B) for i = 1, 2. Then, for any Borel set

E ⊂ B ∩ ∂Ω,

(2.3)
ωp1(E)

ωp1(B)
≈

ωp2(E)

ωp2(B)
,

with the implicit constant depending only on n, c0 and C.

For the proof, see Lemma 4.11 from [JK]. See also [MT] for an extension of this result to the
so-called uniform domains.

Given two NTA domains Ω+ ⊂ R
n+1 and Ω− = R

n+1\Ω+, we say that Ω+ and Ω− have joint big
pieces of chord-arc subdomains if for any ball B centered in ∂Ω+ with radius at most diam(∂Ω+)
there are two C-chord-arc domains Ωs

B ⊂ Ωs, with s = +,−, such that Hn(∂Ω+
B ∩ ∂Ω−

B ∩ B) &
r(B)n, uniformly on B.

Given a set E ⊂ R
n+1, x ∈ R

n+1, r > 0, and P an n-plane, we set

(2.4) DE(x, r, P ) = r−1max

{
sup

y∈E∩B(x,r)
dist(y, P ), sup

y∈P∩B(x,r)
dist(y,E)

}
.

We also define

(2.5) DE(x, r) = inf
P

DE(x, r, P ),

where the infimum is over all n-planes P . For a given ball B = B(x, r), we will also write DE(B)
instead of DE(x, r). Given δ,R > 0, the set E is (δ,R)-Reifenberg flat (or just δ-Reifenberg flat)
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if DE(x, r) < δ for all x ∈ E and 0 < r ≤ R, and it is vanishing Reifenberg flat if

lim
r→0

sup
x∈E

DE(x, r) = 0.

Let Ω ⊂ R
n+1 be an open set, and let 0 < δ < 1/2. We say that Ω is a (δ,R)-Reifenberg flat

domain (or just δ-Reifenberg flat) if it satisfies the following conditions:

(a) ∂Ω is (δ,R)-Reifenberg flat.
(b) For every x ∈ ∂Ω and 0 < r ≤ R, denote by P (x, r) an n-plane that minimizes DE(x, r).

Then one of the connected components of

B(x, r) ∩
{
x ∈ R

n+1 : dist(x, P (x, r)) ≥ 2δ r
}

is contained in Ω and the other is contained in R
n+1 \ Ω.

If, additionally, ∂Ω is vanishing Reifenberg flat, then Ω is said to be vanishing Reifenberg flat,
too. It is well known that if Ω is a δ-Reifenberg flat domain, with δ small enough, then it is also
an NTA domain (see [KT1]).

2.4. The space VMO. Given a Radon measure µ in R
n+1, f ∈ L1

loc(µ), and A ⊂ R
n+1, we write

mµ,A(f) = −

ˆ

A
f dµ =

1

µ(A)

ˆ

A
f dµ.

Assume µ to be doubling. We say that f ∈ VMO(µ) if

(2.6) lim
r→0

sup
x∈suppµ

−

ˆ

B(x,r)

∣∣f −mµ,B(x,r)(f)
∣∣ dµ = 0.

It is well known that the space VMO(µ) coincides with the closure of the set of bounded uniformly
continuous functions on suppµ in the BMO norm.

2.5. Dyadic lattices and densities. In [Ch] Christ introduced dyadic lattices for doubling
metric spaces. We state below a version of this result from Hytönen and Kairema [HK], in the
particular setting of ∂Ω+, which has the advantage that ∂Ω+ is covered by the family of cubes
of any given generation and avoids the problem of the possible existence of uncovered sets of
zero measure, as in [Ch]. The construction of David and Mattila in [DM], valid for non-doubling
measures in R

n+1, would also work in our context.

Theorem 2.3. Let Ω+ be as in Theorem 1.1. There exist a family D of Borel subsets of ∂Ω+

and constants 0 < r0 < 1, 0 < a1, C1 < ∞ such that D =
⋃

k∈ZDk with Dk = {Qi}i∈Ik , and the
following holds:

(a) For every k ∈ Z we have ∂Ω+ =
⋃

Q∈Dk
Q.

(b) For every k0 ≤ k1 and Qj ∈ Dkj for j ∈ {0, 1}, then either Q1 ⊂ Q0 or Q1 ∩Q0 = ∅.
(c) For each Q1 ∈ Dk1 and each k0 < k1 there exists a unique cube Q0 ∈ Dk0 such that

Q1 ⊂ Q0.

(d) For Q ∈ Dk there are zQ ∈ Q and balls B̃Q = B(zQ, a1r
k
0) and BQ = B(zQ, C1r

k
0) such

that B̃Q ∩ ∂Ω+ ⊂ Q ⊂ BQ.

We say that Q ∈ Dk is a dyadic cube of generation k, and write ℓ(Q) := 2C1r
k
0 . We call ℓ(Q)

the side length of Q. The point zQ in (d) is called the center of Q. For R ∈ D, we denote by D(R)
the family of the cubes Q ∈ D which are contained in R.
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We say that two cubes Q,S ∈ Dk (of the same generation) are neighbors, writing S ∈ N (Q),
if 2BQ ∩ 2BS 6= ∅ (notice that a cube from Dk is neighbor from itself). We write NDk :={⋃

S∈N (Q) S
}
Q∈Dk

and ND :=
⋃

k NDk. We say that P ∈ NDk is an extended cube of generation

k, and write ℓ(P ) := 2C1r
k
0 . Notice that P is a smeared cube formed by the union of the neighbors

of a given cube from D. We will apply many of our arguments on cubes to both the dyadic and

the extended cubes. We write D̂k = Dk ∪ NDk and D̂ = D ∪ND. We refer as cubes to both the
dyadic and the extended cubes.

