An Adaptive Resolution Scheme for Performance Enhancement of a Web-based Multi-User VR Application

Rishabh Pathak, Anderson Augusto Simiscuka and Gabriel-Miro Muntean

IEEE BMSB 2021

Presenter: Anderson Augusto Simiscuka, Dublin City University
04/08/2021
Introduction

Anderson Augusto Simiscuka

Postdoctoral Researcher
Doctor in Electronic Engineering
anderson.simiscuka2@mail.dcu.ie
Motivation

• The performance of web-based virtual reality (VR) applications, such as ones built with A-Frame, can be affected due to the limitations of the CPU and GPU, especially in multi-user applications.

• It is important to understand and analyze these applications’ performance under different scenarios, demonstrating how an increase in the number of users affects metrics related to VR quality of experience (QoE).

• A smooth frame rate is important in VR applications to prevent motion sickness.
Multi-user VR Application

• We propose a multi-user VR application developed using the A-Frame library, rendered as a 360° experience within a browser.

• The application allows users to watch a film in a synchronized manner, in a virtual cinema room.
Multi-user VR Application

• The application employs a novel Adaptive Resolution Scheme for VR (ARS-VR), which improves VR applications’ frame rate and frame latency on remote devices with limited processing and display.

• Users can move in the application, while WebRTC allows for voice chats. The library Networked A-Frame broadcasts synchronous playback to all clients.
VR Application Architecture

• The application uses a reverse proxy service called **ngrok** to expose the local application server to a firewall on the public internet using secure tunnels.

• Users that are not on the same network as the server can access the application by querying the link to the **secure tunnel**.

• Two laptops were used as the application **server** and a **client**. A smartphone was used to simulate another client from a different network than the server.
Adaptive Resolution Scheme for VR

• Once a connection is established, the server starts sending application data to the client and ARS-VR starts.

• The algorithm is deployed with JavaScript and it adjusts the resolution of the application by monitoring the frame rate.

• The numerator and denominator of the aspect ratio are multiplied with the frame rate to provide a dynamic resolution.

Algorithm 1: Adaptive Resolution Scheme for VR

```javascript
while browser_window==open do
    Input: framerate, screen_width;
    device_pixel_ratio; window_height
    Output: maxCanvasSize
    Function greatest_common_divisor(w, h):
        var w = screen_width*device_pixel_ratio
        var h = window_height*device_pixel_ratio
        var ratio = screen_width/screen_height
        var gcd = greatest_common_divisor(w, h)
        var num = w/gcd
        var den = h/gcd
        return num, den, ratio, w, h
    Function Main:
        if ratio <1 then
            maxCanvasSize = {height: h/2, width: w/2}
        else
            maxCanvasSize = {height: framerate*den,
                width: framerate*num}
        return maxCanvasSize
end
```
Adaptive Resolution Scheme for VR

- This is the main **contribution** of our work, as the VR application was built in order to test the approach.
- The approach can be applied to other **web-based VR** experiences as well.
- With the browser rendering the 3D scenarios in a lower resolution, the framerate gets closer to **60fps**, which makes the VR experience more pleasant to users.

```plaintext
**Algorithm 1: Adaptive Resolution Scheme for VR**

```while browser_window==open do
 Input: framerate, screen_width;
 device_pixel_ratio, window_height

 Output: maxCanvasSize

 Function greatest_common_divisor(w, h):
 var w = screen_width*device_pixel_ratio
 var h = window_height*device_pixel_ratio
 var ratio = screen_width/screen_height
 var gcd = greatest_common_divisor(w, h)
 var num = w/gcd
 var den = h/gcd
 return num, den, ratio, w, h

 Function Main:
 if ratio <1 then
 maxCanvasSize = {height: h/2, width: w/2}
 else
 maxCanvasSize = {height: framerate*den,
 width: framerate*num}
 return maxCanvasSize
```
Performance Analysis

• Browser used was **Google Chrome**.

• The **frame rate** was collected for 120 seconds from the application with the algorithm ‘off’ (i.e. using the default 1920px resolution) and then with the algorithm ‘on’ (i.e. with dynamic resolution).

• Scenarios with **4, 6 and 8** simultaneous users were considered.
Performance Analysis - FPS

4 users

6 users

8 users

<table>
<thead>
<tr>
<th>No. users</th>
<th>Avg. fps</th>
<th>Avg. fps-ARS</th>
<th>Avg. resolution</th>
<th>FPS loss reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>36.65</td>
<td>50.94</td>
<td>806x453</td>
<td>23%</td>
</tr>
<tr>
<td>6</td>
<td>29.69</td>
<td>47.33</td>
<td>801x450</td>
<td>30%</td>
</tr>
<tr>
<td>8</td>
<td>27.94</td>
<td>45.23</td>
<td>667x375</td>
<td>28%</td>
</tr>
</tbody>
</table>
Performance Analysis - Resolution

The resolutions, are on average 806x453px, 801x450px and 667x375px for the scenarios with 4, 6 and 8 users, respectively.
Performance Analysis - Frame Latency

- Frame latency peaks up-to 800 and 700ms in the case of 4 and 6 users, respectively.
- Avg. frame latency without the algorithm: approx. 90-100ms
- Avg. frame latency with algorithm: approx. 70-80 milliseconds.
Conclusion and Future Work

• The A-Frame browser-based multi-user VR application can be rendered on remote devices with limited processing and display features.

• The ARS-VR algorithm was also introduced, aimed at improving VR performance in terms of frame rate and frame latency on such devices, with the dynamic adaptation of the visuals resolution.

• ARS-VR significantly reduces the FPS loss in the scenarios of 4, 6, and 8 simultaneous users by 23%, 30%, and 28%, respectively.

• Future work will improve the algorithm to support devices with different screen height and width ratios. Other user applications, such as video conferencing in A-Frame and other device types can also be studied.
Thank you for your attention

Anderson Simiscuka, Dublin City University

www.traction-project.eu

Anderson Simiscuka (DCU)
anderson.simiscuka2@mail.dcu.ie
www.eeng.dcu.ie/~pel