We need also to introduce “dilations” of cubes. Given Q ∈ D̂k and Λ > 1, we write

ΛQ = {x ∈ ∂Ω+ : dist(x,Q) < (Λ− 1)ℓ(Q)}.

and ℓ(ΛQ) := 2C1(Λr0)
k. Obviously, we also define 1Q ≡ Q.

Let µ be a Radon measure in R
n+1. Given a ball B ⊂ R

n+1, we denote

(2.7) Θµ(B) =
µ(B)

r(B)n
.

So Θµ(B) is the n-dimensional density of µ on B.

3. Proof of Theorem 1.1

3.1. Proof of (d) ⇒ (a). The fact that Ω+ and Ω− are chord-arc domains ensures that ω± ∈
A∞(σ), for σ = Hn|∂Ω+ , by well known results of David and Jerison [DJ] or Semmes [Se]. Also,

since N ∈ VMO(σ), from (iii) ⇒ (i) in Theorem B, we infer that log
dω±

dσ
∈ VMO(σ). For any

ball B centered in ∂Ω+, writing

log
dω−

dω+
= log

dω−

dσ
− log

dω+

dσ
,

and denoting m±
B = −

´

B log dω±

dσ dσ, we get

−

ˆ

B

∣∣∣ log dω−

dω+
− (m−

B −m+
B)
∣∣∣ dω+ ≤ −

ˆ

B

∣∣∣ log dω−

dσ
−m−

B

∣∣∣ dω+ + −

ˆ

B

∣∣∣ log dω+

dσ
−m+

B

∣∣∣ dω+.

Since ω+ ∈ A∞(σ), it follows that dω+

dσ ∈ Bp(σ) for some p ∈ (1,∞) (i.e., it satisfies a reverse
Hölder inequality with exponent p). Then we write

−

ˆ

B

∣∣∣ log dω±

dσ
−m±

B

∣∣∣ dω+ =
σ(B)

ω+(B)
−

ˆ

B

∣∣∣ log dω±

dσ
−m±

B

∣∣∣ dω
+

dσ
dσ

≤
σ(B)

ω+(B)

(
−

ˆ

B

∣∣∣ log dω±

dσ
−m±

B

∣∣∣
p′

dσ

)1/p′ (
−

ˆ

B

(dω+

dσ

)p
dσ

)1/p

.

(
−

ˆ

B

∣∣∣ log dω±

dσ
−m±

B

∣∣∣
p′

dσ

)1/p′

.

By the John-Nirenberg inequality and the fact that log
dω±

dσ
∈ VMO(σ), it follows that the right

hand side above tends to 0 as r(B) → 0, uniformly with respect to the center of the ball. Therefore,

−

ˆ

B

∣∣∣ log dω−

dω+
− −

ˆ

B
log

dω−

dω+
dω+

∣∣∣ dω+ . −

ˆ

B

∣∣∣ log dω−

dω+
− (m−

B −m+
B)
∣∣∣ dω+ → 0 ar r(B) → 0,
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uniformly with respect to the center of the ball. So log
dω−

dω+
∈ VMO(ω+), as wished.

3.2. Stopping cubes for the proof of (c) ⇒ (d). The rest of the paper is devoted to the proof
of this implication. To prove (d), we assume that Ω+ is Reifenberg flat, that Ω+ and Ω− have
joint big pieces of chord-arc subdomains, and that (1.2) holds.

We claim that it suffices to prove that ∂Ω+ is n-AD-regular. Indeed, then Ω+ is a chord-arc
domain and thus ω+ ∈ A∞(σ). Let us see that together with (1.2) this implies that N ∈ VMO(σ).
For any ball B centered in ∂Ω+ and any p > 1, we have

−

ˆ

B
|N −NB| dσ =

ω+(B)

σ(B)
−

ˆ

B
|N −NB |

dσ

dω+
dω+

≤
ω+(B)

σ(B)

(
−

ˆ

B
|N −NB |

p dω+

)1/p
(

−

ˆ

B

(
dσ

dω+

)p′

dω+

)1/p′

By the A∞ condition, there exists some p′ small enough (or p large enough) such that the following
reverse Hölder inequality holds:

(
−

ˆ

B

(
dσ

dω+

)p′

dω+

)1/p′

.
σ(B)

ω+(B)
.

Thus, using also that |N −NB | ≤ 2,

−

ˆ

B
|N −NB | dσ .

(
−

ˆ

B
|N −NB|

p dω+

)1/p

.

(
−

ˆ

B
|N −NB | dω

+

)1/p

.

By (1.2), the right hand side tends to 0 uniformly as r(B) → 0, and thus N ∈ VMO(σ).
To prove the AD-regularity of ∂Ω+, we have to show that, for any x ∈ ∂Ω+ and any r > 0,

Hn(∂Ω+ ∩B(x, r)) ≤ C rn.

We remark that the converse estimate (i.e., the lower n-AD-regularity of ∂Ω+) is an easy conse-
quence of the two-sided corkscrew condition for Ω+. We consider the lattice D from Theorem 2.3.
Then, clearly, the preceding condition is equivalent to

Hn(R0) ≤ C ℓ(R0)
n for all R0 ∈ D small enough.

We consider a fixed cube R0 ∈ D. For a small constant ε0 ∈ (0, 1) to be chosen below, due to
the Reifenberg flatness assumption (depending on ε0), we can ensure that if ℓ(R0) is small enough,
then

(3.1) D∂Ω+(x, r) ≤ ε0 for all x ∈ ∂Ω+ and 0 < r ≤ 100ℓ(R0).

Given some parameters δ, α ∈ (0, 1) and M ≫ 1 to be chosen below, we consider some stopping
cubes defined as follows: we say that Q ∈ Stop(R0) if Q ∈ D is a maximal cube contained in R0

such that one of the following options holds:

• Θω+(BQ) > MΘω+(BR0
). We write Q ∈ HD+(R0).

• Θω+(BQ) ≤ δΘω+(BR0
). We write Q ∈ LD+(R0).

• |NBR0
−NBQ

| ≥ α. We write Q ∈ BS(R0).



THE TWO-PHASE PROBLEM FOR HARMONIC MEASURE IN VMO 9

Recall that the vectors NBR0
and NBQ

are defined in (1.3). The notations HD, LD and BS stand
for high density, low density, and big slope, respectively.

We denote

HD+(R0) =
⋃

Q∈HD+(R0)

Q, LD+(R0) =
⋃

Q∈LD+(R0)

Q, BS(R0) =
⋃

Q∈BS(R0)

Q

and
G(R0) = R0 \

⋃

Q∈Stop(R0)

Q.

We let Tree(R0) be the subfamily of D(R0) such that no cube from Tree(R0) is properly contained
in any cube from Stop(R0).

From now on, we also write NQ ≡ NBQ
and LQ = LBQ

, with LBQ
defined in (1.3).

Lemma 3.1. For any ε > 0, if ℓ(R0) is small enough, M big enough, and δ small enough, then

ω+(HD+(R0) ∪ LD+(R0)) ≤ εω+(R0).

The proof of this lemma is the same as the one of Lemma 4.1 from [PT] (remark that the
vanishing Reifenberg flatness condition is not necessary in the proof, instead this relies on the
condition about joint big pieces of chord-arc subdomains). We also have:

Lemma 3.2. For any ε > 0, if ℓ(R0) is small enough (depending on ε and α), then

ω+(BS(R0)) ≤ εω+(R0).

Proof. By (1.2), assuming ℓ(R0) small enough,

−

ˆ

R0

|N −NR0
| dω+ ≤ ε2,

and, analogously,

−

ˆ

Q
|N −NQ| dω

+ ≤ ε2 for all Q ∈ BS(R0).

Therefore,
∑

Q∈BS(R0)

|NQ −NR0
|ω+(Q) ≤

∑

Q∈BS(R0)

ˆ

Q
|N −NR0

| dω+ +
∑

Q∈BS(R0)

ˆ

Q
|N −NQ| dω

+

≤ ε2 ω+(R0) +
∑

Q∈BS(R0)

ε2 ω+(Q) ≤ 2ε2 ω+(R0).

Hence,

ω+(BS(R0)) .
∑

Q∈BS(R0)

|NQ −NR0
|

α
ω+(Q) .

ε2

α
ω+(R0),

and so the lemma follows, since we can assume that ε ≤ cα. �

From the last two lemmas we infer that, for ℓ(R0) small enough,

(3.2) ω+
( ⋃

Q∈Stop(R0)

Q
)
≤ 2εω+(R0).

Our next objective is to prove the following related estimates in the lemma below.
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Lemma 3.3. Suppose that ℓ(R0) is small enough and ε0, ε, δ, α, and M are chosen suitably.
Then,

(3.3) Hn(G(R0)) . ℓ(R0)
n

and

(3.4)
∑

Q∈Stop(R0)

ℓ(Q)n ≤
1

10
ℓ(R0)

n.

Remark 3.4. Below we will choose the Reifenberg flatness parameter ε0 depending only on the
ambient dimension. So ε0 is independent of the parameters M and δ, which in turn depend on
the property of having joint big pieces of chord-arc subdomains. Similarly, α is a constant that
will be fixed below depending at most on n.

Before proving this result, we will show how this yields Theorem 1.1.

3.3. Proof of Theorem 1.1 using Lemma 3.3. We now construct the family of cubes Top(R0)
contained in R0 inductively. First we write Top0(R0) = {R0}, and then assuming Topk−1(R0) to
be defined, we set

Topk(R0) =
⋃

R∈Topk−1(R0)

Stop(R),

and we let Top(R0) =
⋃

k≥0Topk(R0). We also set

Gk(R0) =
⋃

R∈Topk−1(R0)

(
R \

⋃

Q∈Stop(R)

Q
)
=

⋃

R∈Topk−1(R0)

R \
⋃

Q∈Topk(R0)

Q.

So we have the partition

R0 =
∞⋃

k=1

Gk(R0) ∪
∞⋂

k=1

⋃

Q∈Topk(R0)

Q,

and thus

(3.5) Hn(R0) ≤
∞∑

k=1

Hn(Gk(R0)) +Hn
( ∞⋂

k=1

⋃

Q∈Topk(R0)

Q
)
.

From Lemma 3.3 (applied to the cubes Q below in place of R0), we deduce that, for every k,

(3.6) Hn(Gk(R0)) ≤
∑

Q∈Topk−1(R0)

Hn(G(Q)) .
∑

Q∈Topk−1(R0)

ℓ(Q)n

and that
∑

Q∈Topk(R0)

ℓ(Q)n =
∑

R∈Topk−1(R)

∑

Q∈Stop(R)

ℓ(Q)n ≤
1

10

∑

R∈Topk−1(R0)

ℓ(R)n.

Thus,

(3.7)
∑

Q∈Topk(R0)

ℓ(Q)n ≤ 10−kℓ(R0)
n,

which, together with (3.6), implies that

(3.8) Hn(Gk(R0)) . 10−kℓ(R0)
n.
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On the other hand, taking into account that there exists some r0 ∈ (0, 1) such that every
Q ∈ Topk(R0) satisfies ℓ(Q) ≤ rk0 ℓ(R0), from the definition of Hn we deduce that

(3.9) Hn
( ∞⋂

k=1

⋃

Q∈Topk(R0)

Q
)
. lim sup

k→∞

∑

Q∈Topk(R0)

ℓ(Q)n ≤ lim sup
k→∞

10−kℓ(R0)
n = 0.

Hence, by (3.5), (3.8), and. (3.9), we obtain

Hn(R0) .
∞∑

k=1

10−kℓ(R0)
n . ℓ(R0)

n.

�

4. The proof of Lemma 3.3

4.1. Preliminaries for the construction of the approximating Lipschitz graph. For tech-
nical reasons we have to work with (extended) cubes from ND. Given R0 ∈ D, we consider the
cube S0 ∈ ND defined by

S0 =
⋃

R∈N (R0)

R,

We denote

Stop(S0) =
⋃

R∈N (R0)

Stop(R), Tree(S0) =
⋃

R∈N (R0)

Tree(R), G(S0) =
⋃

R∈N (R0)

G(R),

and we also set

zS0
= zR0

, ℓ(S0) = ℓ(R0), LS0
= LR0

, BS0
= 5BR0

.

Recall that zR0
stands for the center of R0. So zS0

should also be considered as the center of S0.
To prove Lemma 3.3 we need first to construct a Lipschitz graph that will approximate well

S0 at the scale of Stop(S0) and will contain G(S0). The arguments involved were first developed
by David and Semmes [DS] and now have become standard and there are many presentations of
this. We will follow [To2]. First we need to state some preliminary lemmas.

Lemma 4.1. Let P,Q ∈ Tree(S0) \ Stop(S0) be so that P ⊂ Q. If x ∈ LP ∩BP , then

dist(x,LQ) . ε0 ℓ(Q).

The proof of this result is standard. See Lemma 7.14 in [To2] for a similar estimate. Recall
that the constant ε0 appears in (3.1), and the parameter δ is the one in the definition of the family
LD+. Other relevant parameters are M and α, in the definition of the families HD+ and BS,
respectively.

We denote by Π (respectively Π⊥) the orthogonal projection onto LS0
(respectively, L⊥

S0
).

Further, we assume that LS0
= R

n × {0}, so that L⊥
S0

is the vertical axis of Rn+1, which we will
identify with R. For any given n-plane L, we denote by ΠL the orthogonal projection on L.

The next lemma is analogous to Lemma 7.15 in [To2].

Lemma 4.2. Let Q,P ∈ Tree(S0) \ Stop(S0), q ∈ LQ ∩ 2BQ and p ∈ LP ∩ 2BP . Then

|Π⊥(p)−Π⊥(q)| ≤ Cα (|Π(p)−Π(q)|+ 2ℓ(P ) + 2ℓ(Q)) .
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Next we need to define the following auxiliary function:

d(x) := inf
Q∈Tree(S0)\Stop(S0)

(dist(x,Q) + ℓ(Q)) for x ∈ R
n+1.(4.1)

The next lemma can be found as Lemma 7.19 of [To2].

Lemma 4.3. Let ε0 > 0 and α > 0 be sufficiently small. Then for any x, y ∈ R
n+1,∣∣∣Π⊥(x)−Π⊥(y)

∣∣∣ . α |Π(x)−Π(y)|+ d(x) + d(y).

We denote
Z0 = {x ∈ R

n+1 : d(x) = 0}.

It is easy to check that G(S0) ⊂ Z0. Also, as in Lemma 7.18 from [To2], we have:

Lemma 4.4. We have Hn(Z0) < ∞ and

ω+|Z0
= ρZ0

Hn|Z0
,

where ρZ0
is a function satisfying C1δ ≤ ρZ0

≤ CA.

Let DLS0
be the set of dyadic n-dimensional cubes in LS0

. For p ∈ LS0
, we denote

D(p) = inf
x∈Π−1(p)

d(x),

and for I ∈ DLS0
,

D(I) := inf
p∈I

D(x).

Set

W := {I maximal in DLS0
: ℓ(I) < 20−1 D(I)}.

We summarize the properties of the cubes in W in the following lemma. We index W as
{Ri}i∈IW .

Lemma 4.5. The cubes Ri, i ∈ IW, have disjoint interiors in LS0
and satisfy the following

properties:

(1) If x ∈ 15Ri, then 5ℓ(Ri) ≤ D(x) ≤ 50ℓ(Ri).
(2) There exists an absolute constant c > 1 such that if 15Ri ∩ 15Rj 6= ∅, then

c−1ℓ(Ri) ≤ ℓ(Rj) ≤ cℓ(Ri).(4.2)

(3) For each i ∈ IW, there are at most N0 cubes Rj such that 15Ri ∩ 15Rj 6= ∅, where N0 is
some absolute constant depending only on n.

(4) LS0
\Π(Z0) =

⋃
i∈IW

Ri.

The proof of this result is standard. See for example Lemma 7.20 in [To2].
Let

B0 = B(Π(zS0
), 10r(BS0

)).(4.3)

Certainly, dist(zS0
, LS0

) < 10−1ℓ(S0), and so we have that

Π(S0) ⊂ Π(B0) ⊂ 2B0 ∩ LS0
.(4.4)

Now set

I0 := {i ∈ IW : Ri ∩B0 6= ∅}.
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The next lemma is proven exactly as Lemma 7.21 from [To2].

Lemma 4.6. The following holds.

• If i ∈ I0, then ℓ(Ri) . ℓ(S0) and 3Ri ⊂ LS0
∩ 1.2B0.

• If i /∈ I0, then

ℓ(Ri) ≈ dist(Π(zS0
), Ri) ≈ |zS0

− x| & ℓ(S0) for all x ∈ Ri.

The next lemma is analogous to Lemma 7.22 from [To2].

Lemma 4.7. Let i ∈ I0; there exists a cube Q = Qi ∈ Tree(S0) \ Stop(S0) such that

ℓ(Ri) . ℓ(Qi) . ℓ(Ri);(4.5)

dist(Ri,Π(Qi)) . ℓ(Ri).(4.6)

4.2. The approximating Lipschitz graph. Observe that, by Lemma 4.3, for every x, y ∈ Z0

satisfy ∣∣∣Π⊥(x)−Π⊥(y)
∣∣∣ . α |Π(x)−Π(y)| .

Therefore, the map Π : Z0 → LS0
is injective, and we can define a Lipschitz function A on Π(Z0)

by requiring

(4.7) A(Π(x)) := Π⊥(x) for x ∈ Z0.

Next we intend to extend the function A to the whole LS0
. To this end, for i ∈ I0, first we

denote by Ai the affine function LS0
→ L⊥

S0
whose graph is the n-plane LQi

. Notice that, for each
i ∈ I0, Ai is Lipschitz with constant . α.

On the other hand, for i ∈ IW \ I0, we put Ai ≡ 0, so that its graph is just LS0
.

The following lemma is proven in the same way as Lemma 7.23 in [To2].

Lemma 4.8. Assume that ε0 ≪ α. If 10Ri ∩ 10Rj 6= ∅ for some i, j ∈ IW, then

(1) dist(Qi, Qj) . ℓ(Ri) if, moreover, i, j ∈ I0;
(2) |Ai(x)−Aj(x)| . ε0ℓ(Ri) for x ∈ 100Ri;
(3) |∇Ai(x)−∇Aj(x)| . ε0.

Remark that [To2, Lemma 7.23] yields estimates like (2) an (3) above with the implicit constants
depending on M and δ. In our situation the implicit constants above depend neither on M nor
on δ due to the Reifenberg flatness of ∂Ω+.

Next we complete the task of defining A on LS0
. To do so, we recur to a standard construction

involving a partition of unity adapted to the Whitney decomposition {Ri}i∈IW ; this construction

goes as follows: for i ∈ IW, we find a function φ̃i ∈ C∞(LS0
) such that

χ2Ri
≤ φ̃ ≤ χ3Ri

,(4.8)

‖∇φ̃i‖∞ .
1

ℓ(Ri)
,(4.9)

‖∇2φ̃i‖∞ .
1

ℓ(Ri)2
.(4.10)
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Then for each i ∈ IW, we put

φi :=
φ̃i∑

j∈IW
φ̃j

.(4.11)

Then it is immediate from the construction that {φi}i∈IW is a partition of unity in LS0
\ Π(Z0)

subordinated to {3Ri}i∈IW . Moreover, properties (4.9) and (4.10) together with Lemma 4.5 give
that

‖∇φi‖∞ . ℓ(Ri)
−1 and

‖∇2φi‖∞ . ℓ(Ri)
−2.

We now define A : LS0
\ Π(Z0) → L⊥

S0
: if x ∈ LS0

, we put

A(x) :=
∑

i∈IW

φi(x)Ai(x) =
∑

i∈I0

φi(x)Ai(x).

Recall that A is defined in Z0 by (4.7).
The following lemma, which follows in the same way as Lemmas 7.24 and 7.27 from [To2], will

also be useful later on.

Lemma 4.9. The function A : LS0
→ L⊥

S0
is supported on 1.2B0. It is Lipschitz with slope at

most Cα. Moreover, if x ∈ 15Ri for i ∈ IW, then

|∇2A(x)| .
ε0

ℓ(Ri)
.

We will denote the graph of A by Γ, that is

Γ := {(x,A(x)) |x ∈ LS0
}.(4.12)

Also, we assume α small enough so that A is Lipschitz with constant at most 1/100.

Observe now that the estimate (3.3) in Lemma 3.3 is an immediate consequence of the preceding
lemma. Indeed,

G(R0) ⊂ G(S0) ⊂ Z0 ∩BS0
⊂ Γ ∩BS0

,

and thus, using that Γ is a Lipschitz graph with slope at most Cα ≤ 1, we get

(4.13) Hn(G(R0)) ≤ Hn(Γ ∩BS0
) . r(BS0

)n ≈ ℓ(R0)
n,

which proves (3.3). Further, it is easy to check that G(R0) (and so G(S0)) is non-empty. Indeed,
this is an immediate consequence of (3.2):

ω+(G(R0)) = ω+(R0)− ω+
( ⋃

Q∈Stop(R0)

Q
)
≥ (1− 2ε)ω+(R0) > 0.

4.3. The Lipschitz graph Γ and ∂Ω+ are close to each other. The next four lemmas are
proven as Lemmas 7.28, 7.29, 7.30, and 7.32 in [To2], although in our case the implicit constants
in the estimates below do not depend on M or δ due to the Reifenberg flatness of ∂Ω+.

Lemma 4.10. Every any x ∈ 3BS0
satisfies

dist(x,Γ) . d(x).
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Lemma 4.11. Let ε0 > 0 be sufficiently small. If Q ∈ Tree(S0) \Stop(S0) and x ∈ Γ∩ 2BQ, then

dist(x,LQ) . ε0 ℓ(Q).(4.14)

Lemma 4.12. Let Q ∈ Tree(S0). Then every x ∈ Q satisfies

dist(x,Γ) . ε0ℓ(Q).

Lemma 4.13. We have

dist(x,LS0
) . ε0 ℓ(S0)

for all x ∈ Γ.

4.4. The domains Ũ+ and Ũ−. Recall that, without loss of generality, we assume that the
n-plane LS0

coincides with the horizontal n-plane {(x1, . . . , xn+1) : xn+1 = 0}. We denote Ω+
Γ =

{(x1, . . . , xn+1) : xn+1 > A(x1, . . . , xn)}. By the Reifenberg flatness property of Ω+ (recall (3.1)),
for every Q ∈ D we have

BQ \ UCε0r(BQ)(LQ) ⊂ Ω+ ∪ Ω−

(where Ut(A) stands for the t-neighborhood of A) and one component of BQ \ UCε0r(BQ)(LQ)

is contained in Ω+ and the other in Ω−. In the particular case of BS0
, by rotating the axes if

necessary, we assume that

(4.15) BS0
∩ R

n+1
+ \ UCε0r(B0)(LS0

) ⊂ Ω+ and BS0
∩ R

n+1
− \ UCε0r(B0)(LS0

) ⊂ Ω−.

We define two functions A± : LS0
→ L⊥

S0
as follows, for x ∈ LS0

,

A+(x) = inf
y∈G(S0)

(
A(Π(y)) + 1

100 |x−Π(y)|
)
,

A−(x) = sup
y∈G(S0)

(
A(Π(y)) − 1

100 |x−Π(y)|
)
.

Recall that G(S0) 6= ∅ and notice that A± are 1
100 -Lipschitz functions. Remark also that if

x ∈ Π(G(S0)), then A+(x) = A−(x) = A(x). Indeed, it is clear from the definition of A+ that
A+(x) ≤ A(x). Also, since A is 1/100-Lipschitz, for every y ∈ G(S0),

A(Π(y)) + 1
100 |x−Π(y)| ≥ A(x),

and taking infimum over y we get A+(x) ≥ A(x). Hence A(x) = A+(x). The proof of A(x) =
A−(x) is analogous.

Next we we consider the domains

U+ = {x ∈ R
n+1 : Π⊥(x) > A−(Π(x))},

U− = {x ∈ R
n+1 : Π⊥(x) < A+(Π(x))}.

Notice that U± are both Lipschitz domains.

Lemma 4.14. We have

Ω+ ∩B(zS0
, 10r(BS0

)) ⊂ U+

and

Ω− ∩B(zS0
, 10r(BS0

)) ⊂ U−.
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Proof. We will show that Ω+ ∩ B(zS0
, 10r(BS0

)) ⊂ U+. The other inclusion is proved by similar
arguments.

By connectivity, it is enough to show that

(4.16) ∂U+ ∩B(zS0
, 10r(BS0

)) ⊂ Ω− = R
n+1 \Ω+,

since U+ ∩ B(zS0
, 10r(BS0

)) ∩ Ω+ 6= ∅, by the first inclusion in (4.15). To prove (4.16), consider

x ∈ ∂U+ ∩ B(zS0
, 10r(BS0

)). Our objective is to show that x ∈ Ω−. In the case x ∈ G(S0), by
construction we have x ∈ ∂Ω+ = ∂Ω− and we are done.

In the case x 6∈ G(S0), denote x0 = Π(x) and let y ∈ G(S0) be such that

(4.17) Π⊥(x) = A−(x0) = A(Π(y))−
1

100
|x0 −Π(y)|.

Recall that we are identifying L⊥
S0

with the vertical axis of Rn+1. Denote x̃ = (x0, A(x0)), so that

x̃− x = (A(x0)−A−(x0)) en+1.

Since A is Cα-Lipschitz, we have

(4.18) Π⊥(x̃) = A(x0) ≥ A(Π(y)) − Cα |x0 −Π(y)|.

Thus, combining (4.17) and (4.18), we obtain

A−(x0) ≤ A(x0) +
(
Cα−

1

100

)
|x0 −Π(y)| ≤ A(x0)−

1

200
|x0 −Π(y)|,

assuming α small enough. Hence,

|x̃− x| = A(x0)−A−(x0) ≥
1

200
|x0 −Π(y)|.

For t ∈ [0, ℓ(R0)/10], consider the point

x(t) = x− t en+1,

so that x(0) = x and

|x̃− x(t)| = |x̃− x|+ t = A(x0)−A−(x0) + t.

Let Ri, i ∈ IW, be such that x0 ∈ Ri (in fact, by the definition of I0, we have i ∈ I0). Observe
that

ℓ(Ri) . dist(x0,Π(G(S0))) ≤ |x0 −Π(y)| . |x− x̃| ≤ |x(t)− x̃|.

By Lemma 4.7, there exists Q0 ∈ Tree(S0) such that ℓ(Q0) ≈ ℓ(Ri) and dist(Π(Q0), Ri) . ℓ(Ri).
By Lemma 4.12 we have dist(Q0,Γ) . ℓ(Q0) and thus it easily follows that

(4.19) dist(x̃, Q0) . ℓ(Q0).

Notice also that the estimate in the display above ensures that

(4.20) |x(t)− x̃| & ℓ(Q0).

Consider the minimal ancestor Q ∈ D of Q0 such that x(t), x̃ ∈ 2BQ. Suppose first that
ℓ(Q) ≤ ℓ(S0). From the definition of Tree(S0), it follows that Q ∈ Tree(S0), and by the minimality
of Q, (4.19), and (4.20), we obtain

ℓ(Q) ≈ r(2BQ) ≈ |x(t)− x̃|+ ℓ(Q0) + dist(x̃, Q0) . |x(t)− x̃|+ ℓ(Q0) . |x(t)− x̃|.

Let z ∈ LQ be such that Π(z) = Π(x(t)) = Π(x̃). Then, by Lemma 4.11,

(4.21) |x(t)− x̃| ≤ |x(t)− z|+ |x̃− z| . dist(x(t), LQ) + dist(x̃, LQ) . dist(x(t), LQ) + ε0 ℓ(Q).
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Hence,

dist(x(t), LQ) ≥ c |x(t) − x̃| − Cε0 ℓ(Q) & ℓ(Q).

This implies that x(t) belongs to one of the two components of 2BQ \ U10ε0r(BQ)LQ, by the

Reifenberg flatness of Ω−. In the case ℓ(Q) > ℓ(S0), since |x(t)− x̃| . ℓ(S0) by construction, one
easily deduces that ℓ(Q) ≈ ℓ(S0), and the same estimates above are also valid. Indeed, observe
for example that the estimate dist(x̃, LQ) . ε0 ℓ(Q) used in (4.21) also holds in this case, by
Lemma 4.13.

For t large enough, x(t) ∈ Ω−, by the assumption (4.15), and then by connectivity we deduce
that x(t) ∈ Ω− for all t ∈ [0, ℓ(R0)/10]. In particular, x = x(0) ∈ Ω−. �

Now we define the domains Ũ+, Ũ− ⊂ R
n+1 as follows. First we consider the cylinder K0 =

Π(2BR0
)× [−4 r(BR0

), 4 r(BR0
)], and then we set

Ũ+ = U+ ∩K0, Ũ− = U− ∩K0.

Observe that both Ũ+ and Ũ− are bounded Lipschitz domains, and by Lemma 4.14, we have

Ω+ ∩K0 ⊂ Ũ+, Ω− ∩K0 ⊂ Ũ−.

Recall that the estimate (3.3) has already been obtained at the end of Section 4.2. So to
complete the proof of Lemma 3.3 it only remains to prove (3.4).

4.5. Proof of (3.4). Recall that

ω+(R \G(R)) ≤ 2εω+(R)

for all R ∈ N (R0), by (3.2) applied to these cubes R in place of R0. Thus, using also that ω+ is
doubling and that K0 ∩ ∂Ω+ ⊂ S0,

(4.22) ω+(K0 ∩ ∂Ω+ \G(S0)) ≤
∑

R∈N (R0)

ω+(R \G(R)) ≤ 2ε
∑

R∈N (R0)

ω+(R) . εω+(K0 ∩ ∂Ω+).

Consider a point p0 ∈ K0 ∩ Ω+ such that dist(p0, ∂(K0 ∩ Ω+)) ≈ ℓ(R0). From (4.22) and the
change of pole formula (2.3) for NTA domains, we derive

(4.23) ω+,p0(K0 ∩ ∂Ω+ \G(S0)) . εω+,p0(K0 ∩ ∂Ω+) ≤ ε.

We also have

ωp0
Ω+∩K0

(K0 ∩ ∂Ω+) & 1.

This follows easily from Lemma 2.1. Indeed, from this lemma we deduce that, for p1 = zR0
+

1
5 r(BR0

) en+1,

ωp1
Ω+∩K0

(K0 ∩ ∂Ω+) ≥ ωp1
Ω+∩K0

(BR0
∩ ∂Ω+) &

Cap(14BR0
\Ω+)

r(BR0
)n−1

& 1,

where the last estimate follows from the fact that, by the exterior corkscrew condition of Ω+,
there exists some ball B ⊂ 1

4BR0
\ Ω+ with radius comparable to r(BR0

).1 By the Reifenberg
flatness of Ω+ one can find a Harnack chain contained in Ω+ ∩K0 joining p0 and p1 (to this end

1In the planar case, a similar estimate holds works, using an argument involving logarithmic capacity instead of
Newtonian capacity.
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notice that the distance from the segment with end-points p0, p1 to (Ω+ ∩K0)
c is comparable to

ℓ(R0)). Thus,
ωp0
Ω+∩K0

(K0 ∩ ∂Ω+) ≈ ωp1
Ω+∩K0

(K0 ∩ ∂Ω+) & 1.

From (4.23), the maximum principle, and the last estimate, we infer

ωp0
Ω+∩K0

(K0 ∩ ∂Ω+ \G(S0)) ≤ ω+,p0(K0 ∩ ∂Ω+ \G(S0)) . ε ≈ εωp0
Ω+∩K0

(K0 ∩ ∂Ω+).

Hence,

ωp0
Ω+∩K0

(K0 ∩ ∂Ω+ ∩G(S0)) = ωp0
Ω+∩K0

(K0 ∩ ∂Ω+)− ωp0
Ω+∩K0

(K0 ∩ ∂Ω+ \G(S0))(4.24)

≥ (1− Cε)ωp0
Ω+∩K0

(K0 ∩ ∂Ω+).

Next we claim that

(4.25) ωp0
Ω+∩K0

(K0 ∩ ∂Ω+) ≥ ωp0
Ũ+

(K0 ∩ ∂U+).

Indeed, for x ∈ K0∩∂Ω+, we have ωx
Ω+∩K0

(K0 ∩∂Ω+) = 1 ≥ ωx
Ũ+

(K0∩∂U+). For x ∈ ∂K0∩Ω+,

since ∂K0 ∩ Ω+ ⊂ ∂K0 ∩ Ũ+, it follows also that

ωx
Ω+∩K0

(K0 ∩ ∂Ω+) = 0 = ωx
Ũ+

(K0 ∩ ∂U+).

So our claim follows from the maximum principle, since both ωx
Ω+∩K0

(K0 ∩ ∂Ω+) and ωx
Ũ+

(K0 ∩

∂U+) are harmonic functions of x ∈ Ω+ ∩K0.
By the maximum principle again, recalling that G(S0) ⊂ ∂Ω+∩∂U+, and by (4.24) and (4.25),

we get

ωp0
Ũ+

(K0∩G(S0)) ≥ ωp0
Ω+∩K0

(K0∩G(S0)) ≥ (1−Cε)ωp0
Ω+∩K0

(K0∩∂Ω
+) ≥ (1−Cε)ωp0

Ũ+
(K0∩∂U

+).

Equivalently,
ωp0
Ũ+

(K0 ∩ ∂U+ \G(S0)) ≤ Cεωp0
Ũ+

(K0 ∩ ∂U+).

Now, since Ũ+ is a Lipschitz domain, by Dahlberg’s theorem [Dah] ωp0

Ũ+
is an A∞ weight with

respect to Hn|
∂Ũ+ , and thus we have

(4.26) Hn
(
K0 ∩ ∂U+ \G(S0)

)
. εaHn

(
K0 ∩ ∂U+

)
. εa ℓ(R0)

n,

for some a > 0 (depending only on the A∞ character of ωp0
Ũ+

with respect to Hn|
∂Ũ+).

Our next objective consists of showing that

(4.27)
∑

Q∈Stop(R0)

ℓ(Q)n . Hn
(
K0 ∩ ∂U+ \G(S0)

)
.

Clearly, this estimate, together with (4.26), implies (3.4) for ε small enough. To prove (4.27),

notice that, for each Q ∈ Stop(R0),
1
4B̃Q ∩ Γ 6= ∅ by Lemma 4.12 (recall that B̃Q is defined in

Theorem 2.3(d)). Hence,

ℓ(Q)n . Hn(12 B̃Q ∩ Γ).

Observe also that the balls 1
2B̃Q, with Q ∈ Stop(R0), are disjoint from G(S0). Indeed, by definition

G(S0) = S0 \
⋃

P∈Stop(S0)
P and so B̃Q ∩ ∂Ω+ ⊂ Q ⊂ ∂Ω+ \G(S0). Then we deduce

(4.28)
∑

Q∈Stop(R0)

ℓ(Q)n .
∑

Q∈Stop(R0)

Hn(12B̃Q ∩ Γ) ≤ Hn(BR0
∩ Γ \G(S0)),



THE TWO-PHASE PROBLEM FOR HARMONIC MEASURE IN VMO 19

where in the last inequality we took into account that the balls 1
2B̃Q, with Q ∈ Stop(R0), are

pairwise disjoint, contained in BR0
, and disjoint from G(S0). Using the fact that G(S0) ⊂ Γ∩∂Ũ+

an that Γ and ∂U+ are Lipschitz graphs, we derive

(4.29) Hn(BR0
∩ Γ \G(S0)) ≈ Hn(Π(BR0

∩ Γ \G(S0))) ≤ Hn(K0 ∩ ∂U+ \G(S0)).

By combining (4.28) and (4.29) we get (4.27). Finally, just note again that (4.26) and (4.27) yield
(3.4) and then the proof of Lemma 3.3 is concluded. �
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